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We exploit the similarity between the mean momentum equation and the mean energy
equation and derive transformations for mean temperature profiles in compressible
wall-bounded flows. In contrast to prior studies that rely on the strong Reynolds
analogy and the presumed similarity between the instantaneous and mean velocity and
temperature signals, the discussion in this paper involves the Farve-averaged equations
only. We establish that the compressible momentum and energy equations can be made
identical to their incompressible counterparts under appropriate normalizations and
coordinate transformations. Two types of transformations are explored for illustration
purposes: Van Driest (VD)-type transformations and semi-local-type or Trettel–Larsson
(TL)-type transformations. In our derivations, it becomes clear that VD-type velocity and
temperature transformations hold exclusively within the logarithmic layer. On the other
hand, TL-type transformations extend their applicability to incorporate wall-damping
effects, at least in principle. Each type of transformation serves its distinct purpose and
has its applicable range. However, it is noteworthy that while VD-type transformations
can be assessed using measurements obtained from laboratory experiments, TL-type
transformations necessitate viscosity and density information typically accessible only
through numerical simulations. Finally, we justify the omission of the turbulent kinetic
energy transfer term, a term that is unclosed, in the energy equation. This omission leads
to closed-form temperature transformations that are valid for both adiabatic and isothermal
walls.
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1. Introduction

The law of the wall asserts that the mean streamwise velocity 〈u〉 of an incompressible
turbulent boundary layer is given by (von Kármán 1930; Prandtl 1932; Bradshaw & Huang
1995; Marusic et al. 2013)

〈u〉
uτ

= 1
κ

log( y+) + C, (1.1)

in the ‘logarithmic’ region, i.e. 1 � y+ and y/δ � 1, where 〈〉 represents the conventional
ensemble average (we reserve the symbol { } to indicate the Favre average), κ and C are
constants, y is the wall-normal coordinate and the superscript + denotes normalization
by wall units: y+ = ρyuτ /μ, with uτ = √

τw/ρ representing the friction velocity, τw the
mean wall-shear stress and ρ and μ respectively the fluid density and dynamic viscosity
(both of which are constant in low-speed constant-property flows). Like other proposals
for the turbulent boundary layer (Marusic & Monty 2019; Yang & Meneveau 2019), the
law of the wall is empirical. Nonetheless, the log law in (1.1) has received considerable
empirical and theoretical support (McKeon et al. 2004; Hultmark et al. 2012; Lee & Moser
2015; She, Chen & Hussain 2017; Xu & Yang 2018). Furthermore, the law of the wall
is an anchor point for turbulence modelling – many models have been calibrated such
that they reproduce the law of the wall for low-speed boundary-layer flows; well-known
examples include wall functions for Reynolds-averaged Navier–Stokes (RANS) closures
and the mixing-length models in large-eddy simulation wall models (Spalart & Allmaras
1992; Bose & Park 2018; Bin, Huang & Yang 2023).

Besides the mean velocity, the mean temperature above non-adiabatic walls in a
low-speed boundary layer is also governed by the logarithmic scaling (Kays & Crawford
1980; Kader 1981; Bradshaw & Huang 1995). That is,

〈Tw〉 − 〈T〉
Tτ

= Prt

κ
log( y+) + CT(Pr), (1.2)

where 〈Tw〉 is the mean wall temperature, Tτ = 〈qw〉/ρwcpuτ is a temperature scale, 〈qw〉
is the mean wall heat flux, cp is the specific heat, Prt is the turbulent Prandtl number
(assumed constant in the log layer) and CT = CT(Pr) is the counterpart of C in (1.1),
which now depends on the molecular Prandtl number, Pr. Here, with the flow at a low
speed, the momentum equation and the thermal equation are decoupled, and aerodynamic
heating is negligible. Low-speed boundary layers satisfy the ‘Reynolds analogy’, in that
the velocity and the temperature fields behave similarly (Pope 2000; Yang & Abkar 2018),
which is why the mean temperature and the mean velocity are scaled in a similar form. As
with the velocity scaling (1.1), the temperature scaling (1.2) has received much empirical
support (Kim & Moin 1989; Abe, Kawamura & Matsuo 2004; Pirozzoli, Bernardini
& Orlandi 2016), with the modelling of the turbulent Prandtl number at the centre of
turbulence-modelling efforts (Kays 1994; Li 2019).

The incompressible form of the law of the wall in (1.1) becomes increasingly inaccurate
with increasing Mach number, and the mean velocity in a compressible wall layer must
be transformed before it can be described by the scaling in (1.1) (Morkovin 1962). Many
velocity transformations have been proposed (Van Driest 1951; Zhang et al. 2012; Patel
et al. 2015; Trettel & Larsson 2016; Griffin, Fu & Moin 2021). Like any model, these
transformations have their applicable ranges. For instance, the Van Driest transformation
works best for flows above adiabatic walls (Van Driest 1951), while the semi-local
transformation works best for cold, isothermal walls (Trettel & Larsson 2016).

Regarding the mean temperature, the strong Reynolds analogy together with any
velocity transformation gives the scaling of the mean temperature at high speeds.
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Velocity and temperature scalings

The strong Reynolds analogy was motivated by the similarity between the mean
momentum equation and the mean energy equation when the molecular Prandtl number Pr
equals 1. The analogy assumes a similarity in the behaviour of velocity and temperature
signals, linking velocity and temperature profiles within a compressible boundary layer.
Here, we provide an overview of the development of the strong Reynolds analogy
while examining its limitations in achieving a universal temperature scaling. Noteworthy
contributors to the field include Busemann (1931), Crocco (1932), Morkovin (1962) and
Walz (1959), whose collective efforts culminated in the formulation now recognized
as Walz’s equation. The equation establishes the mean temperature as a function of
mean velocity, free-stream temperature and recovery temperature. This early proposal was
extended by Cebeci (1974), Gaviglio (1987), Huang, Coleman & Bradshaw (1995), Duan &
Martin (2011) and Zhang et al. (2014) to accommodate diabatic walls, non-unit molecular
Prandtl numbers and large fluctuations in total temperatures, among other deviations from
the assumptions upon which the strong Reynolds analogy is based. These extensions,
however, rely heavily on empirical functions. For instance, the work by Duan & Martin
(2011) invoked empirical functions that express the recovery temperature as a function
of the velocity. Excessive dependence on empiricism poses limitations. From a practical
standpoint, empirical functions are usually valid only at the calibration conditions. From
a model development perspective, the constant need for new corrections implies that the
strong Reynolds analogy is a poor approximation of real turbulence. This concern gains
credence through discussions of its inadequacies in prior studies (e.g. Guarini et al. 2000;
Maeder, Adams & Kleiser 2001; Liang & Li 2013; Wenzel, Gibis & Kloker 2022). In
particular, as the Mach number increases, the mean momentum equation and the mean
energy equation become increasingly dissimilar due to aerodynamic heating (Yang et al.
2018; Wenzel et al. 2022), at least for air.

The strong Reynolds analogy is not absolutely necessary for establishing a temperature
scaling. We can approach the temperature scaling like we have approached the velocity
scaling, and derive explicit y scalings for the mean temperature, or temperature
transformations. Following this line of thought, we first examine the explicit y scaling
in (1.2). This scaling is not sufficient. In fact, for adiabatic walls, Tτ = 0 and 〈Tw〉 −
〈T〉 /= 0, and the left-hand side of (1.2) is undefined. This leaves us with temperature
transformations. Transformations for the temperature have received less attention than
those for the velocity. The bulk of the work on the topic has been to calibrate the turbulent
Prandtl number (Kays 1994; Weigand, Ferguson & Crawford 1997; Li 2019; Lusher &
Coleman 2022). These studies concern themselves with the turbulent heat flux term in the
energy equation, which is unclosed in the RANS equations. The only work on temperature
transformation seems to be that by Patel, Boersma & Pecnik (2017) and Chen et al. (2022).
In Patel et al. (2017) a temperature transformation was obtained by assuming similarity
between the mean temperature and the mean velocity. The temperature transformation,
however, is singular for adiabatic walls. Chen et al. (2022) attempted a unified
description for mean temperature above both isothermal and adiabatic walls, but their
transformations depend heavily on direct numerical simulation (DNS) inputs and are not
closed.

The objective of this work is to exploit the similarity between the mean momentum
and energy equations in both the incompressible and compressible regimes so that we
can extend the law of the wall for both mean velocity and mean temperature from the
incompressible regime to the compressible regime. For the mean temperature, we follow
a strategy similar to the one in Chen et al. (2022), but our transformations are closed
and predictive. We also test the resulting temperature transformations against isothermal-
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and adiabatic-wall data from recent DNS of supersonic plane-channel flows (Lusher &
Coleman 2022).

The rest of the paper is organized as follows. In § 2, we review the law of the wall for the
mean velocity and temperature for incompressible conditions. We parametrize the eddy
viscosity and the turbulent Prandtl number to provide references for the discussion that
follows. In § 3, we simplify and non-dimensionalize the mean momentum and mean energy
equations in the compressible regime. We show that turbulent kinetic energy transport
terms are negligible compared with mean kinetic energy transport terms. The equations
look quite different from their incompressible counterparts. In §§ 4 and 5, we utilize the
equations we obtained in § 3 and follow the velocity transformations of Van Driest and
Trettel & Larsson, respectively, to derive temperature transformations. We show that the
compressible momentum and energy equations can be made identical under appropriate
normalizations and transformations. Finally, concluding remarks are provided in § 6.

2. Incompressible law of the wall

In this section, we review the incompressible law of the wall and formulate the turbulent
Prandtl number based on the recently obtained DNS data. The results here provide
baselines for subsequent sections.

We consider the inner layer of the turbulent boundary layer where constant values of
the total shear stress and heat flux can be assumed. Integrating the governing equations for
velocity and temperature in the inner region of the boundary layer gives

〈τ12〉 − 〈ρu′v′〉 = 〈τw〉 (2.1)

and

− 〈qy〉 − cp〈ρv′T ′〉 = −〈qw〉, (2.2)

where τ12 is the molecular shear stress. By assuming constant molecular viscosity, μ, heat
capacity, cp, and Prandtl number, Pr, the Newtonian fluxes become

〈τ12〉 = μ
d〈u〉
dy

(2.3)

and

− 〈qy〉 = μ

Pr
cp

d〈T〉
dy

. (2.4)

Moreover, by applying the Boussinesq/eddy-viscosity assumptions for turbulent shear
stress and heat flux, −〈ρu′v′〉 = μt d〈u〉/dy and −cp〈ρv′T ′〉 = (μt/Prt)cp d〈T〉/dy, we
can write (2.1) and (2.2) as follows:

(μ + μt)
d〈u〉
dy

= 〈τw〉 (2.5)

and (
μ

Pr
+ μt

Prt

)
cp

d〈T〉
dy

= −〈qw〉, (2.6)

where Prt is the turbulent Prandtl number to be defined in (2.14). Equations (2.5) and
(2.6) can be further written in dimensionless form using the two wall-scaling quantities
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Velocity and temperature scalings

uτ = (〈τw〉/ρ)1/2 and Tτ = 〈qw〉/(ρcpuτ ):(
1 + μt

μ

)
du+

dy+ = 1 (2.7)

and (
1

Pr
+ μt/μ

Prt

)
dT+

dy+ = 1, (2.8)

where u+ = 〈u〉/uτ and T+ = (〈Tw〉 − 〈T〉)/Tτ are the dimensionless velocity and
temperature, and y+ = ρuτ y/μ is the dimensionless wall distance. Equation (2.8) can also
be rewritten in terms of another dimensionless temperature, θ = (〈Tw〉 − 〈T〉)/〈Tw〉, and
the dimensionless temperature equation becomes(

1
Pr

+ μt/μ

Prt

)
dθ

dy+ = Bq, (2.9)

where Bq = −〈qw〉/ρuτ cp〈Tw〉. Equations (2.8) and (2.9) have their advantages and
disadvantages. Equation (2.8) is valid for isothermal walls only. For adiabatic walls, the
dimensionless temperature T+ cannot be defined because Tτ is zero. Nonetheless, under
isothermal wall conditions, a unique law of the wall can be identified for T+ (Kays &
Crawford 1980; Kader 1981; Bradshaw & Huang 1995), which is a benefit. Equation (2.9)
is valid for both adiabatic and isothermal walls, which is an advantage, but the solution of
θ depends on Bq, which, compared with the velocity scaling in (1.1) that does not explicitly
depend on the wall flux, is a slight disadvantage.

The profiles for the turbulent viscosity and the velocity are approximated by

μt

μ
= κy+ (2.10)

and

u+ = 1
κ

ln y+ + C (2.11)

in the log layer, where κ is the von Kármán constant and C is the intercept; a good fit to
the data gives rise to κ ≈ 0.41 and C ≈ 5.2, respectively, although the exact values may
vary slightly depending on the flow configuration (Marusic et al. 2013). There are many
proposals that describe how the turbulent viscosity or/and velocity profiles transition from
the no-slip condition to the log layer. The most popular one was presented by Van Driest
using an exponential damping function to the turbulent mixing length (Van Driest 1956).
However, the Van Driest damping fails to satisfy asymptotic near-wall behaviour, yielding
μt ∝ y4 instead of the correct asymptotic behaviour of μt ∝ y3. Johnson & King (1985)
proposed a damping function that satisfies the near-wall asymptotic behaviour:

μt

μ
= κy+D, (2.12)

where D = [1 − exp(−y+/A+)]2 and A+ = 17. Furthermore, by assuming a constant
turbulent Prandtl number in the log layer, the temperature equation yields

T+ = Prt

κ
ln y+ + CT , (2.13)

with Prt = 0.85 and CT = 3.9 (Kays & Crawford 1980).
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Figure 1. (a) Turbulent Prandtl number. (b) Total Prandtl number. Dataset AA is from Abe & Antonia (2019)
and LHP is from Lluesma-Rodriguez et al. (2018) and the Prtotal model correlation is from (2.12), (2.15)
and (2.16).

Here, we used DNS data from two incompressible passive scalar channel flows to
examine the law of the wall for temperature. We refer to the two datasets as AA (Abe &
Antonia 2019) and LHP (Lluesma-Rodriguez, Hoyas & Perez-Quiles 2018). A comparison
of the turbulent Prandtl number is shown in figure 1. Here, the turbulent Prandtl number
is defined as

Prt = 〈u′v′〉
〈v′T ′〉

d〈T〉/dy
d〈u〉/dy

. (2.14)

As y → 0, both 〈u′v′〉 and 〈v′T ′〉 decrease as y3 while both temperature and velocity
gradients approach constant values. Due to 0/0-limiting behaviour near the wall, Prt
becomes very sensitive to numerical errors as it approaches the wall (Chen et al. 2023).
Moreover, the DNS results indicate Prt depends somewhat on Reynolds numbers, as shown
in figure 1(a). Alternatively, one may define a total Prandtl number as

Prtotal= total viscosity
total conductivity

= μ + μt

μ/Pr + μt/Prt
= 1 + μt/μ

1/Pr + (μt/μ)/Prt
. (2.15)

The result is shown in figure 1(b). We observe the following. Firstly, the total Prandtl
number collapses to a universal profile for a given molecular Prandtl number in the region
where y+ < 10, while for large values of y+, Prtotal returns to Prt. Secondly, the total (or
turbulent) Prandtl number peaks at y+ ≈ 50. Thirdly, the profiles in this region depend
on the Reynolds number: for large Reynolds numbers, Reτ > 1000, one may assume a
constant total (or turbulent) Prandtl number of 0.85 beyond y+ > 150. Lastly, we note that
the difference between two DNS solutions with almost the same Reynolds number (Reτ ≈
1000) is as large as that caused by the Reynolds number effects. Hence, the DNS-computed
turbulent Prandtl numbers are affected by numerical and/or statistical errors.

The following expression provides a good working approximation for Prt:

Prt = 1.05 − 0.2 tanh3

(
y+

A+
Pr

)
. (2.16)
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Figure 2. (a) Turbulent conductivity. (b) Temperature profiles. Dataset AA refers to Abe & Antonia (2019) and
LHP refers to Lluesma-Rodriguez et al. (2018). The model correlation in (a) is from (2.17) and the temperature
correlation is from the solution of (2.8) using (2.17).

It follows that a similar thermal conductivity damping for temperature can be defined, and
due to (2.12), we have

μt/μ

Prt
= κ

Prt
y+D, (2.17)

where A+
Pr = 70 yields a good fit to the DNS data. Equation (2.16) assumes a value of

1.05 in the viscous sublayer and drops to 0.85 between the buffer and the log layers
(30 < y+ < 300). It also ensures 〈v′T ′〉 decreases as y3 towards the wall, which is a
desirable physical feature. The modelled turbulent and total Prandtl numbers are shown
by the thick black lines in figures 1(a) and 1(b). The non-monotonic behaviour of the
turbulent Prandtl number in the buffer layer region is ignored in the model, as it is likely
due to the uncertainties in the DNS result as mentioned above. We use (2.16) as a reference
below, when DNS data of compressible flows are analysed.

Before we proceed to the compressible regime, we show DNS for the turbulent thermal
conductivity and dimensionless temperature profiles in figure 2. The solution obtained
with the model equations, i.e. (2.17) and (2.8), is also presented for comparison. The
agreement in the inner layer is very good, and it appears that for large values of Reτ , a law
of the wall closely resembling the empirical logarithmic temperature equation proposed in
Kays & Crawford (1980), (2.13), emerges.

3. The energy equation in high-speed flows

In this section, we simplify the mean momentum and energy equations, non-dimensionalize
them and discuss the universality of the turbulent Prandtl number and the turbulent eddy
viscosity.

We utilize the data in Lusher & Coleman (2022). The data are DNS of compressible
turbulence between two no-slip plane walls and mixed thermal boundary conditions,
specifically, with one adiabatic wall and one isothermal wall. The flow configuration is
shown in figure 3. The data cover a significant range of Reynolds numbers with mean/core
Mach numbers between 1.2 and 2.2. Although the two sides of the channel flows are
not independent, the first- and second-order statistics of the flow are largely defined by
the boundary conditions of the nearest wall, as shown by Lusher & Coleman (2022).
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{T}

{u}

Adiabatic wall

Isothermal wall

ye
y

0

Figure 3. Schematic of the DNS by Lusher & Coleman (2022). The DNS studies both isothermal and adiabatic
wall conditions in a channel. The coordinate ye is where the maximum velocity is located, and y0 is the location
where the molecular viscosity experiences a step change; see Lusher & Coleman (2022) for further details about
the step change in the molecular viscosity. In the present study, whichever of ye and y0 is closer to the adiabatic
or isothermal wall defines the effective thickness of the boundary layer adjacent to that particular wall.

Case Reτiw Mτiw −Bq 〈Tiw〉/〈Te〉
iB 648 0.0636 0.0742 0.3942
iC 1229 0.0722 0.1187 0.2440
iD 1321 0.0614 0.0767 0.3625
iD2 1361 0.0630 0.0782 0.3636
iE 3395 0.0757 0.1886 0.1222
iE2s 2802 0.0994 0.1701 0.2153
iF2 1924 0.0620 0.0799 0.3398
iF2s 1712 0.0697 0.0677 0.4450

Table 1. Details of cold/isothermal-wall-side cases, where Reτiw = ρiwuτ,iwh/μiw, Mτiw = uτ,iw/cτ,iw,
Bq = 〈qiw〉/(ρiwuτ,iwcpTiw) and 〈Te〉 is the temperature at the free stream, as defined by figure 3.

Hence, each of the two sides can reasonably be expected to emulate the physics of an
isolated isothermal or adiabatic wall layer. The details of Lusher & Coleman’s DNSs are
summarized in table 1 for data near the isothermal-wall side and table 2 for data near
the adiabatic-wall side, where the case prefix (‘i’ or ‘a’) indicates the thermal boundary
condition. For example, ‘iB’ and ‘aB’ refer to respectively the isothermal-wall and
adiabatic-wall sides. Notice that the Reynolds number range covered by the adiabatic-wall
cases is lower than that covered by the isothermal cases. The lower Reynolds numbers of
the adiabatic-wall cases are due to the higher temperature, and thus the higher molecular
viscosity, near the adiabatic wall. The reader is referred to Lusher & Coleman (2022) for
further information regarding the numerical strategy, its validation and the fidelity of the
results.

First, we simplify the mean momentum and energy equations in the high-speed regime.
Invoking the constant-stress and constant-total-energy-flux idealizations as in Pope (2000),
we have

〈τ12〉 − 〈ρu′′v′′〉 = 〈τw〉 (3.1)

and

− 〈qy〉 − cp〈ρv′′T ′′〉 + 〈ui〉〈τi2〉 − 〈ρv′′K′′〉 + 〈u′
iτ

′
i2〉 − 〈ρv′′k′′〉 = −〈qw〉. (3.2)

The two equations describe the mean momentum and energy balances. The first and
second terms on the left-hand side in (3.1) are the molecular and turbulent shear stresses,
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Case Reτaw Mτaw 〈Taw〉/〈Te〉
aB 138 0.0588 1.3408
aC 133 0.0654 1.4327
aD 249 0.0561 1.3502
aD2 467 0.0540 1.3662
aE 152 0.0689 1.5026
aE2s 303 0.0828 1.9789
aF2 667 0.0524 1.3738
aF2s 724 0.0588 1.5230

Table 2. Details of hot/adiabatic-wall-side cases, where Reτaw = 〈ρaw〉uτ,awh/〈μaw〉, Mτaw = uτ,aw/〈cτ,aw〉
and 〈Te〉 is the temperature at the free stream, as defined by figure 3.

respectively. They are

〈τ12〉 =
〈
μ

∂u
∂y

〉
≈ 〈μ〉d{u}

dy
(3.3)

and

− 〈ρu′′v′′〉 ≈ μt
d{u}
dy

. (3.4)

In (3.3), terms involving 〈u′′〉 and 〈μ′∂u′/∂y〉 are neglected since they are small compared
with their counterparts that involve {u} and 〈τ12〉 (Huang et al. 1995). Here, Boussinesq’s
viscosity hypothesis is invoked. The left-hand side of (3.2) represents the fluxes of the
total energy, e + u2

i /2. Here, e is the internal energy and u2
i /2 is the kinetic energy and is

often ignored in incompressible flow. We define the decomposition of the kinetic energy
following Huang et al. (1995):

uiui

2
= {K} + K′′ + {k} + k′′, (3.5)

where {K} = {ui}{ui}/2, K′′ = {ui}u′′
i , {k} = {u′′

i u′′
i }/2 and k′′ = u′′

i u′′
i /2 − {k}. This

decomposition gives rise to the last four terms on the left-hand side of (3.2). The first,
third and fifth terms are the molecular diffusive fluxes of the mean temperature, {T}, and
mean and turbulent kinetic energies, {K} and {k}, respectively, which are

−〈qy〉 ≈ 〈μ〉
Pr

cp
d{T}
dy

, (3.6)

〈ui〉〈τi2〉 ≈ {u}〈μ〉d{u}
dy

(3.7)

and

〈u′
iτ

′
i2〉 ≈ 〈μ〉d{k}

dy
. (3.8)
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The second, fourth and sixth terms in (3.2) are the turbulent fluxes of {T}, {K} and {k},
respectively, for which Boussinesq’s hypothesis yields

−cp〈ρv′′T ′′〉 ≈ μt

Prt
cp

d{T}
dy

, (3.9)

−〈ρv′′K′′〉 = −{u}〈ρu′′v′′〉 ≈ {u}μt
d{u}
dy

, (3.10)

−〈ρv′′k′′〉 = −〈ρv′′u′′
i u′′

i 〉/2 ≈ μt

Prk

d{k}
dy

, (3.11)

where Prt and Prk are the turbulent Prandtl numbers for temperature, {T}, and turbulent
kinetic energy, {k}. Note that (3.10) implies the Prandtl number of the turbulent diffusive
flux of the mean kinetic energy {K} is unity. (Compare the right-hand sides of (3.7) and
(3.10).) The sum of fluxes of mean kinetic energy, i.e. the sum of (3.7) and (3.10), can be
evaluated explicitly with the help of the momentum equation, (3.1):

{u}〈μ〉d{u}
dy

− {u}〈ρu′′v′′〉 = {u}〈τw〉. (3.12)

A reasonable simplification is that the fluxes of the mean kinetic energy are much larger
than those of turbulent kinetic energy. That is, the terms in (3.7) and (3.10) are larger than
the terms in (3.8) and (3.11). It follows that (3.1) and (3.2) can be written as

(〈μ〉 + μt)
d{u}
dy

= 〈τw〉 (3.13)

and ( 〈μ〉
Pr

+ μt

Prt

)
cp

d{T}
dy

= −〈qw〉 − {u}〈τw〉, (3.14)

where

Prt = 〈ρu′′v′′〉
〈ρv′′T ′′〉

d{T}/dy
d{u}/dy

. (3.15)

We can verify the above assumption with data. Figure 4 shows the fluxes for cases iF2
(table 1) and aF2 (table 2). Similar conclusions were observed for the other cases. We
see that the molecular and turbulent fluxes of the mean kinetic energy, i.e. 〈ui〉〈τi2〉 and
−〈ρv′′K′′〉, are much larger than the molecular and turbulent fluxes of the turbulent kinetic
energy, 〈u′

iτ
′
i2〉 and −〈ρv′′k′′〉 in the wall layer. We note that this is not a trivial observation:

although the mean kinetic energy is much larger than the turbulent kinetic energy, it is not
immediately clear that the transport of the mean kinetic energy is much larger than the
transport of the turbulent kinetic energy. In fact, the transport of the turbulent part of a
flow quantity is often larger than the transport of its mean part in a boundary layer. For
instance, the transfer of the turbulent part of the momentum is larger than the transport
of the mean momentum. Furthermore, we can also see from figure 4 that there is a close
agreement between the sum of the molecular and turbulent diffusive fluxes of the mean
kinetic energy and {u}〈τw〉 close to the wall.

Next, we non-dimensionalize the mean momentum and energy equations. Non-
dimensionalization of the flow quantities at high speeds is not as straightforward as it
is at low speeds. Two types of non-dimensionalization are often used, namely wall scaling
and semi-local scaling. The wall scaling involves the mean values at the wall: 〈ρw〉,
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Figure 4. Energy fluxes, (3.2), for cases iF2 and aF2. The quantities are scaled by ρbV3
τ , where

ρb = ∫ +h
−h 〈ρ〉 dy/2h and V2

τ = (τiw + τaw)/2ρb; see Lusher & Coleman (2022).

〈μw〉, {Tw}, 〈τw〉 and 〈qw〉. For example, the wall friction velocity is uτ = (〈τw〉/〈ρw〉)1/2.
Following the practice in the low-speed regime, we define Tτ = 〈qw〉/(〈ρw〉uτ cp) and
non-dimensionalize the energy equation. With uτ and Tτ , (3.13) and (3.14) can be written
in dimensionless form as ( 〈μ〉

〈μw〉 + μt

〈μw〉
)

du+

dy+ = 1 (3.16)

and ( 〈μ〉/〈μw〉
Pr

+ μt/〈μw〉
Prt

)
dT+

dy+ = Bq + (γ − 1)M2
τ u+

Bq
, (3.17)

where u+ = {u}/uτ , T+ = ({Tw} − {T})/Tτ , Bq = 〈qw〉/(〈ρw〉uτ cp〈Tw〉) and Mτ =
uτ /(γ R〈Tw〉)1/2. Like the incompressible equation for T+, i.e. (2.8), (3.17) here poses
difficulty in adiabatic cases. Introducing θ = (Tw − T)/Tw, (3.14) can be recast as( 〈μ〉/〈μw〉

Pr
+ μt/〈μw〉

Prt

)
dθ

dy+ = Bq + (γ − 1)M2
τ u+. (3.18)

Equation (3.18) is a more general form of the dimensionless temperature equation, as
it applies to both adiabatic and isothermal cases. However, unlike the incompressible θ

equation, (2.9), whose right-hand side is zero when the wall is adiabatic, the right-hand
side of (3.18) does not equal zero when the wall is adiabatic, due to viscous heating.
Comparing (3.16) and (3.18), we see that the strong Reynolds analogy breaks down due to
the second term on the right-hand side of (3.18). It may be interesting to see if the law of the
wall can be preserved through some temperature transformation for both isothermal and
adiabatic wall conditions. Before doing so, the similarity of the dimensionless viscosity
and turbulent Prandtl number between the incompressible and compressible flows must be
investigated.
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Figure 5. Plots of (a) μt/μ and (b) total Prandtl number scaling with y∗ for isothermal-wall DNS data.

This calls for the semi-local scaling (Huang et al. 1995). The dimensionless locally
scaled turbulent viscosity, μt/〈μ〉, and the total Prandtl number are plotted against
a wall distance defined by the local mean properties, y∗ = 〈ρ〉(〈τw〉/〈ρ〉)1/2y/〈μ〉, in
figures 5 and 6 for isothermal- and adiabatic-wall data, respectively. For comparison, the
incompressible formula for Prtotal, (2.15), is also depicted in these figures, in which all the
properties are normalized according to the semi-local scaling:

μt

〈μ〉 = κy∗D∗, (3.19)

μt

〈μw〉 =
( 〈ρ〉

〈ρw〉
)1/2

κy+D∗ (3.20)

and

Prt = 1.05 − 0.2 tanh3
(

y∗

A∗
Pr

)
, (3.21)

where D∗ = [1 − exp(−y∗/A∗)]2 and A∗ takes the same value as the incompressible one,
17 (Yang & Lv 2018); A∗

Pr is also assumed to have the same incompressible-flow value,
70. Equations (3.19) and (3.21) are shown by the thick black lines in figures 5 and 6. As
can be seen from the figures, both μt/〈μ〉 and Prtotal scale very well with y∗, which is
in agreement with the observation by Huang et al. (1995) in their early work. Compared
with the data at incompressible conditions, the values of μt/〈μ〉 have a slightly wider
spread in the buffer-layer region, and the profiles are slightly below the law-of-the-wall
line. Furthermore, the total Prandtl number seems to fall somewhat below (3.21). Although
a better match could be adjusted by choosing a smaller value of A∗

Pr, we did not attempt to
do so since a unified description at both low and high Mach numbers is preferred.

4. Van Driest-type transformations

In this section, we explore Van Driest-type transformations and their effectiveness in
collapsing temperature data. Within the log-layer region, the molecular components of
the diffusion terms can be safely neglected, leading to the simplification of (3.16) and
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Figure 6. Plots of (a) μt/μ and (b) total Prandtl number scaling with y∗ for adiabatic-wall DNS data.

(3.18) as follows:
μt

〈μw〉
du+

dy+ = 1 (4.1)

and
μt/〈μw〉

Prt

dθ

dy+ = Bq + (γ − 1)M2
τ u+. (4.2)

By substituting (3.20) and D∗ = 1 into (4.1) and (4.2), one gets( 〈ρ〉
〈ρw〉

)1/2 du+

dy+ = 1
κy+ (4.3)

and
1

Bq + (γ − 1)M2
τ u+

( 〈ρ〉
〈ρw〉

)1/2 dθ

dy+ = Prt

κy+ . (4.4)

Inspired by (4.3), Van Driest introduced the following transformation for mean velocity,
aimed at extending the law of the wall to compressible boundary layers (Van Driest 1951):

u+
VD =

∫ u+

0

( 〈ρ〉
〈ρw〉

)1/2

du+. (4.5)

Here, we follow the same spirit and define a similar transformation for the temperature:

T+
VD =

∫ θ

0

1
Bq + (γ − 1)M2

τ u+

( 〈ρ〉
〈ρw〉

)1/2

dθ. (4.6)

These transformations are expected to result in velocity and temperature profiles that share
the same slopes as their incompressible counterparts within the logarithmic region:

du+
VD

dy+ = 1
κy+ (4.7)

and
dT+

VD
dy+ = Prt

κy+ . (4.8)
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There are at least two ways to assess the transformations in (4.5) and (4.6). The first
approach involves closed-form solutions using experimentally measurable quantities, as
proposed by Van Driest (referred to as VD1) (Van Driest 1951). The second approach
(referred to as VD2) evaluates the transformation using the density ratio profile obtained
from DNS. We derive VD1 in the following. Firstly, the ideal gas law gives

〈ρ〉
〈ρw〉 = 〈Tw〉

〈T〉 . (4.9)

Secondly, by dividing (4.4) by (4.3), we have

1
Bq + (γ − 1)M2

τ u+
dθ

du+ = Prt. (4.10)

The integration of (4.10) can be performed with the assumption that Prt is a constant:

〈T〉
〈Tw〉 = 1 − PrtBqu+ − Prt(γ − 1)M2

τ

u+2

2
, (4.11)

where a value of 0.9 for Prt was used in Huang & Coleman (1994). The more recent work
by Lusher & Coleman (2022) and the data in Kays (1994), however, suggest Prt = 0.85.
Note that the Van Driest transformation, as originally derived by Van Driest, is restricted
to the log region. This restriction arises due to the absence of damping terms in (4.3)
and (4.4). Consequently, (4.11) is derived exclusively for the log region, where Prt is
indeed approximately constant. Finally, by substituting (4.9) and (4.11) into (4.5) and (4.6),
we obtain the VD1 transformation for velocity (Van Driest 1951; Rotta 1960; Huang &
Coleman 1994):

u+
VD =

∫ u+

0

1

(1 − PrtBqu+ − Prt(γ − 1)M2
τ u+2/2)1/2

du+, (4.12)

and temperature:

T+
VD =

∫ θ

0

1
Bq + (γ − 1)M2

τ u+
1

(1 − PrtBqu+ − Prt(γ − 1)M2
τ u+2/2)1/2

dθ. (4.13)

Equations (4.12) and (4.13) depend on Bq and Mτ , 〈Tw〉, 〈τw〉 and 〈qw〉, all of which are
defined at the wall. Van Driest (1951) and Rotta (1960) obtained an analytic form of the
transformed velocity, u+

VD, but in the analysis here, numerical transformation is applied to
both (4.12) and (4.13) due to the lack of an analytic solution for (4.13).

The transformed velocity and temperature of the DNS solutions are illustrated in
figures 7 and 8, respectively. For the isothermal-wall cases, there is a wide spread of the
transformed velocity and temperature profiles near the sub- and buffer layers. This spread
can be explained by investigating the molecular portion of the diffusion terms in (3.16)
and (3.17). Close to the wall, we have

du+
VD

dy+ = 〈μw〉
〈μ〉

( 〈ρ〉
〈ρw〉

)1/2

=
( 〈Tw〉

〈T〉
)1.2

(4.14)

and
dT+

VD
dy+ = Pr

〈μw〉
〈μ〉

( 〈ρ〉
〈ρw〉

)1/2

= Pr
( 〈Tw〉

〈T〉
)1.2

, (4.15)

where 〈μ〉/〈μw〉 ≈ (〈T〉/〈Tw〉)0.7 is invoked. We see that the two derivatives depend on the
temperature. Different temperature distributions therefore lead to different values of u+

VD
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Figure 7. Van Driest’s velocity transformation in (4.5) of DNS data. The legends in (a,b) are the same as in
figures 5(a) and 6(a).
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Figure 8. Van Driest’s temperature transformation in (4.6) of DNS data. The legends in (a,b) are the same as
in figures 5(a) and 6(a).

and T+
VD at the onset of the log layer. This has a particularly strong effect on isothermal

walls. In contrast, the transformed velocity and temperature profiles near the adiabatic
wall show less spread, because Tw/〈T〉 is approximately a constant near the wall. Despite
a mismatch of the transformed profiles near the sub- and buffer layers, figures 7 and 8 show
that VD1 gives the right slopes, κ ≈ 0.41 and κT ≈ 0.41/0.85 in the log-layer region.

The VD2 solution is compared with the VD1 solution in figure 9. For the adiabatic cases,
the differences between VD1 and VD2 are almost negligible, and therefore we show only
case iE. For comparison purposes, the un-transformed velocity and temperature profiles
are included. We see that both VD1 and VD2 give rise to the same incompressible velocity
and temperature slope in the log-layer region, with VD1 matching the law-of-the-wall
reference slightly better. Furthermore, we see that changing the value of the turbulent
Prandtl number in the logarithmic region from 0.85 to 0.9 does not significantly affect the
result. This is likely because terms other than v′′T ′′ are also significant. It should be noted
that the other cases also show the same trend and are not shown here for brevity.
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Figure 9. Comparison of VD1, i.e. the transformation in (4.5) and (4.6), and VD2, i.e. the transformation in
(4.12) and (4.13), for case iE.

5. Semi-local-type transformations

Trettel & Larsson (2016), along with others like Pecnik & Patel (2017), employed the
semi-local scaled wall-normal coordinate. The resulting transformations are, in principle,
valid in the viscous layer. The definitions of y+ and y∗ yield the following expressions:

y∗ = 〈μw〉
〈μ〉

( 〈ρ〉
〈ρw〉

)1/2

y+ (5.1)

and
∂y∗

∂y+ = 〈μw〉
〈μ〉

( 〈ρ〉
〈ρw〉

)1/2 [
1 + 1

2
y+

〈ρ〉
∂〈ρ〉
∂y+ − y+

〈μ〉
∂〈μ〉
∂y+

]
. (5.2)

Substituting these two expressions into (3.16) and (3.17), one obtains the following
equations: (

1 + μt

〈μ〉
)( 〈ρ〉

〈ρw〉
)1/2 [

1 + 1
2

y+

〈ρ〉
∂〈ρ〉
∂y+ − y+

〈μ〉
∂〈μ〉
∂y+

]
du+

dy∗ = 1 (5.3)

and(
1

Pr
+ μt/〈μ〉

Prt

)
1

Bq + (γ − 1)M2
τ u+

( 〈ρ〉
〈ρw〉

)1/2 [
1 + 1

2
y+

〈ρ〉
∂〈ρ〉
∂y+ − y+

〈μ〉
∂〈μ〉
∂y+

]
dθ

dy∗ = 1.

(5.4)
Trettel & Larsson (2016) defined the following transformation for velocity:

u+
TL =

∫ u+

0

( 〈ρ〉
〈ρw〉

)1/2 [
1 + 1

2
y+

〈ρ〉
∂〈ρ〉
∂y+ − y+

〈μ〉
∂〈μ〉
∂y+

]
du+. (5.5)

Here, we follow the same spirit and define a Trettel & Larsson (TL)-type transformation
for temperature:

T+
TL =

∫ θ

0

1
Bq + (γ − 1)M2

τ u+

( 〈ρ〉
〈ρw〉

)1/2 [
1 + 1

2
y+

〈ρ〉
∂〈ρ〉
∂y+ − y+

〈μ〉
∂〈μ〉
∂y+

]
dθ. (5.6)
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These two transformations lead to the following velocity and temperature equations:

(
1 + μt

〈μ〉
)

du+
TL

dy∗ = 1 (5.7)

and (
1

Pr
+ μt/〈μ〉

Prt

)
dT+

TL
dy∗ = 1. (5.8)

When evaluated at the wall, the two equations do not explicitly depend on the temperature.
Consequently, both u+

TL and T+
TL are uniquely defined when Pr is given. Furthermore,

since (5.7) and (5.8) share the same structure as their incompressible counterparts, and
considering that μt/〈μ〉 and Prt scale similarly with y∗ as their counterparts scale with
y+ in incompressible flows, one would expect the transformed velocity and temperature
to exhibit behaviour akin to incompressible flows. This is an advantage compared to the
VD transformations. However, unlike VD1, TL transformation requires local density and
molecular viscosity information, or at least temperature information to link to density and
molecular viscosity profiles – and these profiles must be sufficiently accurate to provide
adequate evaluations of density and viscosity gradients. Thus TL transformations require
access to local, internal mean profiles from, for example, numerical simulations. This is a
major practical disadvantage of TL-type transformations.

In figures 10 and 11, the transformed velocity and temperature are evaluated numerically
using density and molecular viscosity profiles along with their derivatives extracted
directly from the DNS data. Additionally, the figures include numerical solutions of (5.7)
and (5.8) using the eddy viscosity and turbulent Prandtl number closures specified in
(3.19) and (3.21). These reference solutions mirror the incompressible inner layer but
with y+ replaced by y∗. As depicted in the figures, the isothermal cases exhibit close
agreement between the incompressible law of the wall and the transformed velocity and
temperature within the inner layer. In contrast, for the adiabatic cases, while the slopes
of the transformed velocity and temperature profiles match the incompressible law of
the wall, the intercept constants of the transformed velocity and temperature (C and CT )
exceed their corresponding incompressible values. This is likely a low-Reynolds-number
effect, as observed in figure 6: the high temperatures near the adiabatic surfaces lead to
large molecular viscosities and enhanced viscous effects, which, in turn, cause a delayed
transition from the viscous layer to the log layer, contributing to larger log-layer intercepts.

Lastly, we comment on the validity of the TL-type temperature transformation in (5.6)
for spatially developing boundary-layer configurations. The TL velocity transformation
in (5.5) is known to underperform in boundary layers. Whether the TL temperature
transformation would also underperform in boundary layers is not immediately clear, since
the behaviour of a velocity transformation is not perfectly correlated with the behaviour of
its temperature counterpart. Here we evaluate (5.6) for one boundary-layer dataset from
Zhang et al. (2014) to illustrate our point. The flow is at a friction Reynolds number
of 550 and a Mach number of 2.00. The wall is adiabatic. Figure 12 shows the result.
The TL-transformed velocity deviates further from the incompressible law of the wall
compared with the VD-transformed velocity – this is expected. Conversely, the TL- and
VD-transformed temperature profiles are not very different. A more detailed assessment of
the performance of the temperature transformations in channel, boundary-layer and other
configurations is outside the scope of the present work and is left for future investigation.
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Figure 10. Results of the TL velocity transformation. The legends in (a,b) are the same as in figures 5(a) and
6(a).
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Figure 11. Results of the TL-type temperature transformation. The legends in (a,b) are the same as in
figures 5(a) and 6(a).
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Figure 12. Results of the TL and VD transformations for a boundary-layer flow in Zhang et al. (2014).

977 A49-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
13

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1013


Velocity and temperature scalings

6. Conclusions

We examine the mean temperature equations in the incompressible and compressible
conditions, specifically, (2.8), (2.9), (3.17) and (3.18), and explore the similarity between
the temperature and velocity equations at low and high speeds. We argue that one need not
rely on the Reynolds analogy for scaling estimates of the temperature in compressible
flows. Rather, one can obtain temperature scalings in the same manner as velocity
scalings/transformations. The purpose of velocity and temperature transformations is to
convert the compressible equations to their incompressible counterparts. The VD-type
transformations accomplish this conversion in the logarithmic layer (see (4.7) and (4.8)).
Therefore, VD-type transformations are valid only in the logarithmic layer, with the
transformed velocity and temperature profiles having the same log-law slope as their
incompressible counterparts, but different intercepts. The TL-type transformations, in
principle, hold in both the viscous layer and the logarithmic layer (see (5.7) and (5.8)).
A posteriori tests, however, reveal that TL-type temperature transformations leave room
for improvement above adiabatic walls, with the intercepts of the transformed temperature
profiles significantly larger than their incompressible counterpart – although the degree
to which this is caused by the low Reynolds numbers induced by high temperatures
near the adiabatic wall is an open question. Overall, each type of transformation serves
its distinct purpose and has its applicable range. It is nonetheless worth noting that
VD-type transformations can be assessed using wall measurements, whereas TL-type
transformations necessitate viscosity and density information typically accessible only
through numerical simulations.

The current approach sets itself apart from prior studies that rely on the strong
Reynolds analogy. Instead of presuming similarity between velocity and temperature
signals, the current approach capitalizes on the universality of eddy viscosity and
turbulent Prandtl number with respect to the transformed wall-normal coordinate and the
similarity between the energy and the momentum equations. Furthermore, by neglecting
the turbulent-kinetic-energy transport term in the energy equation (after verifying its
insignificance) and accounting for viscous heating, our approach leads to closed-form
temperature transformations that are valid for both isothermal and adiabatic walls. The
attainment of closed forms and unified descriptions for isothermal and adiabatic walls is
critical to turbulence modelling, and applications of the transformations in (4.5), (4.6),
(4.12), (4.13), (5.5) and (5.6) in the context of RANS and large-eddy simulations are to be
of significant value. That said, while the present approach allows us to borrow insights
gained from previous work on velocity and velocity transformations, and not needing
the presumed similarity between the velocity and temperature signals is a strength of the
present approach, a drawback is the lack of scaling estimates for temperature fluctuations.
The mean velocity scaling and the scaling of velocity fluctuations were independently
established by von Kármán and Townsend, with the latter introducing the concept of
attached eddies. Similarly, new concepts are needed here in order to establish scalings
or transformations for temperature fluctuations, a topic recommended for future study.
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