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Less than 2% of mammalian genomes code for proteins, but ‘the majority of its bases can be found in primary transcripts’ – a
phenomenon termed the pervasive transcription, which was first reported in 2007. Even though most of the transcripts do not
code for proteins, they play a variety of biological functions, with regulation of gene expression appearing as the most common
one. Those transcripts are divided into two groups based on their length: small non-coding RNAs, which are maximally 200 bp
long, and long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides. The advances in next-generation sequencing
methods provided a new possibility of investigating the full set of RNA molecules in the cell. In this review, we summarized the
current state of knowledge on lncRNAs in three major livestock species – Sus scrofa, Bos taurus and Gallus gallus, based on the
literature and the content of biological databases. In the NONCODE database, the largest number of identified lncRNA transcripts
is available for pigs, but cattle have the largest number of lncRNA genes. Poultry is represented by less than a half of records.
Genomic annotation of lncRNAs showed that the majority of them are assigned to introns (pig, poultry) or intergenic (cattle). The
comparison with well-annotated human and mouse genomes indicates that such annotation is a result of lack of proper lncRNA
annotation data. Since lncRNAs play an important role in genomic studies, their characterization in farm animals’ genomes is
critical in bridging the gap between genotype and phenotype.
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Implications

Long non-coding RNAs are common transcripts existing in
genomes, including those of livestock. An individual transcrip-
tome contains more long non-coding RNAs than messenger
RNA molecules. Our literature review shows significant impact
of long non-coding RNAs on a variety of phenotypes relevant to
livestock production and welfare, which is exhibited by the role
of long non-coding RNAs as modifiers of the expression of
protein-coding genes. In humans, long non-coding RNAs exist
which act as disease biomarkers what can also be anticipated
for livestock. The better understanding of individual- and tissue-
specific variability in long non-coding RNAs expression is
important for more precise exploitation of genetic variation
of livestock phenotypes.

Introduction

Beginning from the discovery of transfer RNA (tRNA) and
ribosomal RNA (rRNA) in the 1950s, non-coding RNAs
(ncRNAs) with biological roles have been known for some
60 years (Palazzo and Lee 2015). Recent advances in
next-generation sequencing methods have been proving

new possibilities of investigating the full set of RNA mole-
cules in genomes and have led to the increase in the number
of studies carried out on RNA. Specifically, RNA-seq is a tech-
nique used for a whole transcriptome sequencing which,
together with computational methods, allows for transcrip-
tome reconstructing and the quantification of gene expression.
The method overcomes shortcomings of microarray technol-
ogy by offering a more comprehensive coverage of whole
transcriptomes, and it is not limited to known sequences
(Uchida et al., 2017). Therefore, RNA-seq offers a remarkable
opportunity to genome-wide annotation and characterization
of long non-coding RNAs (lncRNAs) (Xiao et al., 2018).
According to recent knowledge, less than 2% of the genome
codes for proteins, but ‘themajority of its bases can be found in
primary transcripts’ – a phenomenon termed the pervasive tran-
scription, which was first reported by the ENCODE Project
Consortium (2007). Recently, Lee et al. (2018) stated that only
1~2% of the genome has a protein-coding potential, while the
reminder forms ncRNA molecules. Because of typically low
expression levels (comparing to protein-coding transcripts),
they are described as ‘transcription noise’ (Ma et al., 2013).

Non-coding RNA is classified into two groups: short and
long non-coding RNA (Nie et al., 2012). Transcripts shorter
than 200 nucleotides are termed small non-coding RNA†E-mail: joanna.szyda@upwr.edu.pl
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and include Piwi-interacting RNA, small interfering RNA,
microRNA (miRNA), rRNA, tRNA, small nucleolar RNA and
small nuclear RNA (Storz, 2002). Transcripts longer than
200 nucleotides are classified as lncRNAs among which
lncRNAs that located in-between genes are termed long
intergenic non-coding RNA (lincRNA) (Wang and Chang,
2011; Zheng et al., 2018).

In livestock, genome-wide association studies based on
single-nucleotide polymorphisms (SNPs) led to the identifica-
tion of manymutations causal for the phenotypes of commer-
cial interest, still most of the significant SNPs fall into
genomic regions not covered by genic DNA (Goddard et al.,
2016; www.animalgenome.org/QTLdb/). However, despite
this large number of significant SNPs identified, their joint
effects do not account for all of the phenotypic variations
observed in traits routinely measured in livestock – the phe-
nomenon called ‘missing heritability’ first introduced into
human genetics by Manolio et al. (2009). Since lncRNA
may be one of the potential causes of missing heritability,
it is of interest for livestock genomics. Therefore, the aim
of our study was to characterize the current state of knowl-
edge on lncRNA in three major species of farm animals: Bos
taurus, Sus scrofa and Gallus gallus.

Long non-coding RNA detection workflow
Given a raw RNA-seq data, a typical workflow for the
identification and annotation of lncRNAs is composed of
two major parts – a part which is common to processing
all RNA-seq data and a part dedicated to lncRNA.

In the common part, the first step (1a) involves generation
of a control report for sequence quality, which is typically
done using the FastQC software (Andrews et al., 2010). In
the second step (2a), raw sequence reads are pre-processed
by filtering out contaminations from sequencing adapters
and by removing or trimming low-quality reads. The mini-
mum threshold for read quality score is usually set to 20
(Wu et al., 2018). The Trimmomatic software (Bolger et al.,
2014) is a popular tool for pre-processing of raw RNA-seq
data. In the next step (3a), cleaned sequences are mapped
to the reference genome with the most commonly used
software tools being: Tophat (Trapnell et al., 2009),
Tophat2 (Kim et al., 2013), Bowtie2 (Langmead and
Salzberg 2012) or HISAT2 (Kim et al., 2015). Finally in the
last step (4a), assembling of the uniquely mapped sequence
reads into transcripts is most often done by Cufflinks
(Trapnell et al., 2010) or StringTie (Pertea et al., 2015).

In order to proceed with the analysis specific to lncRNA,
several transcript filtration steps are to be pre-imposed on the
annotated RNA-seq data. The first step (1b) is to identify only
novel transcripts, which do not correspond to the protein-
coding part of the genome and do not represent previously
annotated lncRNAs. It is most often performed using the
Cuffcompare function of Cufflinks, which classifies all the
available assembled transcripts based on their annotation
to the pre-specified reference genome in the GFF format.
Transcripts classified as ‘A transfrag falling entirely within
a reference intron’, ‘Unknown, intergenic transcript’ or

‘Exonic overlap with reference on the opposite strand’ are
then selected for downstream analysis. The genomic annota-
tion of lncRNA in livestock is still very scarce as compared to
human or mouse genomes; therefore, for livestock species, a
much larger number of novel lncRNA transcripts is expected
than for humans. Such potential candidate sequences for
lncRNA are then subjected to several filtering steps (2b), which
can differ depending on the analytic approach. The most impor-
tant filtering steps comprise (i) filtering by length – removing
transcripts shorter than 200 bp and transcripts longer than
10 000 bp containing a single exon, (ii) filtering by sequence
content – removing transcripts overlapping with repeat or
low complexity regions defined in the reference genome
assembly (note, that for livestock genomes, this information
is still limited), (iii) filtering by expression level – removing
extremely high and extremely low expressed transcripts using
the FPKM measure (fragments per kilo base of transcript per
million mapped reads) to quantify the expression level; removal
thresholds can either be arbitrarily chosen or estimated dynami-
cally from the available data and (iv) filtering by protein-coding
potential – various approaches involving removing transcripts
containing known protein-coding domains using, for example,
Transeq (El-Gebali et al., 2019) or HMMER (Eddy et al., 2011;
Finn et al., 2011) software; removing transcripts with a signifi-
cant hit in the Pfamdatabase using, for example, PfamScan soft-
ware (Bateman et al., 2002; Finn et al., 2014); removing
transcripts, which products show similarity to known proteins
from the RefSeq non-redundant protein database or the
UniRef90 database (Suzek et al., 2015) using BLASTX
(Altschul et al., 1990); removing transcripts based on their pro-
tein-coding potential level estimated, for example, by Coding
Potential Calculator (CPC) (Kong et al., 2007), Coding
Potential Assessment Tool (CPAT) (Wang et al., 2013),
Coding Non-Coding Index (CNCI) software (Sun et al., 2013)
or predictor of Long non-coding RNAs and mEssenger RNAs
based on an improved K-mer scheme (PLEK) (Li et al., 2014).
The next step (3b) comprises merging of the RNA-seq data cor-
responding to novel lncRNAs, defined by the above workflow,
and the known lncRNAs with positions defined in databases
such as the ALDB (Li et al., 2015) or the NONCODE. Note that
various authors apply different thresholds for the percent of
sequence identity and the percent of length of the aligned
sequence to call lncRNAs. The final downstream analysis (4b)
of the combined data sets depends on the experimental hypoth-
esis and on the underlying experimental design. Most typically,
it involves (i) the comparison of lncRNA expression levels
between experimental conditions using, for example, DESeq2
software (Love et al., 2014), (ii) identification of target genes
of differentially expressed lncRNAs, which can either be done
by a dedicated software, for example, LncTar (Li et al., 2015),
by considering the physical proximity between a lncRNA and
a protein-coding gene, or by considering high correlations
between the expression level of a lncRNA and an messenger
RNA (mRNA), and (iii) the functional annotation of target genes
to metabolic pathways and/or gene ontologies using, for exam-
ple, DAVID (Huang et al., 2009), KOBAS (Xie et al., 2011) pro-
grams, or the in-house tools provided by annotation databases,
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for example, the Gene Ontology database enrichment analysis
tool (geneontology.org; Eilbeck et al., 2005) or the Reactome
database analysis tool (reactome.org).

Function of long non-coding RNA
As it can be seen from the number of lncRNA genes or tran-
scripts listed in Tables 1 to 3, there are more lncRNAs than
mRNA molecules transcribed from a DNA template.
Moreover, lncRNAs can be identified within various cell

compartments, such as nucleus, nucleolus, cytoplasm and
mitochondria. This reflects the variety of functions which they
exhibit on cell metabolism. Technically, lncRNAs functions
are related to (i) transcription through either chromatin
modifications by interaction with enzymes or through inter-
actions with transcriptional machinery proteins and miRNAs;
(ii) post-transcriptional regulations of mRNA molecules,
such as capping, alternative splicing, editing, transport,
translation, degradation and stability; and (iii) epigenetic

Table 1 Recent (since 2016) studies on long non-coding RNA (lncRNA), including long intergenic non-coding RNA (lincRNA), in Sus scrofa on a
genome-wide scale

Study DOI

Number of
lncRNA

genes/lncRNA
transcripts
detections

Number of analyzed
individuals/samples Analyzed tissues

Chen et al. (2019) 10.3389/fgene.2019.00196 1078
(lincRNA)

36 Longissimus dorsi muscle and
subcutaneous fat

Fang et al. (2019) 10.7717/peerj.6577 13 520 One type of cell IPEC-J2 Cell line cultivated DMEM-F12
medium supplemented with 5% FBS

Kumar et al. (2019) 10.1016/j.gene.2019.04.014 6808 16 Back fat
Shi et al. (2019) 10.3389/fgene.2019.00160 252

(lincRNA)
20 Adipose tissue

Yang et al. (2019) 10.3389/fgene.2019.00409 4456 9 Pineal gland
Wang et al. (2019b) 10.1111/age.12849 3827 6 Ovary
Che et al. (2018) 10.1371/journal.pone.0193552 15 040 6 Spleen
Jin et al. (2018) 10.3390/genes9090443 19 310 6 Lung
Kern et al. (2018) 10.1186/s12864-018-5037-7 14 429 2 Adipose, cerebellum, cortex, hypothalamus,

liver, lung, muscle and spleen
Li et al. (2018) 10.2217/epi-2017-0117 713 3 Liver
Liang et al. (2018) 10.1111/age.12720 53 468 Database Various tissues
Liu et al. (2018) 10.3390/ijms19061722 2076 8 Ovary
Miao et al. (2018) 10.1016/j.bbrc.2018.06.028 4910 6 Adipose
Shen et al. (2018) 10.1159/000494794 3368 16 Liver
Yan et al. (2018) 10.7717/peerj.5997 2144 15 Spleen
Zhao et al. (2018) 10.2217/epi-2017-0149 18 676 9 33 tissues
Zou et al. (2018) 10.3389/fgene.2018.00102 1032 12 Muscle
Gao et al. (2017) 10.2527/jas2016.1297 5153

(novel)
21 Muscle

Sun et al. (2017) 10.2527/jas.2016.0867 5566
(differentially
expressed)

10 Muscle

Weng et al. (2017) 10.1186/s12864-017-3907-z 343 6 Adipose
Weng et al. (2017) 10.1016/j.ygeno.2017.07.001 15 528 Testis
Yang et al. (2017) 10.1155/2017/6152582 2139

(novel)
>16 Heart, kidney, liver, lung, muscle, small

intestine, spleen and stomach
Yu et al. (2017) 10.18632/oncotarget.18269 4868 6 Fat, liver and muscle
Xing et al. (2017) 10.1111/asj.12777 8946 6 Muscle
Zou et al. (2017a) 10.1038/s41598-017-07998-9 323

(lincRNA)
6 Muscle

Zou et al. (2017b) 10.3390/genes8080203 759
(lincRNA)

6 Muscle

Li et al. (2016a) 10.1038/srep38333 7618
(novel
lincRNA)

5 Abdominal fat, embryo, endometrium,
heart, kidney, liver, lung and muscle

Ran et al. (2016) 10.1095/biolreprod.115.136911 752 6 Testis
Shen et al. (2016) 10.3390/genes7070034 1018 6 Thyroid gland
Wang et al. (2016) 10.1038/srep20238 2805 12 Endometrium
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modifications manifested by the regulation of imprinting
(Bhat and Jones 2016; Fernandes et al., 2019). On the organ-
ism level, lncRNAs are known to be abnormally expressed in
many diseases with the most predominant influence on
cancer and viral infections thereby playing a role of bio-
markers. A practical example of lncRNA being a biomarker
in human cancers is HOTAIR, whose overexpression results
in development and metastases of several cancer types in
humans (Lorenzi et al., 2019). In the healthy physiological
state, lncRNAs play a role in organ differentiation during
embryogenesis (Grote and Herrmann, 2015) as well as in
the process of aging (Xing et al., 2017). Most of the applica-
tions related to livestock investigate the functional annota-
tion of lncRNAs, manifested by Gene Ontologies (GO) and
KEGG pathways assigned to their target genes. These func-
tions however are strongly related to the experimental design
applied in each particular study and thus not of a universal
nature. For example, in a recent study on pigs, Chen et al.
(2019) applied the DAVID software to constructed clusters
composed of GO terms and KEGG pathways characteristic
for genes, which were targets of lncRNAs differentially
expressed in relation to growth performance. In addition,
You et al. (2019) applied the DAVID software for functional
clustering of GO term and KEGG pathways related to target

genes of lncRNAs differentially expressed in white leghorn
chicken infected by theMarek’s disease virus and in a control,
healthy group. In cattle, an example of functional annotation
is the study of Gao et al. (2019). Using KOBAS, the authors
tested a functional enrichment in GO terms and KEGG path-
ways of genes targeted by lncRNAs differentially expressed in
two developmental stages of testis.

Long non-coding RNA in livestock
Sus scrofa. Among livestock, the largest number of identified
lncRNA transcripts is available for pigs’ genomes, amounting
to 29 585 transcripts in the NONCODE 5.0 database (Zhao
et al., 2015). Moreover, Liang et al. (2018) developed the
Pig LncRNANet database (lnc.rnanet.org), which stores
authors’ own lncRNA discoveries, as well as results from other
published studies. Although not fully mature, the database pro-
vides valuable bioinformatic functions, such as sequence BLAST,
lncRNA sequence visualization including overlaps with QTL and
SNV positions, as well as the visualization of transcript expres-
sion levels in various tissues. Currently, the Pig LncRNANet data-
base contains 53 468 lncRNA records and is thereby the most
comprehensive pig lncRNA catalog.

Most of the studies carried out on pigs are logically related
to differential expression of all lncRNAs or only lincRNAs for

Table 2 Recent (since 2016) studies on long non-coding RNA (lncRNA), including long intergenic non-coding RNA (lincRNA), in Bos taurus on a
genome-wide scale

Study DOI

Number of
lncRNA

genes/lncRNA
transcripts
detections

Number of analyzed
individuals/samples Analyzed tissues

Choi et al. (2019) 10.1080/19768354.2018.1512522 304 9 Skeleton muscle and adipose tissues
Gao et al. (2019) 10.3389/fgene.2019.00646 23 735 6 Testis
Wang et al. (2019a) 10.1038/s41598-018-38462-x 11 561 6 Sperm
Zeng et al. (2019) 10.3168/jds.2019-16257 3481 24

Samples from different
lactation periods

Milk exosomes

Cai et al. (2018) 10.3389/fgene.2018.00281 6450 6 Mammary gland
Ibeagha-Awemu
et al. (2018a)

10.3390/genes9030142 1568
4243

32 Ileum,
rumen

Ibeagha-Awemu
et al. (2018b)

10.3390/ijms19113610 4995 12 Mammary gland

Kern et al. (2018) 10.1186/s12864-018-5037-7 7235 2 Adipose, cerebellum, cortex, hypothalamus,
liver, lung, muscle and spleen

Li et al. (2018) 10.1016/j.omtn.2018.07.003 13 580 3 fetuses
3 adults

Heart, spleen, kidney, liver, lung,
stomach, small intestine and muscle

Weikard et al. (2018) 10.18632/oncotarget.24898 1042 12 Jejunum mucosa
Yang et al. (2018) 10.1186/s12864-018-4974-5 3746

(differentially
expressed)

8 Mammary gland

Zheng et al. (2018) 10.3168/jds.2018-14900 1181 4 Mammary gland
Liu et al. (2017) 10.1111/age.12539 7188 3 Muscle
Ma et al. (2017) 10.1016/j.rvsc.2017.09.020 1236 2 Cell lines
Tong et al. (2017) 10.1186/s12864-017-3858-4 184

(lincRNA)
5 Mammary gland

Kosinska-Selbi, Mielczarek and Szyda

2006

https://doi.org/10.1017/S1751731120000841 Published online by Cambridge University Press

https://lnc.rnanet.org
https://doi.org/10.1017/S1751731120000841


traits included into the selection goal of most breeds. These
comprise growth performance expressed by analyzing tran-
scription in muscle tissue either in comparison to other
tissues (Chen et al., 2019), in comparison between animal
groups (Zou et al., 2017a), between breeds with different
growth performance characteristics (Gao et al., 2017; Sun
et al., 2017; Yu et al., 2017) or between different develop-
mental stages (Zou et al., 2018). In the context of growth
performance, the expression in other tissues has also been
considered – intramuscular adipose tissue (Miao et al.,
2018) or back fat tissue (Chen et al., 2019; Kumar et al.,
2019). Besides growth performance, meat quality is also
an important meat production trait, for which the expression
of lincRNA has recently been considered, for example, by Zou
et al. (2017b). Some studies analyzed the impact of testos-
terone deficiency on the expression of lncRNAs, either by
comparing intact and castrated males (Xing et al., 2017;
Wang et al., 2017a) or different male developmental stages
(Ran et al., 2016; Sun et al., 2017). Apart from production,
lncRNA expression was also assessed for traits related to
female reproduction by the comparison of expression in

different developmental stages of ovaries (Liu et al., 2018;
Wang et al., 2019b) or in endometrium of pregnant and
non-pregnant females (Wang et al., 2016). Other experimen-
tal designs were devoted to the analysis of expression in
specific organs, such as spleen (Chen et al., 2019; Yan et al.,
2018) in the context of resistance against pathogenic infec-
tions, pineal (Yang et al., 2019), liver (Li et al., 2018) or lung
(Jin et al., 2018). Profiles of lncRNA expression in disease
were considered for porcine circovirus-associated disease
by Fang et al. (2019) and for intrauterine growth restriction
by Shen et al. (2018). Moreover, instead of inter-group
expression comparisons, some studies focused on identifica-
tion and genomic annotation of lncRNAs in various tissues
(Li et al., 2016a; Liu et al., 2017; Yang et al., 2017; Zhao
et al., 2018).

The most recent studies on lncRNA detection in Sus scrofa
conducted on a genome-wide scale are summarised in Table 1.

Bos taurus. Although less lncRNA transcripts have been
identified for cattle than for pigs, the former is the
livestock species with the largest number of lncRNA genes

Table 3 Recent (since 2016) studies on long non-coding RNA (lncRNA), including long intergenic non-coding RNA (lincRNA), in Gallus gallus on a
genome-wide scale

Study DOI

Number of lncRNA
genes/lncRNA
transcripts
detections

Number of
analyzed
individuals/
samples Analyzed tissues

Yin et al. (2020) 10.1016/j.ygeno.2019.02.003 6832 40 Ovary, magnum, isthmus and uterus
Li et al. (2019) 10.1371/journal.one.0215006 4404 6 Breast muscle tissue
Xu et al. (2019) 10.3382/ps/pez434 4127 3 Liver
You et al. (2019) 10.1186/s12864-019-5625-1 2819 17 Spleen
Adetula et al. (2018) 10.1038/s41598-018-31301-z 9977 14 Uterovaginal junction
Hong et al. (2018) 10.3390/ijms19082359 6900 1 Breast, bone marrow, cerebellum, cerebrum,

comb, eye, fascia, gall bladder, gizzard, heart,
immature egg, kidney, liver, lung, mature
egg, pancreas, skin, shank, spleen and uterus

Kern et al. (2018) 10.1186/s12864-018-5037-7 9393 2 Adipose, cerebellum, cortex, hypothalamus,
liver, lung, muscle and spleen

Li et al. (2018) 10.3390/genes9010034 2484 3 Muscle
Liu et al. (2018) 10.1038/s41598-018-25103-6 959

(Differentially
expressed)

12 Ovary

Peng et al. (2018) 10.1016/j.ygeno.2018.09.012 8691 10 Ovary
Ren et al. (2018b) 10.1139/gen-2017-0114 9343 12 Skeletal muscle
Ren et al. (2018a) 10.1186/s12864-018-4754-2 1376 6 Trachea
Wu et al. (2018) 10.1186/s12864-018-4891-7 2220 25 Liver
Xu et al. (2018) 10.1186/s12864-018-5301-x 39 907 21 Cerebrum
Cao et al. (2017) 10.18632/oncotarget.14971 15 412 60 Vein and skin
Liu et al. (2017) 10.1038/s41598-017-08738-9 2597 6 Testis
Kuo et al. (2017) 10.1186/s12864-017-3691-9 > 20 000 9 Brain and embryo
Muret et al. (2017) 10.1186/s12711-016-0275-0 2193 16 Liver and adipose
Qiu et al. (2017) 10.1016/j.dci.2017.06.015 4804 2

Cell lines
CEF: chicken embryo fibroblastst, HD11:
macrophage cell line

Wang et al. (2017b) 10.1186/s12862-017-1036-6 4754 821
Transcriptomes

Multiple

Zhang et al. (2017a) 10.1371/journal.pone.0172389 25 435 12 Intramuscular preadipocytes
Zhang et al. (2017b) 10.1534/g3.116.037069 27 023 12 Preadipocytes from abdominal adipose tissue
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(22 227 in NONCODE 5.0). The first genome-wide catalog of
bovine intergenic lncRNAs was provided by the study of
Huang et al. (2012) who identified 449 lncRNAs located in
405 intergenic regions, using public bovine-specific
expressed sequence tag sequences. After that, the majority
of studies of lncRNAs were related to their expression in
the mammary gland (e.g., Cai et al., 2018; Yang et al.,
2018; Ibeagha-Awemu et al., 2018b) or milk exosomes
(Zeng et al., 2019) in relation to dairy production. In addition,
the role of lncRNAs in beef production was addressed by
assessing the expression in longissimus thoraci by Billerey
et al. (2014), as well as in muscles and adipose tissues by
Choi et al. (2019). Long non-coding transcriptome of male
reproduction traits was analyzed by Wang et al. (2019a) in
sperm samples with divergent motility as well as by Gao et al.
(2019) in different testis development stages. Among other
phenotypes, Weikard et al. (2013) focused on lncRNA expres-
sion in pigmented and non-pigmented bovine skin samples,
Weikard et al. (2018) – on lncRNA expression dependent on
energy metabolism associated with different diets and Ibeagha-
Awemu et al. (2018a) – on lncRNA expression in ileum and
rumen during different developmental stages. A comprehensive
genome-wide annotation of lncRNA expressed in 18 tissues was
presented by Koufariotis et al. (2015).

The most recent studies on lncRNA detection in Bos taurus
conducted on a genome-wide scope are summarized in
Table 2.

Gallus gallus. With 12 850 lncRNA transcripts, corresponding
to 9527 genes, poultry is represented by less than half of the
number of records in the NONCODE database than the above-
mentioned mammalian livestock species. However, Kou et al.
(2017) comparing the complexity of human and chicken tran-
scriptomes suggested that chicken transcriptome is similar in
complexity to the human transcriptome.

During the last few years, the chicken genome has been
intensively investigated in the context of lncRNA. Since meat
performance is one of the economically most important polu-
try phenotypes, a large number of studies relate to the
expression of lncRNA in tissues related to growth: muscle
(Li et al., 2016b; Cai et al., 2017; Ren et al., 2017; Li et al.,
2018; Ren et al., 2018a), adipose tissue (Muret et al., 2017;
Zhang et al., 2017a and 2017b) as well as to meat quality
(e.g., Li et al., 2019). The influence of lncRNA on egg laying
performance was analyzed by Peng et al. (2018). Another
economically important one in poultry group of traits is
immune response. In the context of lncRNA expression, it
was analyzed by Qiu et al. (2017) and Hu et al. (2018) for
the resistance to the Avian leukosis virus J, by Ren et al.
(2018b) for the resistance to Cryptosporidium baileyi. Long
non-coding RNA expression changes in the presence of
selenium deficiency were addressed by Fan et al. (2017)
and Cao et al. (2017). Fertility was studied in the context
of female reproduction by Liu et al. (2018) and Yin et al.
(2020) for ovary, by Adetula et al. (2018) for uterovaginal
tissue as well as by Yin et al. (2020) for oviduct. Male repro-
duction traits were assessed by lncRNA expression study in

sperm with differential motility (Liu et al., 2017). In addition,
lncRNA expression study exists, which focused on the devel-
opment of specific organs, such as liver (Muret et al., 2017;
Wu et al., 2018; Xu et al., 2019), brain (Xu et al. 2018) and
ovary (Liu et al., 2018). Other recently analyzed phenotypes
comprise lncRNA expression landscape related to chicken
domestication addressed by Wang et al. (2017b) as well
as the expression related to feathers and skin black color
studied by Hong et al. (2018).

The most recent studies on lncRNA detection in Gallus
gallus conducted on a genome-wide scope are summarized
in Table 3.

Genomic annotation of long non-coding RNAs
One of the most complete and therefore most widely used
databases that store lncRNAs is the NONCODE. It provides
the collection and annotation of ncRNAs, especially lncRNAs,
in 17 species, including livestock. The current version of the
NONCODE (5.0) contains 548 640 transcripts, identified
either by the RNA-seq, expression microarrays, or based
on the literature. Yet, the database is far from complete while
most of the studies listed in Tables 1 to 3 report a very large
number of novel lncRNAs. For instance, Kern et al. (2018)
reported that only 18.3% of pig, 1.7% of cattle and 5.7%
of poultry lncRNA transcripts from the NONCODE database
overlapped with transcripts detected in their analysis.

We annotated lncRNAs of five species from the NONCODE
database (accessed on 20 November 2019) using the Variant
Effect Predictor software (McLaren et al., 2010). 51 453
lncRNA genes were annotated to the Sscrofa11.1 (Warr et al.,
2019; accessed from www.ensembl.org/Sus_scrofa on 20
November 2019 with the corresponding Ensembl ID GCA_
000003025.6) reference genome, 25 683 lncRNA genes were
annotated to the ARS-UCD1.2 reference genome of Bos
taurus (Shamimuzzaman et al., 2020; accessed from
www.ensembl.org/Bos_taurus on 20 November 2019 with
the corresponding Ensembl ID GCA_002263795.2) and
22 843 lncRNA genes were annotated to the GRCg6a refer-
ence genome of Gallus gallus (accessed from www.ensembl.
org/Gallus_gallus on 20 November 2019 with the corre-
sponding Ensembl ID GCA_000002315.5). These livestock
annotations were compared to the well-annotated mouse
GRCm38 (318 287 lncRNA genes) and human GRCh38
(616 532 lncRNA genes) genomes. Since genomic coordi-
nates of lncRNAs were defined in relation to different ver-
sions of reference genomes, we converted them to the
most current assembly of each species using the liftOver soft-
ware (Kent et al., 2002). Species-specific annotations are
visualized in Figure 1. The distribution pattern of lncRNA
for Homo sapiens and Mus musculus is very similar. The
observed difference between those two species and the live-
stock species demonstrates the incompleteness of the anno-
tation of lncRNA in livestock. Precisely, a more complete
annotation of the lncRNA in humans and mice is manifested
by the fact that the categories representing the actual proper
annotation for lncRNA (non-coding transcript exon variant,
non-coding transcript variant and regulatory region variant)
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make up 39.35% of all annotations in Homo sapiens and
43.84% in Mus musculus, but only 13.90% in Sus scrofa,
12.54% in Gallus gallus and as little as 3.14% in Bos taurus.
In livestock, the missing ncRNA annotation seems to be
predominantly assigned to intergenic and intron sequences.

Conclusions

The above-mentioned studies demonstrate that lncRNAs play
important roles not only in the regulation of gene expression
(as it was originally emphasized, see e.g., the earlier review
of Mercer et al., 2009), but also in numerous other aspects of
normal physiology and diseases. Compared to the number of

transcripts for model organisms (Homo sapiens and Mus
musculus), livestock has a relatively small number of depos-
ited transcripts in biological databases; therefore, the main
course of future research is to further improve the annotation
of the non-coding part of livestock genomes. The major chal-
lenge associated with lncRNA analysis is a poor accuracy of
transcript detection, which involves many data filtration
stages. Since the identification workflows of lncRNAs detec-
tion change dynamically, there is a great need for defining
standardized pipelines. The problem is demonstrated by a typ-
ically very large number of ‘novel’ transcripts reported by each
study. As already mentioned above, Kern et al. (2018) reported
a very low overlap between the NONCODE database and

Figure 1 Genomic annotation of long non-coding RNA genes from the NONCODE database for (a) human (Homo sapiens), (b) mouse (Musmusculus), (c) cattle
(Bos taurus), (d) poultry (Gallus gallus) and (e) pig (Sus scrofa). UTR= Untranslated Transcribed Region.
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transcripts detected in their analysis. Koufariotis et al. (2015)
validated 87.47% of lncRNAs expressed in liver based on sam-
ples from the same individual, but validation across animals was
much lower – 55.27% of validated lncRNAs in blood. Of course,
the problem with low detection accuracy is typical for all high-
throughput technologies, but in the case of lncRNA detection, it
is enhanced by the fact that the expression levels of lncRNAs are
typically low. We need to bear in mind that such low repeatabil-
ity of lncRNA detection is not necessarily always associated with
false-positive or false-negative detections. The expression of
lncRNA genes is not only low but also extremely tissue-specific
(see e.g., graphical summary offered by the Pig LncRNANet
database), related to physiological state of the individual.
Moreover, since 2018, studies demonstrating a regulation of
lncRNA expression by gut microbiota have emerged
(Dempsey et al., 2018; Li and Cui, 2018), adding a new insight
into the complexity of the transcriptome landscape.

Today’s trend is to receive economic efficiency, by fully
exploiting the genetic information. That is why it is important
to gain knowledge on all mechanisms controlling gene
expression, such as lncRNA molecules.
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