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Abstract
We prove several boundedness statements for geometrically integral normal del Pezzo surfaces X over arbitrary
fields. We give an explicit sharp bound on the irregularity if X is canonical or regular. In particular, we show that wild
canonical del Pezzo surfaces exist only in characteristic 2. As an application, we deduce that canonical del Pezzo
surfaces form a bounded family over Z, generalising work of Tanaka. More generally, we prove the BAB conjecture
on the boundedness of 𝜀-klt del Pezzo surfaces over arbitrary fields of characteristic different from 2, 3 and 5.
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2 F. Bernasconi and G. Martin

1. Introduction

We work over a field k of prime characteristic 𝑝 > 0. When running the Minimal Model Program (MMP
for short) for klt projective varieties Z with canonical divisor 𝐾𝑍 not pseudo-effective, the outcomes
are Mori fibre spaces (i.e., projective fibrations 𝑓 : 𝑋 → 𝐵 of relative Picard rank 1 where X has klt
singularities, dim 𝐵 < dim 𝑋 and the anti-canonical divisor −𝐾𝑋 is f -ample). It is then natural to study
the geometry of X in terms of the base B and the general fibre. In characteristic 𝑝 > 0, the theorem on
generic smoothness on general fibres does not always hold, and there are examples of Mori fibre spaces
where the general fibre might fail to be normal or even reduced [MS03]. In this case, it is natural to
study the generic fibre 𝑋𝑘 (𝐵) , which is a klt Fano variety defined over the fraction field 𝑘 (𝐵), which is
imperfect as soon as dim(𝐵) ≥ 1.

Thanks to the recent development of the 3-dimensional MMP [HX15, CTX15, BW17, HW22,
Wal23], Mori fibre spaces are known to exist for 3-folds over fields of characteristic 𝑝 > 5. The next
step in the classification problem consists in understanding the generic fibre of a 3-fold Mori fibre space.
This work is motivated by the following general question:

Question 1.1. Do the generic fibers of Mori fibre spaces form a bounded family? Can we give explicit
bounds on their cohomological invariants?

The main invariant we are interested in is the irregularity of the generic fibre. Recall that the
irregularity of 𝑋𝑘 (𝐵) is defined as ℎ1 (𝑋𝑘 (𝐵) ,O𝑋𝑘 (𝐵)

) := dim𝑘 (𝐵) 𝐻
1 (𝑋𝑘 (𝐵) ,O𝑋𝑘 (𝐵)

). The case of relative
dimension 1 is easy to treat: regular Fano curves are conics, they have vanishing irregularity and they
fail to be geometrically regular only in characteristic 𝑝 = 2. The case of relative dimension 2 (i.e., the
geometry of del Pezzo surfaces over imperfect fields) has turned out to be more difficult to handle. There
are two known series of examples of canonical del Pezzo surfaces with positive irregularity:

1. In [Sch07], Schröer constructs a canonical del Pezzo surface X with a unique singular factorial point
of type 𝐴1, ℎ1 (𝑋,O𝑋 ) = 1, 𝜌(𝑋) = 1 and 𝐾2

𝑋 = 1 over an arbitrary imperfect field of characteristic 2.
2. In [Mad16], Maddock constructs regular del Pezzo surfaces 𝑋1 and 𝑋2 defined over an imperfect

field of p-degree 3 (resp. 4) with 𝐾2
𝑋𝑑

= 𝑑 and ℎ1 (𝑋𝑑 ,O𝑋𝑑 ) = 1. Moreover, 𝑋1 is geometrically
integral, and 𝑋2 is not.

On the positive side, the recent works [PW22, FS20, JW21, BT22] indicate that the pathological
behaviour of del Pezzo fibrations is particular to small characteristics. In this article, we further restrict
the possibilities for the irregularity of geometrically integral canonical del Pezzo surfaces defined over
imperfect fields. Our first main result is the following:

Theorem 1.2. Let X be a geometrically integral normal locally complete intersection del Pezzo surface
over a field k of characteristic p. If ℎ1(𝑋,O𝑋 ) ≠ 0, then k is an imperfect field, 𝜌(𝑋) = 1, and either

1. 𝑝 = 3, ℎ1 (𝑋,O𝑋 ) = 2, 𝐾2
𝑋 = 1, and X is not canonical, or

2. 𝑝 = 2, ℎ1 (𝑋,O𝑋 ) = 1, and 𝐾2
𝑋 ≤ 2.

We note that our bound on the irregularity in the regular case is sharp, as Maddock’s example shows.
In Proposition 4.11, we describe torsors over the regular wild del Pezzo surfaces in characteristic 𝑝 = 2.
This is a first step towards a classification of wild regular del Pezzo surfaces. In particular, it may be
useful for the construction of explicit examples in the style of Maddock. Note that the hypothesis on
geometric integrality is automatically satisfied for normal del Pezzo surfaces appearing as generic fibres
of 3-folds by [Sch10, Theorem 2.3].

In the second part of this article, we prove boundedness results for del Pezzo surfaces over imperfect
fields. The Borisov–Alexeev–Borisov (BAB) conjecture (see Conjecture 5.2) states that mildly singular
(𝜀-klt) Fano varieties of dimension d form a bounded family over SpecZ. While the conjecture has been
proven over fields of characteristic 0 by Birkar [Bir21], it is still open over fields of characteristic p.

More precisely, while the case of del Pezzo surfaces over perfect fields has been known for a long
time (see [Ale94, AM04] and [CTW17, Lemma 3.1]), already the boundedness of 3-dimensional Fano
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varieties is open. In this direction, the BAB conjecture for generic fibres of Mori fibre spaces would
be desirable. In [Tan24], Tanaka showed that geometrically integral regular del Pezzo surfaces form
a bounded family. Using Theorem 1.2 and the results on the irregularity of klt del Pezzo surfaces
of [BT22], we are able to prove various instances of the BAB conjecture, following the strategy of
Alexeev–Mori [AM04]:

Theorem 1.3. The following classes of del Pezzo surfaces are bounded over SpecZ:

XdP,can = {𝑋 | 𝑋 is a geometrically integral canonical del Pezzo surface},
X tame

dP, 𝜀 = {𝑋 | 𝑋 is a geometrically integral tame 𝜀-klt del Pezzo surface}, and

X >5
dP, 𝜀 =

{
𝑋 | 𝑋 is an 𝜀-klt del Pezzo surface s.t. char(𝐻0(𝑋,O𝑋 )) ≠ 2, 3, 5

}
.

We briefly explain the organisation of the article. In section 2, we collect various results on geometry
over imperfect fields and del Pezzo surfaces. In section 3, we generalise the main results of Tanaka
[Tan24] to the canonical case. We use Ekedahl’s technique [Eke88] on the construction of 𝛼-torsor to
show an effective Kodaira vanishing theorem (Proposition 3.6) from which we deduce that 𝜔−12

𝑋 is very
ample (Theorem 3.10). Starting from section 4, we specialise to the study of geometrically integral del
Pezzo surfaces. We show that the Frobenius length of geometric non-normality (an invariant introduced
by Tanaka [Tan21]) is at most 1 (Corollary 4.4) on normal Gorenstein del Pezzo surfaces, a result we use
to find lower bounds on the dimension of the space of anti-pluricanonical sections. We combine these
estimates together with Maddock’s bound [Mad16, Corollary 1.2.6] and a careful study of 𝛼-torsors to
prove Theorem 1.2. In section 5, we apply our results to the BAB conjecture over arbitrary fields, and
we prove Theorem 1.3.

2. Preliminaries

2.1. Notations

1. Given a field k, we denote by 𝑘 (resp. 𝑘sep) an algebraic (resp. separable) closure. We denote by
𝑘1/𝑝∞ the perfect closure of k.

2. Given a field k, a scheme X is a k-variety if it is an integral separated scheme of finite type over k. If
X has dimension 1 (resp. 2, 3), we say X is a curve (resp. surface, 3-fold).

3. Given a projective integral k-variety X, we let 𝑑𝑋 := [𝐻0 (𝑋,O𝑋 ) : 𝑘].
4. Given an F𝑝-scheme X, we denote by 𝐹 : 𝑋 → 𝑋 the absolute Frobenius morphism of X. We say X

is F-finite if F is a finite morphism.
5. For an F-finite field k, its p-degree (or degree of imperfection) is defined as p − deg(𝑘) :=

log𝑝 [𝑘 : 𝑘 𝑝].
6. We say (𝑋,Δ) is a pair if X is a normal k-variety, Δ is an effective Q-divisor with coefficients in

[0, 1] and 𝐾𝑋 + Δ is a Q-Cartier divisor.
7. For the definitions of the singularities of the MMP (as canonical, klt and log canonical), we refer to

[Kol13, Definition 2.8].
8. Given an integral scheme X with normalisation 𝜈 : 𝑌 → 𝑋 , we denote by I ⊂ O𝑋 the conductor

ideal (i.e., the annihilator of the O𝑋 -module 𝜈∗(O𝑌 )/O𝑋 )). The corresponding closed subscheme
𝐷 ⊂ 𝑋 is called the conductor scheme of 𝜈. Note that I is also an ideal of O𝑌 and the corresponding
subscheme 𝐶 ⊂ 𝑌 is called ramification locus of 𝜈.

9. A projective morphism 𝑓 : 𝑋 → 𝑌 of normal schemes is a contraction if 𝑓∗O𝑋 = O𝑌 .

2.2. Geometric reducedness and normality

We collect well-known results on the geometry of algebraic varieties, especially surfaces, defined over
imperfect fields that we need in this article.
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4 F. Bernasconi and G. Martin

Definition 2.1. A k-variety X is geometrically reduced (resp. geometrically normal, geometrically
regular) if the base change 𝑋𝑘 is reduced (resp. normal, regular).

We recall Tate’s base change formula for purely inseparable field extensions.

Theorem 2.2 [PW22, Theorem 1.1]. Let X be a normal k-variety such that k is algebraically closed in
𝐾 (𝑋). Let Y be the normalisation of the reduced scheme (𝑋 ×𝑘 𝑘)red together with the natural morphism
𝑓 : 𝑌 → 𝑋 . Then there exists an effective divisor 𝐶 ≥ 0 such that 𝐾𝑌 + (𝑝 − 1)𝐶 = 𝑓 ∗𝐾𝑋 . If X is
geometrically integral, then (𝑝 − 1)𝐶 can be chosen to be the ramification divisor of f.

We start with the behaviour of geometric reducedeness under birational equivalence.

Lemma 2.3 [BT22, Lemma 2.2]. Let X and Y be two k-birational varieties. Then X is geometrically
reduced over k if and only if Y is geometrically reduced over k.

Next, we note that geometric normality descends under birational contractions. For the definition of
the (𝑆𝑛)-property, we refer to [Sta, Tag 033Q].

Proposition 2.4. Let 𝜋 : 𝑋 → 𝑌 be a projective birational morphism of normal k-varieties. If X is
geometrically normal, so is Y.

Proof. Recall that a variety X over k has the property (𝑆𝑛) if and only if 𝑋𝑘 also has, by faithfully flat
descent. As Y is (𝑆2), by Serre’s criterion [Sta, Tag 031S], Y is geometrically normal if and only if it is
geometrically (𝑅1). Suppose by contradiction that there exists a codimension 1 point 𝜂 ∈ 𝑌 such that the
localisation O𝑌 ,𝜂 is not geometrically regular. As Y is normal, 𝜋 is an isomorphism over codimension
1 points of Y, and thus, X is not geometrically (𝑅1), reaching the contradiction. �

We discuss singularities of the MMP over imperfect fields.

Definition 2.5. Let (𝑋,Δ) be a pair over k such that k is algebraically closed in 𝐾 (𝑋). We say it is
geometrically canonical (resp. klt, log canonical) if the base change (𝑋𝑘 ,Δ 𝑘 ) is so.

In particular, note that geometrically log canonical implies geometrically normal. If X is geometrically
canonical (resp. klt, lc), then X is also canonical (resp. klt, lc) by [BT22, Proposition 2.3]. We now
specialise to the case of surfaces. Recall that the existence of resolution of singularities for excellent
surfaces has been proven in [Lip78].

Proposition 2.6. Let X be the spectrum of a local excellent ring (𝑅,𝔪) with closed point x. If (𝑋,Δ) is
a klt surface pair for some Δ ≥ 0, then X has rational and Q-factorial singularities. Therefore, if two
projective k-surfaces X and Y with klt singularies are k-birational, then 𝐻𝑖 (𝑋,O𝑋 ) 	 𝐻𝑖 (𝑌,O𝑌 ) for
every 𝑖 ≥ 0.

Proof. Rationality of klt surface singularities follows from [Kol13, Proposition 2.28], andQ-factoriality
of rational singularities is proven in [Lip69, Proposition 17.1]. The last statement is obvious by consid-
ering a common resolution of X and Y. �

Corollary 2.7. Let (𝑥 ∈ 𝑋) be a Gorenstein normal surface singularity. Then X is canonical if and only
if it is rational.

Proof. If X is canonical, then it is rational by Proposition 2.6. Suppose now that X is rational and let
𝑓 : 𝑌 → 𝑋 be a resolution of singularities. As X is Gorenstein and X has rational singularities, we have
that 𝑓∗𝜔𝑌 = 𝜔𝑋 by [Kol13, Proposition 2.77], which in turn implies that X has canonical singularities
by [Kol13, Claim 2.3.1]. �

2.3. Del Pezzo surfaces

In this subsection, we collect some terminology on del Pezzo surfaces and recall previously known
results.
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Definition 2.8. We say X is a Gorenstein (resp. canonical, regular) del Pezzo surface over k if X is
a reduced k-projective Gorenstein (resp. canonical, regular) surface with 𝐻0(𝑋,O𝑋 ) = 𝑘 and 𝜔−1

𝑋 is
ample. We say X is a weak del Pezzo if 𝜔−1

𝑋 is big and nef.

We recall the classification of Gorenstein normal del Pezzo surfaces over algebraically closed fields:

Proposition 2.9 [HW81, Theorem 2.2]. Let X be a normal Gorenstein del Pezzo surface over an
algebraically closed field k. Then one of the following holds:

1. X is a canonical del Pezzo surface and the explicit list is described in [Dol12, Section 8], or
2. the minimal resolution 𝑍 → 𝑋 is a ruled surface of the form P𝐸 (O𝐸 ⊕ L), where E is an elliptic

curve and degL < 0. The surface X is obtained by contracting the negative section of Z.

In [BT22, Theorem 3.3], it is shown that canonical del Pezzo surfaces which are geometrically normal
are geometrically canonical. We present a different proof of this result relying on Proposition 2.9 and
the following observation:

Lemma 2.10. Let (𝑦 ∈ 𝑌 ) be a geometrically log canonical surface singularity over k. Suppose that Y
has rational singularities. Then 𝑌𝑘 has rational singularities.

Proof. We can suppose k is separably closed and Y is the spectrum of a local henselian ring (𝑅,𝔪) by
the existence of resolution of singularities [Lip78]. Let𝑈 � Spec(𝑅) \ {𝔪} be the punctured spectrum.
Since Y is rational, the group Pic(𝑈) is finite by [Lip69, Proposition 17.1]. Therefore, also 𝑋 := 𝑌𝑘
is Q-factorial by [Tan18a, Lemma 2.5], and thus, Pic(𝑈𝑘 ) is a torsion group. Let 𝑓 : 𝑊 → 𝑋 be the
minimal resolution with exceptional divisor 𝐸 =

∑𝑛
𝑖=1 𝐸𝑖 . As defined in [Lip69], Pic0(𝑊) is the group

of line bundles L on W such that 𝐿 · 𝐸𝑖 = 0 for every i and there is an exact sequence of groups
0 → Pic0 (𝑊) → Pic(𝑊) →

⊕
Z[𝐸𝑖] → 0. By [Lip69, Proposition 14.4], Pic0(𝑊) embeds into

Pic(𝑈𝑘 ), and thus, we deduce it is a torsion group.
Suppose now by contradiction that X is not rational. By the classification of log canonical singularities

[Kol13, Corollary 3.39], the exceptional divisor E is either an elliptic curve, a nodal curve or a circle
of smooth rational curves. In the first case, Pic0(𝐸) 	 𝐸 (𝑘), while in the latter cases, Pic0(𝐸) 	 𝑘∗

by [BLR90, Chapter 9.3, Corollary 11 and 12] and since ℎ1 (𝐸,O𝐸 ) = 1. By [Lip69, Lemma 14.3],
the restriction map Pic(𝑊) → Pic(𝐸) is surjective. Considering the exact sequence 0 → Pic0(𝐸) →
Pic(𝐸) → Z𝑛 → 0, we can deduce that the map Pic0(𝑊) → Pic0 (𝐸) is surjective. This is a contradiction,
as Pic0(𝑊) is torsion while 𝑘∗ and 𝐸 (𝑘) are not. �

Proposition 2.11. Let X be a canonical del Pezzo surface. If X is geometrically normal, then it is
geometrically canonical.

Proof. By Proposition 2.9, X is geometrically log canonical. As X has rational singularities, X is
geometrically rational by Lemma 2.10. As X is Gorenstein, we conclude that X is geometrically canonical
by Corollary 2.7. �

We now recall the results of Reid on the classification of non-normal Gorenstein del Pezzo surfaces
[Rei94]. We fix some notations we will use throughout the article (cf. subsection 2.1 for the terminology
used).

Definition 2.12. Let X be a non-normal integral Gorenstein del Pezzo surface with normalisation
𝜈 : 𝑌 → 𝑋 . We say X is tame if 𝐻1(𝑋,O𝑋 ) = 0.

One can characterise tame del Pezzo surfaces in terms of the conductor.

Theorem 2.13. Let X be a non-normal integral Gorenstein del Pezzo surface over an algebraically
closed field. Then the conductor 𝐷 ⊂ 𝑋 is integral. Moreover,

1. X is tame if and only if 𝐷 	 P1;
2. (𝑝 − 1) divides ℎ1 (O𝑋 ).
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6 F. Bernasconi and G. Martin

Proof. The integrality of the conductor follows from [Rei94, Lemma, page 718] for integral del Pezzo
surfaces. Then, (1) follows from the proof of [Rei94, Corollary 4.10], as D is irreducible. (2) is proved
in [Rei94, 4.11] �

We will repeatedly use the following:

Lemma 2.14. Let 𝜋 : 𝑋 → 𝑌 be a proper birational morphism of k-surfaces. If X is a regular (resp.
canonical) del Pezzo surface, then so is Y. If X is a regular (or canonical) weak del Pezzo surface, then
also Y is a canonical weak del Pezzo surface.

Proof. We only prove the case where X is a regular weak del Pezzo surface, as the others are similar. As
−𝐾𝑋 is 𝜋-big and 𝜋-nef, we conclude that Y has canonical singularities by the negativity lemma [Tan18b,
Lemma 2.11]. As −𝐾𝑌 = 𝜋∗(−𝐾𝑋 ), we conclude by projection formula that −𝐾𝑌 is big and nef. �

From the point of view of the MMP, it is natural to consider surfaces of del Pezzo type. For their
basic properties, we refer to [BT22, Section 2.3].

Definition 2.15. We say X is a surface of del Pezzo type over k if X is a projective k-variety with
𝐻0 (𝑋,O𝑋 ) = 𝑘 and there exists Δ ≥ 0 such that (𝑋,Δ) is a log del Pezzo pair (i.e., (𝑋,Δ) klt and
−(𝐾𝑋 + Δ) is big and nef).

The following describes the Picard scheme of del Pezzo surfaces.

Proposition 2.16. Let X be a surface of del Pezzo type. Then Pic0
𝑋/𝑘

is a unipotent smooth commutative
k-group scheme of finite type over k of dimension ℎ1 (𝑋,O𝑋 ).

Proof. By Serre duality, we have 𝐻2(𝑋,O𝑋 ) = 𝐻0(𝑋, 𝜔𝑋 ) = 0, and therefore, by [FGI05, Corollary
9.4.18.3, Corollary 9.5.13 and Remark 9.5.15], the group scheme Pic0

𝑋/𝑘
is smooth of dimension

ℎ1 (O𝑋 ). We are left to show that Pic0
𝑋/𝑘

is unipotent. For this, we can suppose k is separably closed. By
[BT22, Theorem 1.3], there exists 𝑛 > 0 such that for every 𝐿 ∈ Pic0(𝑋), we have 𝐿⊗𝑝𝑛 	 O𝑋 . In other
words, multiplication by 𝑝𝑛 on Pic0

𝑋/𝑘
coincides with the zero homomorphism on k-rational points. By

density of rational points [Poo17, Proposition 3.5.70] and since Pic0
𝑋/𝑘

is reduced, we conclude that
taking 𝑝𝑛-powers on Pic0

𝑋/𝑘
coincides with the zero homomorphism as a morphism of schemes, and

thus, Pic0
𝑋/𝑘

is unipotent. �

3. Bounds on the anticanonical volume and effective very ampleness

In this section, we prove bounds on the anticanonical volume and very ampleness statements for
canonical del Pezzo surfaces over imperfect fields.

3.1. Bounding volumes

We start by bounding the volume of canonical del Pezzo surfaces in terms of their thickening exponent
𝜖 (𝑋/𝑘) (see [Tan24, Definition 7.4] and Definition 3.2 below). First, we need an explicit bound on the
Cartier index of a klt surface singularity. For a Q-factorial variety X, we define its Cartier index to be
the smallest integer 𝑛 > 0 such that for every Weil divisor D in X, the Weil divisor 𝑛𝐷 is Cartier.

Lemma 3.1. Let X be the spectrum of a local k-algebra (𝑅,𝔪), and let x be the closed point corre-
sponding to 𝔪. Suppose (𝑋,Δ) is a klt surface pair for some Δ ≥ 0. Let 𝑓 : 𝑌 → 𝑋 be the minimal
resolution of singularities, with exceptional divisor 𝐸 =

∑𝑛
𝑖=1 𝐸𝑖 . Let 𝑀 = (𝐸𝑖 ·𝑘 𝐸 𝑗 )

𝑛
𝑖, 𝑗=1 be the inter-

section matrix and let 𝑑 = det(𝑀). Then there exists 𝑑𝑥 such that 𝑑 = 𝑑𝑥 [𝑘 (𝑥) : 𝑘] and the Cartier
index of X divides 𝑑𝑥 .
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Proof. Recall that X is rational and Q-factorial by Proposition 2.6. Let D be a Weil integral divisor on
X, and write 𝑓 ∗𝐷 = 𝑓 −1

∗ 𝐷 +
∑𝑛
𝑖=1 𝑎𝑖𝐸𝑖 for some 𝑎𝑖 ∈ Q.

We claim it is sufficient to show 𝑑𝑥𝑎𝑖 is integral. Indeed, then 𝑓 ∗(𝑑𝑥𝐷) is an integral divisor on a
regular surface, and thus, 𝑓 ∗(𝑑𝑥𝐷) is Cartier. If we write 𝐾𝑌 + Δ𝑌 = 𝑓 ∗(𝐾𝑋 + Δ), then Δ𝑌 is effective
by the negativity lemma and (𝑌,Δ𝑌 ) is klt. As 𝑓 ∗(𝑑𝑥𝐷) − (𝐾𝑌 + Δ𝑌 ) is f -nef and big, and 𝑓 ∗(𝑑𝑥𝐷)

is f -trivial, there exists 𝑏0 > 0 such that for all 𝑏 ≥ 𝑏0, we have that 𝑏 𝑓 ∗(𝑑𝑥𝐷) = 𝑓 ∗𝐴𝑏 for a Cartier
divisor 𝐴𝑏 on X by the base point free theorem for excellent surfaces [Tan18b, Theorem 4.4]. Then
𝑓 ∗(𝑑𝑥𝐷) = (𝑏0 + 1) 𝑓 ∗𝑑𝑥𝐷 − 𝑏0 𝑓

∗𝑑𝑥𝐷 = 𝑓 ∗(𝐴𝑏0+1 − 𝐴𝑏0), and thus, 𝑑𝑥𝐷 is Cartier.
We denote by (𝑎𝑖) (resp. 𝑓 −1

∗ 𝐷 · 𝐸 𝑗 ) the vector (𝑎1, . . . , 𝑎𝑛) (resp. ( 𝑓 −1
∗ 𝐷 · 𝐸1, . . . , 𝑓

−1
∗ 𝐷 · 𝐸𝑛)).

Given a closed point 𝑥 ∈ 𝑋 , we denote by 𝑘 (𝑥) the residue field of X at x. By the projection formula,

(𝑎𝑖) = 𝑀−1(− 𝑓 −1
∗ 𝐷 · 𝐸 𝑗 ) =

1
𝑑𝑥 [𝑘 (𝑥) : 𝑘]

𝐴( 𝑓 −1
∗ 𝐷 · 𝐸 𝑗 ),

where A is a matrix with integer coefficients. We have (− 𝑓 −1
∗ 𝐷 · 𝐸 𝑗 ) =

∑
𝑗 𝑚 𝑗 [𝑘 (𝑦 𝑗 ) : 𝑘] for some

𝑚 𝑗 ∈ Z, where the 𝑦 𝑗 are the intersection points of 𝑓 −1
∗ 𝐷 with 𝐸 𝑗 . As 𝑘 (𝑥) ⊂ 𝑘 (𝑦 𝑗 ), we conclude that

[𝑘 (𝑥) : 𝑘] divides ( 𝑓 −1
∗ 𝐷 · 𝐸 𝑗 ), thus showing 𝑑𝑥𝑎𝑖 is an integer. �

We bound the volume of canonical del Pezzo surfaces, generalising the regular case proven in [Tan24,
Theorem 4.7].

Definition 3.2 [Tan21, Definition 5.1, Definition 7.4]. Let X be a normal variety over k such that k is
algebraically closed in 𝐾 (𝑋). We define the Frobenius length of geometric non-normality ℓ𝐹 (𝑋/𝑘) as

ℓ𝐹 (𝑋/𝑘) := min
{
𝑒 ≥ 0 | (𝑋 ×𝑘 𝑘

1/𝑝𝑒 )norm
red is geometrically normal over 𝑘1/𝑝𝑒

}
.

Set R to be the local ring of 𝑋 ×𝑘 𝑘
1/𝑝∞ at the generic point. We define the thickening exponent 𝜖 (𝑋/𝑘)

as the non-negative integer such that length𝑅𝑅 = 𝑝 𝜖 (𝑋/𝑘)

For a discussion of the properties of ℓ𝐹 (𝑋/𝑘) and 𝜖 (𝑋/𝑘), we refer the reader to [Tan21, Section 5,
Section 7].

We fix some notation. For 𝑑 ≥ 1, we denote the Hirzebruch surface PP1 (OP1 ⊕ OP1 (−𝑑)) by
F𝑑 , a closed rational fibre by F and the negative section by 𝐶𝑑 . The contraction of 𝐶𝑑 is the mor-
phism 𝑝 : F𝑑 → P(1, 1, 𝑑), and we denote by 𝐿 � 𝑝∗𝐹 the generator of its class group. Recall that
𝐿 ∈ |OP(1,1,𝑑) (1) | and that 𝐿2 = 1

𝑑 .

Lemma 3.3. The divisor class 𝑛𝐾P(1,1,𝑑) is Cartier if and only if 𝑑 | 𝑛(𝑑 + 2).

Proof. As 𝐾P(1,1,𝑑) ∼ (−𝑑 − 2)𝐿 and the Cartier index of L is d, the lemma is immediate. �

Proposition 3.4. Let X be a canonical del Pezzo surface. Then

1. if X is geometrically normal, then it is geometrically canonical and 𝐾2
𝑋 ≤ 9;

2. if X is not geometrically normal, then 𝑝 ∈ {2, 3} and
(a) if 𝑝 = 3, ℓ𝐹 (𝑋/𝑘) = 1 and 𝐾2

𝑋 ≤ 12 · 3𝜖 (𝑋/𝑘) .
(b) if 𝑝 = 2, ℓ𝐹 (𝑋/𝑘) ≤ 2 and 𝐾2

𝑋 ≤ 16 · 2𝜖 (𝑋/𝑘) .

Proof. We can assume k to be separably closed, and we will repeatedly use the fact that 𝜖 (𝑋/𝑘) is
a k-birational invariant [Tan21, Proposition 7.10]. If X is geometrically normal, then we conclude by
Proposition 2.11. So we suppose that X is not geometrically normal and 𝑝 = 2, 3 by [BT22, Theorem
3.7.(1)]. The bounds on ℓ𝐹 (𝑋/𝑘) are proven in [BT22, Theorem 3.7.(2)-(3)].

Let 𝑍 → 𝑋 be the minimal resolution of X. As Z is a regular weak del Pezzo surface, by Lemma 2.14,
a 𝐾𝑍 -MMP will end with a regular weak del Pezzo surface Y admitting a Mori fibre space 𝑓 : 𝑌 → 𝐵
(i.e., f is a contraction where −𝐾𝑌 is f -ample and dim(𝐵) ≤ 1). Note that 𝐾2

𝑌 ≥ 𝐾2
𝑍 = 𝐾2

𝑋 .
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If 𝐵 = Spec(𝑘), then Y is a regular del Pezzo surface, and we conclude by [Tan24, Theorem 4.7]. If
B is a curve, as Y is weak del Pezzo, the cone theorem [Tan18b, Theorem 2.14] implies that the Mori
cone of Y is

NE(𝑌 ) = R+[𝐹] + R+[Γ],

where F the class of a closed fibre of f and Γ is the class of an integral curve with self-intersection
Γ2 ≤ 0. If 𝐾𝑌 ·𝑘 Γ < 0, then Y is a regular del Pezzo surface by Kleiman’s criterion, and we conclude
again by [Tan24, Theorem 4.7].

If 𝐾𝑌 ·𝑘 Γ = 0, by the Hodge index theorem Γ2 < 0 and, if we denote 𝑘Γ = 𝐻0 (Γ,OΓ), by adjunction,
the equality Γ2 = deg𝑘 𝜔Γ/𝑘 = −2[𝑘Γ : 𝑘] holds. Then there exists a birational contraction 𝑌 → 𝑇
where T is a canonical del Pezzo surface of Picard rank 1 with a unique singular point x and 𝐾2

𝑇 = 𝐾2
𝑌 .

As 𝑘Γ = 𝑘 (𝑥) by [Kol13, Corollary 10.10], we have Γ2 = −2[𝑘 (𝑥) : 𝑘], which implies that the Cartier
index of T divides 2 by Lemma 3.1. If T is geometrically normal, it is geometrically canonical by
[BT22, Theorem 3.7]. Moreover, as 𝑇𝑘 has Picard rank 1 and a singular point, we conclude 𝐾2

𝑋 ≤ 8.
If T is not geometrically normal and 𝑔 : 𝑉 = (𝑇 ×𝑘 𝑘)

norm
red → 𝑇 is the normalised base change where

𝐾𝑉 + (𝑝 − 1)𝐶 = 𝑔∗𝐾𝑇 , we deduce that 2𝑝ℓ𝐹 (𝑇 /𝑘)𝐾𝑉 is Cartier by [Tan21, Theorem 5.12]. By the
classification of the normalised base changes of canonical del Pezzo surfaces with Picard rank 1 [PW22,
Theorem 4.1], the bounds on the Frobenius length [BT22, Theorem 3.7] and Lemma 3.3, we deduce
the following:

◦ if 𝑝 = 3, then 6𝐾𝑉 is Cartier, and thus, 𝑉 	 P(1, 1, 𝑑) for 𝑑 ∈ {1, 2, 3, 4, 6, 12} and 𝐶 = 𝐿;
◦ if 𝑝 = 2, then 8𝐾𝑉 is Cartier, and thus, 𝑉 	 P(1, 1, 𝑑) for 𝑑 ∈ {1, 2, 4, 8, 16} and 𝐶 = 𝐿 or 2𝐿 by

[Tan24, Proposition 4.1].

Using [Tan24, Lemma 4.5], we have

𝑝 𝜖 (𝑋/𝑘) (𝑔∗𝐾𝑇 )
2 = 𝑝 𝜖 (𝑋/𝑘) (𝐾𝑉 + (𝑝 − 1)𝐶)2 = 𝐾2

𝑇 .

If 𝑝 = 3, we have 𝑉 = P(1, 1, 𝑑), 𝐶 = 𝐿, and thus, 𝐾2
𝑇 ≤ (𝑑𝐿)2 · 3𝜖 (𝑋/𝑘) = 𝑑 · 3𝜖 (𝑋/𝑘) ≤ 12 · 3𝜖 (𝑋/𝑘) .

Similarly, in the case where 𝑝 = 2, we obtain that 𝐾2
𝑇 ≤ 16 · 2𝜖 (𝑋/𝑘) . �

Using the bounds on the anticanonical volume, we can restrict the possibilities for the normalised
base changes of non-normal canonical del Pezzo surfaces obtained in [PW22, Theorem 4.1]. For the
analogous result in the regular case, see [Tan24, Theorem 4.6].

Theorem 3.5. Let X be a canonical del Pezzo surface. Let 𝜈 : 𝑌 → (𝑋 ×𝑘 𝑘)red be the normalisation
morphism and let 𝑓 : 𝑌 → 𝑋 ×𝑘 𝑘 be the composite morphism.

1. If X is geometrically normal, then it is geometrically canonical.
2. If 𝑝 ≥ 5, then X is geometrically normal.
3. If 𝑝 = 3 and X is not geometrically normal, then ℓ𝐹 (𝑋/𝑘) = 1 and (𝑌, 𝐶) is isomorphic to

(P(1, 1, 𝑑), 𝐿) for some 𝑑 ≤ 12.
4. If 𝑝 = 2 and X is not geometrically normal, then ℓ𝐹 (𝑋/𝑘) ∈ {1, 2} and (𝑌, 𝐶) is isomorphic to one

of the following:
(a) (P2, 𝐿) and ℓ𝐹 (𝑋/𝑘) = 1;
(b) (P2, 𝐶 ∈ |2𝐿 |);
(c) (P(1, 1, 𝑑), 2𝐿) for 2 ≤ 𝑑 ≤ 16.
(d) (P1 × P1, 𝐶 ∈ |𝐹1 + 𝐹2 |) and ℓ𝐹 (𝑋/𝑘) = 1;
(e) (P1 × P1, 𝐹𝑖) and ℓ𝐹 (𝑋/𝑘) = 1;
(f) (F𝑑 , 𝐷 ∈ |𝐶𝑑 + 𝐹 |), where 𝐶𝑑 is the negative section and ℓ𝐹 (𝑋/𝑘) = 1 for 1 ≤ 𝑑 ≤ 14;
(g) (F𝑑 , 𝐶𝑑) and ℓ𝐹 (𝑋/𝑘) = 1 for 1 ≤ 𝑑 ≤ 12;
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Proof. By Proposition 3.4, we are only left to prove the classification in (3) and (4). Suppose 𝑝 = 3.
The only possible normalised base change is P(1, 1, 𝑑) by [Tan24, Proposition 4.1 and Remark 4.3].
However, by Proposition 3.4, we have 𝐾2

𝑋 = 𝑝 𝜖 (𝑋/𝑘)𝑑 ≤ 12 · 𝑝 𝜖 (𝑋/𝑘) .
Suppose 𝑝 = 2. The list of possibilities without the bounds on d is proved in [Tan24, Proposition 4.1].

It is now sufficient to note that in Case (4f), 𝐾2
𝑋 = 𝑝 𝜖 (𝑋/𝑘) (𝑑 + 2); in Case (4g), 𝐾2

𝑋 = 𝑝 𝜖 (𝑋/𝑘) (𝑑 + 4);
and in Case (4c), 𝐾2

𝑋 = 𝑝 𝜖 (𝑋/𝑘)𝑑. Using Proposition 3.4, we deduce the desired bounds on d. �

3.2. Effective Kodaira vanishing and very ampleness on del Pezzo surfaces

In this section, we prove an effective version of the Kawamata–Viehweg vanishing theorem on canonical
del Pezzo surfaces. From this, we deduce bounds on the effective global generation and very ampleness
for the anti-pluricanonical linear systems.

We start by giving an effective version of [PW22, Theorem 1.9] in the 2-dimensional case.
Proposition 3.6. Let X be a canonical del Pezzo surface and let A be a big and nef Cartier divisor on
X. Then
1. if 𝑝 > 3, then 𝐻1 (𝑋,O𝑋 (−𝐴)) = 0;
2. if 𝑝 = 3, then 𝐻1(𝑋,O𝑋 (−𝑑𝐴)) = 0 if 𝑑 ≥ 2;
3. if 𝑝 = 2, then 𝐻1(𝑋,O𝑋 (−𝑑𝐴)) = 0 if 𝑑 ≥ 4.
If X is a normal Gorenstein del Pezzo surface, the same results hold if A is ample.
Proof. We let A𝑚 = O𝑋 (𝑚𝐴) for 𝑚 ∈ Z. We fix 𝑑 > 0. We show that 𝐻1(𝑋,A−𝑑𝑛) = 0 for n
sufficiently large. If A is ample, we conclude by Serre duality and Serre vanishing. If A is only big and
nef and X is a canonical del Pezzo surface, by the base point free theorem [Ber21b, Proposition 2.1],
there is a birational contraction 𝜋 : 𝑋 → 𝑌 such that 𝐴 = 𝜋∗𝐻, where H is an ample Cartier divisor and
by Lemma 2.14, Y is a del Pezzo surface with canonical singularities. Thus, the singularities of Y are
rational by Proposition 2.6, and the projection formula implies 𝐻1(𝑋,A−𝑑𝑛) = 𝐻1(𝑌,H−𝑑𝑛). As Y is
a normal, we can apply Serre duality to deduce 𝐻1(𝑌,H−𝑑𝑛) 	 𝐻1(𝑌, 𝜔𝑋 ⊗ H𝑑𝑛), which vanishes for
n large enough by Serre vanishing.

Suppose 𝐻1(𝑋,A−𝑑) ≠ 0. Without loss of generality by the previous paragraph, we can assume
𝐹∗ : 𝐻1 (𝑋,A−𝑑) → 𝐻1 (𝑋,A−𝑝𝑑) has a nontrivial element 𝜁 in the kernel 𝐻1

fppf (𝑋, 𝛼A−𝑑 ). By [PW22,
Theorem 2.11], associated to 𝜁 there exists a degree p purely inseparable morphism 𝜋 : 𝑍 → 𝑋 such
that Z is an integral Gorenstein surface with 𝜔𝑍 = 𝜋∗(𝜔𝑋 (−(𝑝 − 1)𝑑𝐴)). Let 𝜈 : 𝑍norm → 𝑍 be the
normalisation and let 𝜇 : 𝑌 := (𝑍norm ×𝑘 𝑘)

norm
red → 𝑍norm be the normalised base change to the algebraic

closure. We denote by Γ the divisorial part of the ramification locus. We have O𝑍 norm (𝐾𝑍 norm + Γ) =
𝜈∗(𝜔𝑍 ), and there exists an effective Weil divisor 𝐷 ≥ 0 such that 𝐾𝑌 + (𝑝−1)𝐷 = 𝜇∗𝐾𝑍 norm by [PW22,
Theorem 1.1], and we conclude

𝐾𝑌 + (𝑝 − 1)𝐷 + 𝜇∗Γ = 𝑓 ∗(𝐾𝑋 − (𝑝 − 1)𝑑𝐴),

where 𝑓 = 𝜋 ◦𝜈 ◦ 𝜇. Consider a general curve C on Y of genus 𝑔 ≥ 1 so that C is contained in the smooth
locus of Y and 𝐶 · ((𝑝 − 1)𝐷 + 𝜇∗Γ) ≥ 0. Therefore, 𝐾𝑌 ·𝐶 < 0, and the bend and break lemma [Kol96,
Chapter II, Theorem 5.8] shows that for every point 𝑥 ∈ 𝐶, there exists a rational curve 𝐿𝑥 such that

−(𝐾𝑌 + (𝑝 − 1)𝐷 + 𝜇∗Γ) · 𝐿𝑥 ≤ 4
−(𝐾𝑌 + (𝑝 − 1)𝐷 + 𝜇∗Γ) · 𝐶

−𝐾𝑌 · 𝐶
≤ 4,

as −(𝐾𝑌 + (𝑝 − 1)𝐷 + 𝜇∗Γ) is big and nef. Since −𝐾𝑋 is ample, we infer the inequality

𝑓 ∗((𝑝 − 1)𝑑𝐴) · 𝐿𝑥 < 𝑓 ∗(−𝐾𝑋 + (𝑝 − 1)𝑑𝐴) · 𝐿𝑥 ≤ 4.

As 𝐴 = 𝜋∗𝐻 where H is an ample Cartier divisor and x is a general point on C, we have 𝑓 ∗𝐴 · 𝐿𝑥 ≥ 1,
and thus, we have (𝑝 − 1)𝑑 ≤ 3, which concludes the proof. �
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Lemma 3.7. Let X be a canonical del Pezzo surface such that X is not geometrically normal. Let A be
a big and nef Cartier divisor on X. Then

1. if 𝑝 = 3, then O𝑋 (3𝐴) is globally generated;
2. if 𝑝 = 2 and ℓ𝐹 (𝑋/𝑘) = 1, then O𝑋 (2𝐴) is globally generated;
3. if 𝑝 = 2 and ℓ𝐹 (𝑋/𝑘) = 2, then O𝑋 (4𝐴) is globally generated.

Proof. The proof is the same as [Tan24, Theorem 3.5]. There is a factorisation of the iterated Frobenius
morphism by [Tan21, Theorem 5.9]:

𝐹ℓ𝐹 (𝑋/𝑘)

𝑋×𝑘 𝑘
: 𝑋 ×𝑘 𝑘 → (𝑋 ×𝑘 𝑘)

norm
red

𝜇
−→ 𝑋 ×𝑘 𝑘,

where (𝑋 ×𝑘 𝑘)
norm
red is a toric variety by Theorem 3.5. Thus, 𝜇∗𝐴 is globally generated and also

(𝐹ℓ𝐹 (𝑋/𝑘)𝑋×𝑘 𝑘
)∗𝐴 = 𝐴𝑝ℓ𝐹 (𝑋/𝑘)

. �

We recall the following very ampleness criterion for line bundles. For the notion of Castelnuovo–
Mumford regularity and its basic properties, we refer to [Laz04, Section 1.8].

Proposition 3.8 [Tan21, Lemma 11.2]. Let X be a geometrically irreducible k-projective variety of
dimension n. Let A be a globally generated ample line bundle and suppose L is an ample line bundle
which is 0-regular with respect to A. Then A ⊗ L is very ample.

The following is a generalisation of [Tan24, Theorem 3.5] including the case of canonical del Pezzo
surfaces.

Proposition 3.9. Let X be a canonical del Pezzo surface such that X is not geometrically normal. Then

1. if 𝑝 = 3, then 𝜔−9
𝑋 is very ample;

2. if 𝑝 = 2 and ℓ𝐹 (𝑋/𝑘) = 1, then 𝜔−7
𝑋 is very ample;

3. if 𝑝 = 2 and ℓ𝐹 (𝑋/𝑘) = 2, then 𝜔−12
𝑋 is very ample.

Proof. By Lemma 3.7 and Proposition 3.8, it is sufficient to verify that for 𝑝 = 3 (resp. 𝑝 =
2, ℓ𝐹 (𝑋/𝑘) = 1 and 𝑝 = 2, ℓ𝐹 (𝑋/𝑘) = 2), the line bundle 𝜔−6

𝑋 (resp. 𝜔−5
𝑋 and 𝜔−8

𝑋 ) is 0-regular with re-
spect to 𝜔−3

𝑋 (resp. 𝜔−2
𝑋 and 𝜔−4

𝑋 ) to show the statement. We prove only the case 𝑝 = 2 and ℓ𝐹 (𝑋/𝑘) = 2,
as the others are analogous. In this case, 𝐻1(𝑋, 𝜔−8

𝑋 ⊗ 𝜔4
𝑋 ) = 𝐻1 (𝑋, 𝜔−4

𝑋 ) = 𝐻1 (𝑋, 𝜔5
𝑋 ) = 0 by Propo-

sition 3.6 and 𝐻2(𝑋,O𝑋 ) = 𝐻0(𝑋, 𝜔𝑋 ) = 0. �

We now show the effective statements on very ampleness for the pluri-anticanonical systems.

Theorem 3.10. Let X be a canonical del Pezzo surface. Then 𝜔−12
𝑋 is very ample.

Proof. If X is geometrically normal, then it is geometrically canonical by Proposition 2.11 and 𝜔⊗−6
𝑋 is

very ample by [BT22, Proposition 2.14]. If X is not geometrically normal, we apply Proposition 3.9. �

4. Bounds on the irregularity

In this section, we study geometrically integral geometrically non-normal Gorenstein del Pezzo sur-
faces X. The additional condition on geometric integrality allows to find additional constraints on the
normalised base changes to the algebraic closure and the irregularity of X.

4.1. A bound on 𝛾(𝑋/𝑘) for geometrically integral varieties

Given a geometrically integral normal variety X over k, we relate the 𝛿-invariant measuring the singu-
larities in codimension 1 of 𝑋𝑘 with the capacity of denormalising extensions 𝛾(𝑋/𝑘) introduced by
Tanaka [Tan21, Section 4].
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Definition 4.1. For an integral k-variety X with normalization 𝜈 : 𝑌 → 𝑋 with ramification 𝐶 ⊆ 𝑌 and
conductor 𝐷 ⊆ 𝑋 , we define the 𝛿-invariant of X over k as

𝛿(𝑋/𝑘) := max
𝜂∈𝐷

lengthO𝐷,𝜂 (O𝐶,𝜂/O𝐷,𝜂),

where 𝜂 runs over all generic points of irreducible components of D.

Proposition 4.2. Let X be a geometrically integral normal variety over a field k. Then

ℓ𝐹 (𝑋/𝑘) ≤ 𝛾(𝑋/𝑘) ≤ 𝛿(𝑋�̄�/�̄�).

Proof. The inequality ℓ𝐹 (𝑋/𝑘) ≤ 𝛾(𝑋/𝑘) is shown in [Tan21, Proposition 8.7], so we are left to show
𝛾(𝑋/𝑘) ≤ 𝛿(𝑋�̄�/�̄�). As the statement can be checked on an open covering of X, we can assume that the
conductor D of 𝑋�̄� is irreducible, with generic point 𝜂.

By definition of 𝛾(𝑋/𝑘) [Tan21, Definition 4.1], we can find a sequence of purely inseparable
field extensions 𝑘 =: 𝑘0 ⊆ 𝑘1 ⊆ . . . ⊆ 𝑘𝛾 (𝑋/𝑘) such that, if we inductively define 𝑋0 := 𝑋 and
𝑋𝑖 := (𝑋𝑖−1,𝑘𝑖 )

norm, then 𝑋𝑖,𝑘𝑖+1 is not normal and there is no longer sequence of fields with this property.
In particular, 𝑋𝛾 (𝑋/𝑘) is geometrically normal, and the normalization 𝜈 : 𝑌 → 𝑋�̄� of 𝑋�̄� factors as

𝜈 = 𝜈1 ◦ · · · ◦ 𝜈𝛾 (𝑋/𝑘) : 𝑌 = 𝑋𝛾 (𝑋/𝑘) , �̄� → . . . → 𝑋0, �̄� = 𝑋�̄� .

Note that each 𝑋𝑖, �̄� has the property (𝑆2), being the base change of a normal variety along a field
extension.

Now, after localizing at 𝜂, the factorization of 𝜈 corresponds to an ascending chain of subrings
O𝑋�̄� ,𝜂 = O𝑋0,�̄� ,𝜂 ⊆ O𝑋1,�̄� ,𝜂 . . . ⊆ O𝑋𝛾 (𝑋/𝑘) ,�̄� ,𝜂 = O𝑌 ,𝜂 . Each inclusion O𝑋𝑖−1,�̄� ,𝜂 ⊆ O𝑋𝑖,�̄� ,𝜂 is strict:
otherwise, 𝜈𝑖 would be an isomorphism in codimension 1, and hence so would be 𝑋𝑖 → 𝑋𝑖−1,𝑘𝑖 . Since
𝑋𝑖 is normal and 𝑋𝑖−1,𝑘𝑖 has property (𝑆2), this would imply that 𝑋𝑖−1,𝑘𝑖 is normal as well, contradicting
our choice of 𝑘𝑖 .

By definition, we have isomorphisms of (O𝑋�̄� ,𝜂)-modules

O𝑌 ,𝜂/O𝑋�̄� ,𝜂 � (O𝑌 ,𝜂/C𝜂)/(O𝑋�̄� ,𝜂/C𝜂) � O𝐶,𝜂/O𝐷,𝜂.

Note that both sides are annihilated by the conductor ideal C𝜂 ; hence, this is also an isomorphism of
(O𝐷,𝜂)-modules. Therefore, by strictness of O𝑋𝑖−1,�̄� ,𝜂 ⊆ O𝑋𝑖,�̄� ,𝜂 for every 𝑖 ≤ 𝛾(𝑋/𝑘), we have

𝛾(𝑋/𝑘) ≤ lengthO𝑋�̄� ,𝜂
(O𝑌 ,𝜂/O𝑋�̄� ,𝜂) = lengthO𝐷,𝜂 (O𝐶,𝜂/O𝐷,𝜂) = 𝛿(𝑋�̄�/�̄�),

as claimed. �

Proposition 4.3. Let X be a geometrically integral normal Gorenstein variety. Then, ℓ𝐹 (𝑋/𝑘) ≤

𝛾(𝑋/𝑘) ≤ 𝛿(𝑋�̄�/�̄�) = max𝜂∈𝐷 lengthO𝐷,𝜂 (O𝐷,𝜂). In particular, if every component of D is reduced,
then ℓ𝐹 (𝑋/𝑘) ≤ 1.

Proof. By Proposition 4.2, we only have to show the last equality. Let 𝜂 be the generic point of an
irreducible component of the conductor 𝐷 ⊂ 𝑋 . The Gorenstein condition implies lengthO𝐷,𝜂O𝐶,𝜂 =

2lengthO𝐷,𝜂O𝐷,𝜂 by [FS20, Proposition A.2], which shows that 𝛿(𝑋𝑘/𝑘) = max𝜂∈𝐷 lengthO𝐷,𝜂O𝐷,𝜂

by [Sta, Tag 00IV], as claimed.
The last statement is immediate as lengthO𝐷,𝜂O𝐷,𝜂 = 1 if D is reduced. �

We can improve the bounds of [BT22] in the geometrically integral case.

Corollary 4.4. Let X be a geometrically integral normal Gorenstein del Pezzo surface. Then
ℓ𝐹 (𝑋/𝑘) ≤ 1. Moreover, if L is a torsion line bundle, then 𝐿⊗𝑝 � O𝑋 . In particular, Pic0

𝑋�̄�/�̄�
�

G
ℎ1 (𝑋,O𝑋 )
𝑎,�̄�

.
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Proof. By Theorem 2.13, the conductor D is reduced, and thus, we can apply Proposition 4.3 to
conclude. The proof of the assertion on torsion line bundles follows as in [BT22, Theorem 4.1]. For
the last statement, by Proposition 2.16, the Picard scheme Pic0

𝑋�̄�/�̄�
is a smooth commutative unipotent

algebraic group of dimension ℎ1(𝑋,O𝑋 ). As it is annihilated by p, we conclude by [Ser88, Proposition
VII.11]. �

The previous analysis allows to obtain better estimates for the global generation than Proposition 3.9
in the geometrically integral canonical case.

Corollary 4.5. Let X be a geometrically integral canonical del Pezzo surface. Let A be a big and nef
Cartier divisor on X and suppose X is not geometrically normal. Then 𝑝 ∈ {2, 3} and the following hold:

1. If 𝑝 = 3, then O𝑋 (3𝐴) is globally generated and 𝜔−9
𝑋 is very ample;

2. If 𝑝 = 2, then O𝑋 (2𝐴) is globally generated and 𝜔−7
𝑋 is very ample.

Proof. By Corollary 4.4, ℓ𝐹 (𝑋/𝑘) = 1, and we conclude by combining Lemma 3.7 and
Proposition 3.9. �

4.2. Anti-pluricanonical maps of non-normal del Pezzo surfaces

In this section, we assume k is algebraically closed. Let X be a non-normal integral Gorenstein del Pezzo
surface with normalization 𝜈 : 𝑌 → 𝑋 with ramification 𝐶 ⊆ 𝑌 and conductor 𝐷 ⊆ 𝑋 . As Gorenstein
del Pezzo surfaces have the property (𝑆2), by [Rei94, Theorem, Section 2.6], there is an exact sequence

0 → 𝜔𝑋 → 𝜈∗𝜈
∗𝜔𝑋

Tr◦Res
→ 𝜔𝐷 → 0,

where Res is the pushforward of the classical residue map 𝜔𝑌 (𝐶) → 𝜔𝐶 (where we identify 𝜔𝑌 (𝐶) �
𝜈∗𝜔𝑋 and 𝜔𝑌 (𝐶) |𝐶 � 𝜔𝐶 by adjunction). The homomorphism Tr is the trace map which, over the
generic point 𝜂 of D, is given by the (O𝐷,𝜂)-dual of the inclusion O𝐷,𝜂 ⊆ 𝜈∗O𝐶,𝜂 by [Rei94, Remark
2.9]. Tensoring with 𝜔−(𝑛+1)

𝑋 and applying the projection formula, we obtain

0 → 𝜔−𝑛
𝑋 → 𝜈∗𝜈

∗𝜔−𝑛
𝑋 → 𝜔𝐷 ⊗ 𝜔−(𝑛+1)

𝑋 → 0.

As 𝜈∗𝜈∗𝜔−⊗𝑛
𝑋 is canonically isomorphic to 𝜈∗(𝜔

−⊗𝑛
𝑌 (−𝑛𝐶)), taking global sections, we deduce the

following:

Lemma 4.6. We have the following equality of subspaces of 𝐻0 (𝑌, 𝜔−𝑛
𝑌 (−𝑛𝐶)):

𝜈∗𝐻0(𝑋, 𝜔−𝑛
𝑋 ) = Ker(𝐻0 ((Tr ◦ Res) ⊗ 𝜔⊗−(𝑛+1)

𝑋 )).

We now prove a useful lower bound on the dimension of the space of anti-pluricanonical sections on
del Pezzo surfaces. It will be the main tool to bound the irregularity of del Pezzo surfaces.

Corollary 4.7. There is an inclusion of k-vector spaces:

𝑉 := {𝑠 ∈ 𝐻0(𝑌,O𝑌 (−𝑛(𝐾𝑌 + 𝐶))) | 𝑠 |𝐶 = 0} ⊆ 𝜈∗𝐻0(𝑋, 𝜔−𝑛
𝑋 ).

Thus, if 𝜔−𝑛
𝑋 is globally generated, then

ℎ0 (𝑋, 𝜔−𝑛
𝑋 ) ≥ dim𝑉 + 2.

Proof. By the natural identifiation𝜔𝑌 (𝐶) |𝐶 � 𝜔𝐶 given by adjunction, the space V is equal to the kernel
of the homomorphism 𝐻0 (Res⊗𝜔−𝑛−1

𝑋 ); hence, it is contained in the kernel of 𝐻0((Tr◦Res) ⊗𝜔−𝑛−1
𝑋 ) =

𝜈∗𝐻0(𝑋, 𝜔−𝑛
𝑋 ) by Lemma 4.6.
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If 𝜔−𝑛
𝑋 is globally generated, then the linear system |𝜈∗𝐻0 (𝑋, 𝜔−𝑛

𝑋 ) | has no base points on C. Since
all sections in V vanish on C and 𝜔−1

𝑋 is ample, there are at least two more linearly independent sections
of 𝜈∗𝐻0(𝑋, 𝜔−𝑛

𝑋 ) that are nonzero when restricted to C, thus concluding the inequality. �

4.3. Irregularity of geometrically integral l.c.i. del Pezzo surfaces

We prove effective bounds on the values of the irregularity of locally complete intersection (lci) del
Pezzo surfaces.

Proposition 4.8. Let X be a geometrically integral normal locally complete intersection del Pezzo
surface over a field k of characteristic 𝑝 > 0. Let 𝜈 : 𝑌 → 𝑋�̄� be the normalization of 𝑋�̄� and let 𝐶 ⊆ 𝑌
be the ramification of 𝜈. Then, one of the following holds:

1. ℎ1 (𝑋, 𝜔𝑛
𝑋 ) = 0 for all 𝑛 ∈ Z.

2. 𝑝 = 3, (𝑌, 𝐶) = (P2, 2𝐿), ℎ1 (𝑋,O𝑋 ) = 2, and ℎ1 (𝑋, 𝜔𝑛
𝑋 ) = 0 for all 𝑛 ≥ 2.

3. 𝑝 = 2, (𝑌, 𝐶) = (P2, 2𝐿), ℎ1 (𝑋,O𝑋 ) = 1, and ℎ1 (𝑋, 𝜔𝑛
𝑋 ) = 0 for all 𝑛 ≥ 2.

4. 𝑝 = 2, (𝑌, 𝐶) = (P(1, 1, 2), 2𝐿), ℎ1 (𝑋,O𝑋 ) = 1, and ℎ1(𝑋, 𝜔𝑛
𝑋 ) = 0 for all 𝑛 ≥ 2.

Proof. If X is geometrically normal, then X is geometrically canonical by Proposition 2.11. By Serre
duality, it is sufficient to show that ℎ1 (𝑋𝑘 , 𝜔

⊗𝑛
𝑋𝑘

) = 0 for 𝑛 > 0. This follows from [Ber21a, Theorem
5.6.a]. If X is not geometrically normal and the ramification divisor contains a reduced component,
then 𝑋𝑘 is tame and ℎ1 (𝑋, 𝜔⊗𝑛

𝑋 ) = 0 for all 𝑛 ∈ Z by [Rei94, Corollary 4.10]. Therefore, by [PW22,
Theorem 4.1], we may assume that 𝑝 ∈ {2, 3}, ℎ1 (𝑋,O𝑋 ) > 0 and (𝑌, 𝐶) = (P(1, 1, 𝑑), 2𝐿) for some
𝑑 ≥ 1 where L is a line through the vertex of the cone.

Choose weighted coordinates 𝑥, 𝑦, 𝑧 of degree 1, 1, 𝑑 on Y such that 𝐿 = {𝑥 = 0}, hence 2𝐿 =
{
𝑥2 = 0

}
in weighted coordinates. Let 𝑛 ≥ 1 and 𝑉𝑛,𝑑 ⊆ 𝐻0(P(1, 1, 𝑑),O(𝑛𝑑)) be the subspace of sections van-
ishing along 2𝐿. Then,𝑉𝑛,𝑑 consists of weighted homogeneous polynomials of the form 𝑥2 𝑓𝑛𝑑−2 (𝑥, 𝑦, 𝑧);
hence, dim𝑉𝑛,𝑑 =

∑𝑛
𝑗=1 ( 𝑗 𝑑 − 1) = 𝑛2+𝑛

2 𝑑 − 𝑛. As 𝜈∗𝜔𝑋�̄� � O(−𝑑𝐿), we have 𝜈∗𝜔−𝑛
𝑋�̄�
� O(𝑛𝑑𝐿). By

Corollary 4.7, we have

ℎ0(𝑋, 𝜔−𝑛
𝑋 ) ≥

{
𝑛2+𝑛

2 𝑑 − 𝑛.
𝑛2+𝑛

2 𝑑 − 𝑛 + 2 if, additionally, 𝜔−𝑛
𝑋 is globally generated.

(4.1)

By the Riemann–Roch formula [Tan18b, Theorem 2.10], we have

ℎ0 (𝑋, 𝜔−𝑛
𝑋 ) − ℎ1 (𝑋, 𝜔−𝑛

𝑋 ) = 1 − ℎ1 (𝑋,O𝑋 ) +
𝑛2 + 𝑛

2
𝐾2
𝑋 = 1 − ℎ1 (𝑋,O𝑋 ) +

𝑛2 + 𝑛

2
𝑑.

Thus, if we assume ℎ1 (𝑋, 𝜔−𝑛
𝑋 ) = 0, we deduce from Equation (4.1) that

ℎ1 (𝑋,O𝑋 ) = 1 − ℎ0 (𝑋, 𝜔−𝑛
𝑋 ) +

𝑛2 + 𝑛

2
𝑑 ≤

{
𝑛 + 1
𝑛 − 1 if, additionally, 𝜔−𝑛

𝑋 is g.g.
(4.2)

We also recall Maddock’s bound [Mad16, Corollary 1.2.6]: if ℎ1 (𝑋, 𝜔𝑛
𝑋 ) ≠ 0 but ℎ1 (𝑋, 𝜔𝑝𝑛

𝑋 ) = 0,
then

ℎ1 (𝑋,O𝑋 ) ≥
𝑛𝑑 (𝑝 − 1) (3 + 𝑛(2𝑝 − 1))

12
. (4.3)

Now assume 𝑝 = 3. By Serre vanishing and ℎ1 (O𝑋 ) ≠ 0, there exists a largest 𝑁 ≥ 0 such that
ℎ1 (𝑋, 𝜔−𝑁

𝑋 ) = ℎ1 (𝑋, 𝜔 (𝑁+1)
𝑋 ) ≠ 0. By (4.2) and (4.3), we have the following chain:
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𝑁 + 2 ≥ ℎ1 (𝑋,O𝑋 ) ≥
(𝑁 + 1)𝑑 (𝑝 − 1) (3 + (𝑁 + 1) (2𝑝 − 1))

12
=

(𝑁 + 1)𝑑 (8 + 5𝑁)
6

.

Hence, 𝑁 = 0, 𝑑 = 1, showing ℎ1 (𝑋,O𝑋 ) ≤ 2. Finally, ℎ1 (𝑋,O𝑋 ) = 2 by Theorem 2.13.
Now assume 𝑝 = 2. Then, the argument of the previous paragraph yields

𝑁 + 2 ≥ ℎ1 (𝑋,O𝑋 ) ≥
(𝑁 + 1)𝑑 (𝑝 − 1) (3 + (𝑁 + 1) (2𝑝 − 1))

12
=

(𝑁 + 1)𝑑 (𝑁 + 2)
4

. (4.4)

Hence, 𝑁 ≤ 3. Therefore, ℎ1 (𝑋, 𝜔−4
𝑋 ) = 0, and, by Corollary 4.5, 𝜔−4

𝑋 is globally generated, so
ℎ1 (𝑋,O𝑋 ) ≤ 3 by (4.2). If ℎ1 (𝑋,O𝑋 ) = 1, then 𝑁 = 0 and 𝑑 ∈ {1, 2} by (4.4), and we get Cases (3)
and (4).

So, it remains to exclude the possibility ℎ1 (𝑋,O𝑋 ) ≥ 2 in characteristic 𝑝 = 2. By Corollary 4.5,
𝜔−2
𝑋 is globally generated, so by (4.4), the inequality ℎ1 (𝑋,O𝑋 ) ≥ 2 implies 𝑁 = 2, 𝑑 = 1, and

ℎ1 (𝑋,O𝑋 ) = 3.
Seeking a contradiction, assume that there exists an X with these invariants. Since 𝑁 = 2, we have

𝐻1 (𝑋, 𝜔3
𝑋 ) ≠ 0 and 𝐻1(𝑋, 𝜔6

𝑋 ) = 0. Let 𝑍 → 𝑋 be a nontrivial 𝛼𝜔3
𝑋

-torsor and let 𝑘𝑍 := 𝐻0(𝑍,O𝑍 ).
Note that Z is an l.c.i. del Pezzo surface by [Mad16, Theorem 1.2.3], and by [Mad16, Equation (1.2.4)],
we have [𝑘𝑍 : 𝑘] (1 − ℎ1 (𝑍,O𝑍 )) = 2 so that we have [𝑘𝑍 : 𝑘] = 2 and 𝐻1(𝑍,O𝑍 ) = 0. By [Mad16,
Equation (1.2.5)], we then conclude that 𝐾2

𝑍 = 16. Now, we consider the following diagram:

(𝑍 �̄� )
norm ��

(𝜋�̄� )
norm

��

𝑍 �̄�
��

𝜋�̄�

��

𝑍

𝜋

��

𝑓

����
��

��
��

��
��

(𝑋�̄� )
norm �� 𝑋�̄� ��

��

𝑋𝑘𝑍
��

��

𝑋

��
Spec �̄� �� Spec 𝑘𝑍 �� Spec 𝑘,

where 𝑍 �̄� = 𝑍 ×Spec𝑘𝑍 Spec�̄� . Since f and 𝑋𝑘𝑍 → 𝑋 are finite of degree 2, the morphism 𝜋 is finite
and birational. In particular, Z, considered as a 𝑘𝑍 -scheme, is geometrically integral and the induced
map (𝜋�̄� )

norm of the normalisations is an isomorphism. As (𝑋�̄� )
norm � P2, 16 = 𝐾2

𝑍 ≤ 𝐾2
(𝑍�̄� )

norm = 9,
reaching a contradiction. �

Corollary 4.9. Let X be a geometrically integral normal locally complete intersection del Pezzo surface
over a field k of characteristic p. Let 𝜈 : 𝑌 → 𝑋�̄� be the normalization of 𝑋�̄� and let 𝐶 ⊆ 𝑌 be the
ramification of 𝜈. Then, one of the following holds:

1. ℎ1 (𝑋,O𝑋 ) = 0, 𝐾2
𝑋 ≥ 3, and 𝜔−1

𝑋 is very ample.
2. ℎ1 (𝑋,O𝑋 ) = 0, 𝐾2

𝑋 = 2, and 𝜔−2
𝑋 is very ample.

3. ℎ1 (𝑋,O𝑋 ) = 0, 𝐾2
𝑋 = 1, and 𝜔−3

𝑋 is very ample.
4. ℎ1 (𝑋,O𝑋 ) = 1, 𝑝 = 2, (𝑌, 𝐶, 𝐾2

𝑋 ) ∈ {(P2, 2𝐿, 1), (P(1, 1, 2), 2𝐿, 2)}, and 𝜔−6
𝑋 is very ample.

5. ℎ1 (𝑋,O𝑋 ) = 2, 𝑝 = 3, (𝑌, 𝐶, 𝐾2
𝑋 ) = (P2, 2𝐿, 1), and 𝜔−7

𝑋 is very ample.

Proof. Claims (1), (2) and (3) are a consequence of [BT22, Proposition 2.14] if X is geometrically
normal, and hence geometrically canonical, and [Rei94, Corollary 4.10] if X is not geometrically normal.

Let us prove Claim (4). By Proposition 4.8, we have 𝑝 = 2 and the desired classification of (𝑌, 𝐶).
By Lemma 3.7,𝜔−2

𝑋 is globally generated. Using Proposition 4.8, it is easy to check that𝜔−4
𝑋 is 0-regular

with respect to 𝜔−2
𝑋 . Claim (5) is proven similarly. �
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4.4. Refinements in the regular and canonical case

We show various refinements of the bounds of Proposition 4.8 in the case where we assume X to be a
regular or canonical del Pezzo surface. We start with the case 𝑝 = 3.

Proposition 4.10. Let X be a geometrically integral canonical del Pezzo surface over a field k of
characteristic 𝑝 = 3. Then, X is tame.

Proof. Without loss of generality, we may assume that k is separably closed.
First, assume that X is regular. Seeking a contradiction, we assume that ℎ1 (𝑋,O𝑋 ) ≠ 0. Let

𝜈 : 𝑌 → 𝑋�̄� be the normalisation of 𝑋�̄� and let 𝐶 ⊆ 𝑌 be the ramification of 𝜈. By Proposition 4.8 and
Serre duality, we know that ℎ1 (𝑋,O𝑋 ) = 2, 𝐾2

𝑋 = 1, ℎ1 (𝑋, 𝜔−𝑛
𝑋 ) = 0 for 𝑛 > 0, and (𝑌, 𝐶) = (P2, 2𝐿).

First, we claim that ℎ0(𝑋, 𝜔−𝑛
𝑋 ⊗ L) = 0 for all nontrivial torsion line bundles L and for 𝑛 ∈ {0, 1}.

Since X is reduced, this holds if 𝑛 = 0. For the case 𝑛 = 1, by the Riemann–Roch theorem, we have

𝜒(𝜔−1
𝑋 ⊗ L) = 0,

so if ℎ1 (𝑋, 𝜔−1
𝑋 ⊗ L) ≠ 0, then ℎ1 (𝑋, 𝜔2

𝑋 ⊗ L−1) ≠ 0 by Serre duality. Since 𝜔6
𝑋 ⊗ L−3 � 𝜔6

𝑋

by Corollary 4.4 and ℎ1(𝑋, 𝜔6
𝑋 ) = 0 by Proposition 4.8, there exists a nontrivial 𝛼(𝜔2

𝑋 ⊗L−1) -torsor
𝑍 → 𝑋 such that Z is an l.c.i. del Pezzo surface. Moreover, by [Mad16, Equation (1.2.5)], we have
2𝑒 (1 − 𝑞𝑍 ) = 10 for some integers 0 ≤ 𝑒 ≤ 1 and 𝑞𝑍 ≥ 0, contradicting our assumption.

By Riemann–Roch, we have ℎ0 (𝑋, 𝜔−2
𝑋 ) = 2. Write

| − 2𝐾𝑋 | = 𝐹 + |𝑀 |,

where F is the fixed part and M is the movable part of the linear system. Since 𝑀 ≠ 0, we have
𝐹 ∈ | − 𝑛𝐾𝑋 + 𝐸 | for some 0 ≤ 𝑛 ≤ 1 and a divisor E such that O𝑋 (𝐸) is torsion. By the previous
paragraph, we have ℎ0(𝑋, 𝜔−𝑛

𝑋 (𝐸)) = 0; hence, 𝐹 = 0.
Since the linear system | − 2𝐾𝑋 | does not have fixed components, its base locus Z is 0-dimensional,

and we denote by A the ring of global section 𝐻0(𝑍,O𝑍 ). Since (−2𝐾𝑋 )
2 = 4, we have length𝑘 (𝐴) = 4,

so A is an Artinian k-algebra of length 4. As k is separably closed, we can write 𝐴 =
∏𝑠

𝑖=1 𝐴𝑖 where each
𝐴𝑖 is a local Artinian k-algebra of dimension 𝑛𝑖 over its residue field 𝑘𝑖 and 𝑘𝑖 is a purely inseparable
extension of k. Since

4 = length𝑘 (𝐴) =
𝑠∑
𝑖=1

length𝑘 (𝐴𝑖) =
𝑠∑
𝑖=1

𝑛𝑖 [𝑘𝑖 : 𝑘]

and 𝑝 = 3, we have 𝑘𝑖 = 𝑘 for at least one i. In other words, at least one of the base points of | − 2𝐾𝑋 |

is a k-rational point P.
If P is in the image of the conductor D under the natural map 𝑋�̄� → 𝑋 , then P lies in the non-smooth

locus of 𝑋 → Spec𝑘 , so X cannot be regular at P by [FS20, Corollary 2.6]. Hence, in this case, the
proof is finished.

So, seeking a contradiction, assume that P is not in the image of D. Let 𝑃′ be the unique preimage
of P under the map 𝑌 → 𝑋�̄� → 𝑋 . Since 𝜈 is an isomorphism around 𝑃′, the point 𝑃′ lies in the base
locus of 𝜈∗ | − 2𝐾𝑋�̄� |. By Corollary 4.7, we know that 𝐶 = 2𝐿 ∈ 𝜈∗ | − 2𝐾𝑋�̄� | hence, 𝑃′ ∈ 𝐶, and thus, P
is in the image of D under 𝑋�̄� → 𝑋 . This contradicts our choice of P.

Finally, assume that X is canonical. By Proposition 2.6, we can replace X with its minimal resolution,
which is a regular weak del Pezzo surface. By running a 𝐾𝑋 -MMP, we can suppose X is a weak del
Pezzo surface admitting a Mori fibre space structure 𝜋 : 𝑋 → 𝐵. If X is a regular del Pezzo surface,
we conclude by the previous case. If B is a curve and X is a weak del Pezzo surface, then the generic
fibre F is a regular conic. As 𝑝 = 3, F is smooth by [BT22, Lemma 2.17], and thus, −𝐾𝐵 is ample
by [Eji19, Corollary 4.10.c]. Therefore, 𝐻1(𝐵,O𝐵) = 0 and, as 𝐻1(𝑋,O𝑋 ) = 𝐻1 (𝐵,O𝐵) = 0 by the
relative Kawamata–Viehweg vanishing theorem [Tan18b, Theorem 4.2], we conclude. �
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In the following proposition, we describe the geometry of 𝛼𝜔𝑋 -torsors over wild regular del Pezzo
surfaces in characteristic 𝑝 = 2. The reader should compare this with the construction of the regular
wild del Pezzo surfaces of degree 1 in [Mad16].

Proposition 4.11. Let X be a geometrically integral regular del Pezzo surface over a field k of char-
acteristic 𝑝 = 2. Assume that ℎ1 (𝑋,O𝑋 ) ≠ 0. Then, p − deg(𝑘) ≥ 2, 𝐾2

𝑋 ≤ 2, and there exists an
𝛼𝜔𝑋 -torsor 𝑍 → 𝑋 such that Z satisfies the following properties:

1. If 𝐾2
𝑋 = 2, then 𝑘𝑍 � ℎ0(𝑍,O𝑍 ) is a purely inseparable extension of k of degree 2 and Z is a twisted

form of P(1, 1, 2) over 𝑘𝑍 .
2. If 𝐾2

𝑋 = 1, then Z is a normal tame del Pezzo surface such that 𝜖 (𝑍/𝑘) = 1, 𝐾2
𝑍 = 8 and the

normalised base change ((𝑍𝑘 )
norm
red , 𝐸) is (P2, 𝐿).

Proof. If X is not tame, then 𝜌(𝑋) = 1 by Proposition 4.8. If p − deg(𝑘) = 1, then X is geometrically
canonical by [FS20], contradicting ℎ1 (𝑋,O𝑋 ) ≠ 0.

By Proposition 4.8, we have ℎ1 (𝑋,O𝑋 ) = ℎ1 (𝑋, 𝜔𝑋 ) = 1, ℎ1(𝑋, 𝜔𝑛
𝑋 ) = 0 for 𝑛 ≥ 2, and𝐾2

𝑋 ∈ {1, 2}.
In particular, there exists a nontrivial 𝛼𝜔𝑋 -torsor 𝑓 : 𝑍 → 𝑋 . In the following, we treat the cases 𝐾2

𝑋 = 2
and 𝐾2

𝑋 = 1 separately. We set 𝑘𝑍 � 𝐻0 (𝑍,O𝑍 ). Note that, by the same proof as for the second
paragraph of the proof of Proposition 4.10, we have ℎ1 (𝑋, 𝜔𝑛

𝑋 ⊗ L) = 0 for all torsion line bundles L
and all 𝑛 ≥ 2.

Assume 𝐾2
𝑋 = 2. In this case, by [Mad16, Equation (1.2.5)], we have [𝑘𝑍 : 𝑘] = 2, ℎ1 (𝑍,O𝑍 ) = 0,

and 𝐾2
𝑍 = 8, where we compute the self-intersection over 𝑘𝑍 . Now, consider the commutative diagram

(𝑍 �̄� )
norm ��

(𝜋�̄� )
norm

��

𝑍 �̄�
��

𝜋�̄�

��

𝑍

𝜋

��

𝑓

����
��

��
��

��
��

(𝑋�̄� )
norm �� 𝑋�̄� ��

��

𝑋𝑘𝑍
��

��

𝑋

��
Spec �̄� �� Spec 𝑘𝑍 �� Spec 𝑘,

where 𝑍 �̄� = 𝑍 ×Spec𝑘𝑍 Spec�̄� . As in the end of the proof of Proposition 4.8, the diagram shows that
Z is geometrically integral when considered as a 𝑘𝑍 -scheme and (𝜋�̄� )

norm is an isomorphism; hence,
(𝑍 �̄� )

norm � (𝑋�̄� )
norm � P(1, 1, 2) by Proposition 4.8. In particular, we have 𝐾2

𝑍 = 8 = 𝐾2
(𝑍�̄� )

norm , so Z is
in fact geometrically normal. Therefore, 𝑍 �̄� � P(1, 1, 2), so Z is a twisted form of P(1, 1, 2) over 𝑘𝑍 .

Assume 𝐾2
𝑋 = 1. In this case, by [Mad16, Equation (1.2.5)], we have 𝑘𝑍 = 𝑘 and ℎ1 (𝑍,O𝑍 ) = 0. We

first claim that Z is not geometrically reduced. Indeed, let 𝜓 : P2 → 𝑋 be the normalised base change
and consider the 𝛼𝜓∗𝜔𝑋 -torsor 𝑇 := 𝑍 ×𝑋 P

2 → P2 obtained by base changing along 𝜓. As 𝜓∗𝜔𝑋 is
anti-ample, considering the exact sequence

0 = 𝐻0 (P2, 𝜓∗𝜔𝑝
𝑋 ) → 𝐻1

fppf (P
2, 𝛼𝜓∗𝜔𝑋 ) → 𝐻1(P2, 𝜓∗𝜔𝑋 ) = 0,

we have that 𝐻1
fppf (P

2, 𝛼𝜓∗𝜔𝑋 ) = 0, so that 𝑇 → P2 is a trivial torsor, and thus, T is not reduced. Since
𝑇 → 𝑍 �̄� is generically an isomorphism, Z is not geometrically reduced.

Next, we claim that Z is normal. Suppose by contradiction it is not and let 𝜈 : 𝑍norm → 𝑍 be the
normalisation. In this case, as 𝜈 is not an isomorphism, we have that 𝐾2

𝑍 norm > 8, where we calculate the
self-intersection number over k. Let 𝑔 : 𝑍norm → 𝑋 be the composition 𝑓 ◦ 𝜈. As X is regular and 𝑍norm

is integral, by [Mad16, Proposition 2.2.1], there exists a line bundle M numerically equivalent to 𝑚𝐾𝑋

for some integer m such that g is a nontrivial 𝛼M-torsor. In particular, 𝑍norm is Gorenstein, and thus, as
it is the normalization of a del Pezzo surface, 𝑍norm is also a del Pezzo surface. Therefore, 𝑚 ≥ 0. We
now distinguish two cases:
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1. if 𝐻0(𝑍norm,O𝑍 norm ) = 𝑘 , by [Mad16, Equation (1.2.4)], we have 2(1 + 𝑚)2 = 𝐾2
𝑍 norm > 8, which

implies that 𝑚 > 1, contradicting Proposition 4.8;
2. if [𝐻0 (𝑍norm,O𝑍 norm ) : 𝑘] = 2, we have that (1 + 𝑚)2 = 𝐾2

𝑍 norm > 4, which also implies that 𝑚 > 1,
contradicting Proposition 4.8 as well. Note that, here, we calculate the self-intersection 𝐾2

𝑍 norm over
𝐻0(𝑍norm,O𝑍 norm ).

Thus, Z must be normal.
By [Kle66, Example 1], we have that 8 = 𝐾2

𝑍 = 2𝜖 (𝑍/𝑘) (𝐾 (𝑍�̄� )
norm
red

+ 𝐸)2. Since Z is geometrically
non-reduced, we have 𝜖 (𝑍/𝑘) ≥ 1, and since f is finite flat of degree 2 and 𝜖 (𝑋/𝑘) = 0, we have
𝜖 (𝑍/𝑘) ≤ 1; hence, 𝜖 (𝑍/𝑘) = 1. As Z is normal and Gorenstein, we can apply [PW22, Theorem 4.1] to
conclude that 𝑍 = P2 and E is a line. �

Proof of Theorem 1.2. Combine Proposition 4.8, Proposition 4.10 and Proposition 4.11. �

5. On the BAB conjecture for surfaces over arbitrary fields

In this section, we prove boundedness results for del Pezzo surfaces over arbitrary fields.
We recall some terminology when discussing boundedness in birational geometry. For the following

definition, we say that a scheme X is a projective variety if X is integral, 𝐻0 (𝑋,O𝑋 ) is a field k and
the natural morphism 𝜋𝑋 : 𝑋 → Spec(𝑘) is projective. We will always consider X as a k-variety via the
natural morphism 𝜋𝑋 .

Definition 5.1. We say that a class of projective varieties X is bounded (resp. birationally bounded)
if there exists a projective flat morphism 𝑌 → 𝑇 of finite type Z-schemes such that for every 𝑋 ∈ X
with 𝑘 � 𝐻0(𝑋,O𝑋 ), there exists a morphism Spec(𝑘) → 𝑇 and a k-isomorphism (resp. a k-birational
map) 𝑋 → 𝑌 ×𝑉 Spec(𝑘).

The Borisov–Alexeev–Borisov (BAB) conjecture states that mildly singular Fano varieties form a
bounded family in every dimension.

Conjecture 5.2 (BAB). For any rational number 𝜀 > 0, the class

X𝑑,𝜀 = {𝑋 | 𝑋 is a 𝜀-klt Fano variety of dimension 𝑑}

is bounded.

Remark 5.3. The presence of the 𝜀–klt hypothesis is necessary in the BAB conjecture, already in
dimension 2. Indeed, Gorenstein del Pezzo surfaces with general log canonical singularities are not
bounded as cones over elliptic curves of Proposition 2.9 show. Moreover, boundedness already fails for
klt del Pezzo surfaces as the set of weighted projective planes {P(1, 1, 𝑑)}𝑑≥1 shows.

We discuss the BAB conjecture for surfaces defined over arbitrary fields. The result of [Ale94,
CTW17] shows that the class of geometrically 𝜀-klt del Pezzo surfaces form a bounded family. However,
the conjecture is still open for 𝜀-klt del Pezzo surfaces defined over an imperfect field.

In subsection 5.1, we settle the BAB conjecture for geometrically integral canonical del Pezzo
surfaces. In the remaining two subsections, we discuss the general 𝜀-klt case. In subsection 5.2, we
prove boundedness of the anticanonical volumes for 𝜀-klt del Pezzo surfaces over imperfect fields.
This, together with a bound on the Q-Gorenstein index proven in subsection 5.3, implies the BAB
Conjecture 5.2 for such surfaces in characteristic 𝑝 > 5 (cf. Theorem 5.12).

5.1. Boundedness of geometrically integral canonical del Pezzo surfaces

In [Tan24], Tanaka proves boundedness for geometrically integral regular del Pezzo surfaces. As a
consequence of our results in section 3 and section 4, we can extend Tanaka’s result to the canonical
case.
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Theorem 5.4. The class

XdP,can = {𝑋 | 𝑋 is a geometrically integral canonical del Pezzo surface}

is bounded.

Proof. As X is geometrically integral, 𝜖 (𝑋/𝑘) = 0, and thus, 𝐾2
𝑋 ≤ 16 by Proposition 3.4. Since X is

canonical, 𝐾𝑋 is Cartier and 𝐾2
𝑋 is an integer. By Proposition 4.8, Theorem 3.10 and Riemann–Roch,

there exists an 𝑁 > 0 such that 𝜔−12
𝑋 embeds X into P𝑛𝑘 for some 𝑛 ≤ 𝑁 . Again by Proposition 4.8, and

since 𝐾2
𝑋 ≤ 16, the possibilities for the Hilbert polynomial 𝜒(𝑋, 𝜔−12

𝑋 ) are finite. Therefore, all X arise
via pullback from a universal family over a suitable finite union of Hilbert scheme of finite type over
SpecZ [Kol96, Theorem 1.4]. �

5.2. Bounds on the volume of 𝜀-klt del Pezzo surfaces

We prove an explicit bound for the volumes of 𝜀-klt del Pezzo surfaces, generalising the results of
[Ale94, AM04] to imperfect fields. To do so, we start with some elementary computations on surfaces
of del Pezzo type admitting a Mori fibration onto a curve. Recall the definition of surfaces of del Pezzo
type from Definition 2.15.

Lemma 5.5. Let X be a regular surface of del Pezzo type. Let 𝜋 : 𝑋 → 𝐵 be a Mori fibre space onto a
regular curve and let 𝐹𝑏 = 𝜋∗𝑏, where b is a closed point of B. Then, there exists an integral curve Γ
such that

NE(𝑋) = R+[𝐹𝑏] + R+[Γ] .

Moreover, setting 𝑑Γ � [𝐻0 (Γ,OΓ) : 𝑘] and 𝑚Γ = [𝑘 (Γ) : 𝑘 (𝐵)], there exists 𝑛 ≥ 0 such that

Γ2 = −𝑑Γ · 𝑛, 𝐾𝑋 · Γ = 𝑑Γ (𝑛 − 2), (5.1)

and

𝐾2
𝑋 =

𝑑Γ

𝑚2
Γ

(8𝑚Γ + 4𝑛(1 − 𝑚Γ)) ≤ 8. (5.2)

Proof. The existence of Γ is a consequence of the cone theorem [Tan18b, Theorem 2.14], while Equation
(5.1) is proved in [BT22, Lemmas 4.3, 4.6]. To prove Equation (5.2), we write 𝐾𝑋 ≡ 𝑥𝐹𝑏 + 𝑦Γ for some
𝑥, 𝑦 ∈ Q. Set 𝑑𝑏 = [𝑘 (𝑏) : 𝑘]. As 𝐾𝑋 · 𝐹𝑏 = −2𝑑𝑏 , we conclude that 𝑦 = − 2

𝑚Γ
. Therefore,

𝑑Γ (𝑛 − 2) = 𝐾𝑋 · Γ = 𝑥𝑚Γ𝑑𝑏 +
2𝑛𝑑Γ
𝑚Γ

,

which implies

𝐾𝑋 ≡
𝑑Γ (𝑚Γ (𝑛 − 2) − 2𝑛)

𝑚2
Γ𝑑𝑏

𝐹𝑏 −
2
𝑚Γ

Γ.

A straightforward computation with intersection numbers then shows Equation (5.2). Finally, as
(1 − 𝑚Γ) ≤ 0, we have 𝐾2

𝑋 ≤ 𝑑Γ
𝑚Γ

8 and, as 𝑑Γ ≤ 𝑚Γ, we conclude. �

We now prove bounds on the anticanonical volume of 𝜀-klt del Pezzo.
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Theorem 5.6. Fix a rational number 𝜀 > 0. Then for every geometrically integral 𝜀-klt del Pezzo surface
X, we have

𝐾2
𝑋 ≤ max

{
9, 8 + 20

(1 − 𝜀)2

𝜀

}
.

Proof. Let 𝑓 : 𝑌 → 𝑋 be the minimal resolution, and write 𝐾𝑌 +
∑
𝑖 𝑏𝑖𝐸𝑖 = 𝑓 ∗𝐾𝑋 . By the 𝜀-klt

hypothesis and minimality of f, we have 0 < 𝑏𝑖 < 1 − 𝜀. We run a 𝐾𝑌 -MMP which ends with
𝜓 : 𝑌 → 𝑍 , where Z is a regular projective surface admitting a Mori fibre space structure 𝜋 : 𝑍 → 𝐵.
Since −(𝐾𝑌 +

∑
𝑖 𝑏𝑖𝐸𝑖) is big and nef, so is −(𝐾𝑍 + Δ𝑍 ), where Δ𝑍 = 𝜓∗(

∑
𝑏𝑖𝐸𝑖). Moreover,

𝐾2
𝑋 = (𝐾𝑌 +

∑
𝑖 𝑏𝑖𝐵𝑖)

2 ≤ (𝐾𝑍 + Δ𝑍 )
2.

Suppose dim(𝐵) = 0. Then Z is a regular del Pezzo surface of Picard rank 1. As−(𝐾𝑍 +Δ𝑍 ) is ample,
there exists 0 ≤ 𝜆 < 1 such thatΔ𝑍 ≡ −𝜆𝐾𝑍 . Therefore, we deduce (𝐾𝑍+Δ𝑍 )

2 = (1−𝜆)2𝐾2
𝑍 ≤ 𝐾2

𝑍 ≤ 9,
where the last inequality follows by [Tan24, Theorem 1.2].

Suppose dim(𝐵) = 1. Let Γ be the extremal curve described in Lemma 5.5. We write Δ𝑍 = 𝛼Γ +𝐺,
where Supp(𝐺) does not contain Γ. Since the Picard rank of Z is 2, G is a Q-Cartier nef divisor. As
−(𝐾𝑍 +Δ𝑍 ) and −(𝐾𝑍 +𝛼Γ) are big and nef classes, their intersection with G is non-positive, and thus,
we have

(𝐾𝑍 + Δ𝑍 )
2 = (𝐾𝑍 + 𝛼Γ)2 + (𝐾𝑍 + 𝛼Γ) · 𝐺 + (𝐾𝑍 + Δ𝑍 ) · 𝐺 ≤ (𝐾𝑍 + 𝛼Γ)2.

Therefore, it is sufficient to bound the volume of del Pezzo surface pairs (𝑍, 𝛼Γ), where 𝑍 → 𝐵 is a
Mori fibre space onto a curve, Γ is the extremal curve of Lemma 5.5 and 0 ≤ 𝛼 < 1 − 𝜀. Note that

(𝐾𝑍 + 𝛼Γ)2 = 𝐾2
𝑍 + 𝑑Γ𝛼(2(𝑛 − 2) − 𝑛𝛼) and 0 ≤ 𝛼 < 1 − 𝜀. (5.3)

Claim 5.7. The self-intersection of Γ is bounded:

𝑛 ≤
2
𝜀
.

Proof of Claim. By adjunction,

−2𝑑Γ = (𝐾𝑍 + Γ) · Γ = (𝐾𝑍 + 𝛼Γ) · Γ + (1 − 𝜀 − 𝛼)Γ2 + 𝜀Γ2.

As −(𝐾𝑍 +𝛼Γ) is big and nef and 1− 𝜀 > 𝛼, we have (𝐾𝑍 +𝛼Γ) · Γ + (1− 𝜀 −𝛼)Γ2 ≤ 0, and therefore,
we deduce 2𝑑Γ ≥ 𝜀𝑑Γ · 𝑛. �

If 𝐾𝑍 · Γ ≤ 0, then (𝐾𝑍 + 𝛼Γ)2 ≤ 𝐾2
𝑍 ≤ 8 by Lemma 5.5, and we are done. So, assume 𝐾𝑍 · Γ > 0,

or, equivalently, 𝑛 > 2. In this case, we have 𝑑Γ ≤ 𝑚Γ ≤ 5 by [BT22, Proposition 4.7]. Therefore, by
Equation (5.3) and Claim 5.7, we deduce the following series of inequalities:

(𝐾𝑍 + 𝛼Γ)2 = 𝐾2
𝑍 + 𝑑Γ𝛼(2(𝑛 − 2) − 𝑛𝛼)

≤ 𝐾2
𝑍 + 5𝛼(2𝑛 − 4) ≤ 𝐾2

𝑍 + 5(1 − 𝜀)

(
4
𝜀
− 4

)
≤ 8 + 20

(1 − 𝜀)2

𝜀
. �

As a consequence, we can show a boundedness result for klt del Pezzo surfaces of bounded Gorenstein
index in characteristic 𝑝 > 5 (cf. [HMX14, Corollary 1.8] for the analogue in characteristic 0). In the
following, we say that a klt del Pezzo surface is tame if ℎ1 (𝑋,O𝑋 ) = 0.
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Corollary 5.8. Let 𝑛 > 0 be an integer. Then, the classes

X tame
dP,𝑛 = {𝑋 | 𝑋 is a geometrically integral tame klt del Pezzo surface s.t. 𝑛𝐾𝑋 is Cartier}, and

X >5
dP,𝑛 =

{
𝑋 | 𝑋 is a klt del Pezzosurface s.t. 𝑛𝐾𝑋 is Cartier and char(𝐻0(𝑋,O𝑋 )) ≠ 2, 3, 5

}
are bounded.

Proof. By [BT22, Corollary 5.5] and [BT22, Theorem 5.7], klt del Pezzo surfaces in characteristic
bigger than 5 are geometrically integral and tame, so it suffices to show that X tame

dP,𝑛 is bounded.

So, let 𝑋 ∈ X tame
dP,𝑛 . As X is

(
1
𝑛

)
-klt, Theorem 5.6 implies that 𝐾2

𝑋 is bounded. As the Cartier index

of 𝐾𝑋 is fixed, the set of volumes
{
𝐾2
𝑋 | 𝑋 ∈ X tame

dP,𝑛

}
is a finite set. As X has rational singularities by

Proposition 2.6, we can apply Riemann–Roch to compute for all 𝑡 ≥ 1:

𝜒(𝑋,O𝑋 (−𝑛𝑡𝐾𝑋 )) = 𝜒(𝑋,O𝑋 ) +
𝑛𝑡 (𝑛𝑡 + 1)𝐾2

𝑋

2
.

As X is tame, 𝜒(𝑋,O𝑋 ) = 1, and therefore, there are only a finite number of possibilities for the
Hilbert polynomials 𝑃𝑛 (𝑡) := 𝜒(𝑋,O𝑋 (−𝑛𝑡𝐾𝑋 )). Finally, we apply [Kol85, Theorem 2.1.2] to conclude
that 𝑋𝐾 form a bounded family over Spec(Z[1/30]). In particular, there exists 𝑚 := 𝑚(𝑛) such that
−𝑚𝑛𝐾𝑋𝐾

is very ample, and thus, by faithfully flat descent, −𝑚𝑛𝐾𝑋 is very ample. Therefore, there
exists 𝑁 = 𝑁 (𝑛) > 0 such that −𝑚𝑛𝐾𝑋 embeds X into some P𝑁 with a finite number of possibilities
for the Hilbert polynomial. This concludes that X belongs to a bounded family by a classical Hilbert
scheme argument. �

5.3. Bounds on the Q-Gorenstein index of 𝜀-klt del Pezzo surfaces

After Corollary 5.8, to conclude the proof of boundedness of 𝜀-klt del Pezzo surfaces, we are only left
to prove a bound on the Cartier index of 𝐾𝑋 depending only on 𝜀. We start with the following result,
which is well known over perfect fields.

Lemma 5.9. Fix 𝜀 ∈ Q>0 and 𝑛 ∈ Z>0. Then, there exists 𝑁 = 𝑁 (𝜀, 𝑛) such that for every 𝜀-klt surface
X admitting a minimal resolution 𝑓 : 𝑌 → 𝑋 with 𝜌(𝑌 ) ≤ 𝑛, the divisor 𝑁𝐾𝑋 is Cartier.

Proof. Without loss of generality, we assume that X is the spectrum of a local ring and that 𝜌(𝑌 ) = 𝑛.
Let 𝐸 =

∑𝑛
𝑖=1 𝐸𝑖 be the sum of the exceptional divisors of f, and write 𝐾𝑌 +

∑𝑛
𝑖=1 𝑏𝑖𝐸𝑖 = 𝑓 ∗𝐾𝑋 for some

0 ≤ 𝑏𝑖 < 1 − 𝜀. By the base point free theorem [Tan18b, Theorem 4.2], it suffices to find an effective
𝑁 = 𝑁 (𝜀, 𝑛) such that 𝑁𝑏𝑖 is integral. For each i, we write 𝐸2

𝑖 = −𝑑𝐸𝑖𝑛𝑖 for some integer 𝑛𝑖 > 0, where
𝑑𝐸𝑖 = [𝐻0(𝐸𝑖 ,O𝐸𝑖 ) : 𝑘]. Moreover, for each 𝑖 ≠ 𝑗 , we write 𝐸𝑖 · 𝐸 𝑗 = 𝑑𝐸 𝑗𝑛𝑖 𝑗 for some 𝑛𝑖 𝑗 > 0. The 𝑏𝑖
are determined by the following system of equations:

(2 − 𝑛 𝑗 + 𝑏 𝑗𝑛 𝑗 ) =
∑
𝑖≠ 𝑗

𝑏𝑖𝑛𝑖 𝑗 for 𝑗 = 1, . . . , 𝑛. (5.4)

Since X is 𝜀-klt, we have

𝑛 𝑗 ≤
2
𝜀
. (5.5)

Indeed,

0 = (𝐾𝑌 +
∑

𝑏𝑖𝐸𝑖) · 𝐸 𝑗 ≥ (𝐾𝑌 + 𝑏 𝑗𝐸 𝑗 ) · 𝐸 𝑗

≥ −2𝑑𝐸 𝑗 + (𝑏 𝑗 − 1) · (−𝑑𝐸 𝑗𝑛 𝑗 ) ≥ −2𝑑𝐸 𝑗 + 𝜀𝑛 𝑗𝑑𝐸 𝑗 .
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Moreover, 𝑛𝑖 𝑗 is bounded from above by [Kol13, Corollary 3.31 and Section 3.41] and [Sat23,
Appendix A]. As the 𝑛𝑖 and 𝑛𝑖 𝑗 are integers, we only have a finite number of possibilities for the
coefficients in Equation 5.4, so we conclude that there are only finitely many possibilities for the
solutions 𝑏𝑖 , thus showing the existence of a 𝑁 (𝜀, 𝑛) for which 𝑁𝑏𝑖 is integral. �

Lemma 5.10. Let X be a geometrically integral regular projective surface of del Pezzo type over k, and
let 𝜋 : 𝑋 → 𝐵 be a Mori fibre space. Let Δ =

∑
𝑏𝑖𝐸𝑖 be an effective Q-divisor such that (𝑋,Δ) is klt

and −(𝐾𝑋 + Δ) is nef. Then

1. if dim(𝐵) = 0, then
∑
𝑏𝑖 ≤ 3;

2. if dim(𝐵) = 1, then
∑
𝑏𝑖 ≤ 4.

Proof. Suppose dim(𝐵) = 0. Let H be an ample Cartier divisor generating Num(𝑋), and let 𝑑 ≥ 0 such
that −𝐾𝑋 ≡ 𝑑𝐻. As X is a regular del Pezzo surface, we have 𝐾2

𝑋 ≤ 9 by [Tan24, Theorem 1.2], and
therefore, 𝑑 ≤ 3. Since X is regular, the 𝐵𝑖 are Cartier divisors, and thus,

∑
𝑏𝑖 ≤ 3.

Suppose dim(𝐵) = 1. Let 𝐹𝑏 be a closed fibre of 𝜋 and Γ the curve given by Lemma 5.5. Set
𝑑𝑏 � [𝑘 (𝑏) : 𝑘]. We write Δ = 𝑏0Γ +

∑
𝑏𝑖𝐸𝑖 as a sum of pairwise distinct prime divisors. As

0 ≥ (𝐾𝑋 + Δ) · 𝐹𝑏 , adjunction implies

2𝑑𝑏 ≥ Δ · 𝐹𝑏 ≥ 𝑏0𝑑𝑏 +
∑

(𝐸𝑖 ·𝐹𝑏)≠0
𝑏𝑖𝑑𝑏 . (5.6)

As 𝐾𝑋 · Γ = 𝑑Γ (𝑛 − 2), 0 ≥ (𝐾𝑋 + Δ) · Γ, and 𝑏0 ≤ 1, adjunction implies

2𝑑Γ ≥ 𝑛𝑑Γ − 𝑏0𝑛𝑑Γ +
∑
𝑖

𝑏𝑖 (𝐸𝑖 · Γ) ≥
∑

(𝐸𝑖 ·Γ)≠0
𝑏𝑖𝑑Γ . (5.7)

Summing the two equations and using that every curve on X intersects either Γ or 𝐹𝑏 , we obtain
4 ≥

∑
𝑏𝑖 , as desired. �

Proposition 5.11. Let 𝜀 > 0. Then, there exists a constant 𝐷 (𝜀) such that for all geometrically integral
𝜀-klt del Pezzo surfaces X, the minimal resolution 𝑓 : 𝑌 → 𝑋 satisfies 𝜌(𝑌 ) ≤ 𝐷 (𝜀).

Proof. We can suppose k is separably closed. We follow the computations of [AM04, Theorem 1.8],
verifying that the explicit classification of rational Mori fibre spaces over algebraically closed fields
is not needed. Without loss of generality, we can suppose 𝜀 < 2

3 . Since −𝐾𝑋 is ample, by Bertini’s
theorem, we can choose 𝐻 ∼Q −𝐾𝑋 to be an effective Q-divisor whose support is regular and contained
in the regular locus of X such that (𝑋, 𝐻) is 𝜀-klt. Let 𝑓 : 𝑌 → 𝑋 be the minimal resolution and write
𝐾𝑌 + Γ𝑌 = 𝑓 ∗(𝐾𝑋 + 𝐻) ∼Q 0, where Γ𝑌 �

∑
𝑖∈𝐼 𝑏𝑖𝐸𝑖 + 𝑓 −1

∗ 𝐻 and 𝑏𝑖 < 1 − 𝜀 by hypothesis. We run
a 𝐾𝑌 -MMP which ends with 𝑔 : 𝑌 → 𝑍 , where Z is a regular projective surface admitting a Mori fibre
space structure 𝜋 : 𝑍 → 𝐵. We summarise the situation in the following diagram:

𝑌
𝑔 ��

𝑓

��

𝑍

𝜋

��
𝑋 𝐵.

We fix the following notation:

◦ 𝐸𝑖,𝑍 � 𝑔∗𝐸𝑖 .
◦ 𝐼𝑍 � {𝑖 ∈ 𝐼 | 𝐸𝑖,𝑍 ≠ 0}.
◦ Δ𝑌 �

∑
𝑖∈𝐼 𝑏𝑖𝐸𝑖 .

◦ Δ𝑍 �
∑
𝑖∈𝐼𝑍 𝑏𝑖𝐸𝑖,𝑍 .

◦ Γ𝑍 � 𝑔∗Γ𝑌
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Note that, by construction, g is a (𝐾𝑌 +Δ𝑌 )-non-positive (resp. (𝐾𝑌 +Γ𝑌 )-trivial) birational contrac-
tion and (𝑍,Δ𝑍 ) (resp. (𝑍, Γ𝑍 )) is a log del Pezzo pair (resp. Calabi–Yau pair) with 𝜀-klt singularities.

The morphism g is a composition of blow-ups of closed points on regular surfaces by [Sta, Tag
0C5R]. We can decompose g as

𝑔 : 𝑌
𝜓
−→ 𝑊

𝜑
−→ 𝑍,

where 𝜓 and 𝜑 are proper birational morphisms between regular surfaces such that

1. 𝜑 is a composition of blow-ups at closed points P such that mult𝑃 (Γ̃𝑍 ) has multiplicity at least
𝜈 := 𝜀

2 , where Γ̃𝑍 denotes the strict transform of Γ𝑍 ;
2. 𝜓 is a composition of blow-ups at closed points P, where mult𝑃 (Γ̃𝑍 ) has multiplicity < 𝜈.

We first bound 𝜌(𝑊/𝑍) in terms of 𝜀. On Y, as 𝑓 −1
∗ 𝐻 is big and nef, we can apply Equation (5.5) to

obtain

(𝑔−1
∗ Γ𝑍 )

2 ≥
∑
𝑖∈𝐼

𝑏2
𝑖 (𝑔

−1
∗ 𝐸𝑖,𝑍 )

2 ≥
∑
𝑖∈𝐼𝑍

𝑏𝑖 (1 − 𝜀)

(
−2
𝜀

)
. (5.8)

If dim(𝐵) = 0 (resp. 1), we have
∑
𝑖∈𝐼𝑍 𝑏𝑖 ≤ 4 (resp. ≤ 3) by Lemma 5.10, and thus,

(𝑔−1
∗ Γ𝑍 )

2 ≥

{
6 − 6

𝜀 if dim(𝐵) = 0
8 − 8

𝜀 if dim(𝐵) = 1.
(5.9)

After each of the blow-ups in 𝜑, the self-intersection of Γ̃𝑍 decreases by at least 𝜈2, and we deduce that
(𝑔−1

∗ Γ𝑍 )2 ≤ Γ2
𝑍 − 𝜈2𝜌(𝑊/𝑍). If dim(𝐵) = 0 (resp. 1), then Γ2

𝑍 = 𝐾2
𝑍 ≤ 9 (resp. 8) by [Tan24, Theorem

1.2] (resp. Lemma 5.5). Therefore, (𝑔−1
∗ Γ𝑍 )2 ≤ 9 − 𝜈2𝜌(𝑊/𝑍) (resp. 8 − 𝜈2𝜌(𝑊/𝑍)). Together with

(5.9), we conclude

𝜌(𝑊/𝑍) ≤

{
(3𝜀+6)
𝜀𝜈2 if dim(𝐵) = 0;
8
𝜀𝜈2 if dim(𝐵) = 1.

(5.10)

As we chose 𝜀 < 2
3 , we have (3𝜀+6)

𝜀𝜈2 < 8
𝜀𝜈2 .

We now prove a bound on 𝜌(𝑌/𝑊) depending only on 𝜀. Let 𝐹 =
∑
𝑖∈𝐽 𝐹𝑖 be the sum of the

exceptional divisors of 𝜑 and let 𝑓𝑖 := coeff𝐹𝑖 (Γ𝑊 ), where Γ𝑊 � 𝜓∗Γ𝑌 . As W and Z are regular
surfaces, Supp(𝐹) is an snc divisor. Let 𝜓 : 𝑌 𝑠

−→ 𝑇
𝑡
−→ 𝑊 be a factorisation of 𝜓, where t is a blow-up at

a point P of W with exceptional divisor C. Write

𝐾𝑇 + Γ𝑇 = 𝐾𝑇 + Γ̃𝑍 +
∑

𝑓𝑖𝐹𝑖 + 𝑐𝐶 ∼Q 𝑡
∗(𝐾𝑊 + Γ̃𝑍 +

∑
𝑓𝑖𝐹𝑖).

We claim that P must lie on the intersection of two components 𝐹1 and 𝐹2 of F. For this, let
𝐽𝐹 � {𝑖 ∈ 𝐽 | 𝑃 ∈ 𝐹𝑖}. Then, since mult𝑃 (Γ̃𝑍 ) ≤ 𝜈 < 𝜀 and 𝑓𝑖 < 1 − 𝜀, we have that

0 < 𝑐 = (mult𝑃 (Γ̃𝑍 ) +
∑
𝑖∈𝐽𝐹

𝑓𝑖 − 1) ≤ 𝜈 + |𝐽𝐹 | (1 − 𝜀) − 1.

Hence, |𝐽𝐹 | ≥ 2. Since Supp(𝐹) is an snc divisor, this implies |𝐽𝐹 | = 2, as desired. This argument can
be repeated for each blow-up 𝑇 → 𝑊 factorising 𝑌 → 𝑊 .
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As the number of nodes of F is bounded by 𝜌(𝑊/𝑍) −1, it remains to bound the number of times we
are allowed to blow-up along a node to obtain a bound on 𝜌(𝑌/𝑊). This follows from a straightforward
induction as in [AM04, Lemma 1.9]. An explicit computation shows that

𝜌(𝑌 ) = 𝜌(𝑌/𝑊) + 𝜌(𝑊/𝑍) + 𝜌(𝑍) ≤

(
1

(𝜀 − 𝜈)2 − 1
)
·

(
8
𝜀𝜈2 − 1

)
+

(
8
𝜀𝜈2

)
+ 2.

As 𝜈 = 𝜀
2 , we deduce that

𝜌(𝑌 ) ≤
128
𝜀5 +

(
3 −

4
𝜀2

)
≤

128
𝜀5 . �

We now have all the ingredients to prove the BAB conjecture in dimension 2 and characteristic
𝑝 ≠ 2, 3 and 5.

Theorem 5.12. Let 𝜀 > 0 be a rational number. Then, the classes

X tame
dP, 𝜀 = {𝑋 | 𝑋 is a geometrically integral tame 𝜀-klt del Pezzo surface}, and

X >5
dP, 𝜀 =

{
𝑋 | 𝑋 is an 𝜀-klt del Pezzo surface s.t. char(𝐻0 (𝑋,O𝑋 )) ≠ 2, 3, 5

}
are bounded.

Proof. By Lemma 5.9 and Proposition 5.11, there exists 𝑛 = 𝑛(𝜀) > 0 such that −𝑛𝐾𝑋 is Cartier for all
geometrically integral 𝜀-klt del Pezzo surfaces X. Hence, we can apply Corollary 5.8 to conclude that
X tame

dP, 𝜀 and X >5
dP, 𝜀 are bounded. �

Remark 5.13. To prove the geometrically integral case of the BAB conjecture in characteristic 𝑝 ≤ 5,
the missing ingredient is a bound on the irregularity for 𝜀-klt del Pezzo surface. While the canonical
case (the characteristic 𝑝 > 5 klt case) has been treated in Theorem 1.2 (resp. [BT22, Theorem 5.7]),
we are not able to prove a similar bound in the general case. Note that klt del Pezzo surfaces with
ℎ1 (𝑋,O𝑋 ) = 1 are constructed in [Tan20] over fields k of characteristic 𝑝 = 2, 3 and p − deg(𝑘) = 1.
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