
Natural Language Engineering (2024), 30, pp. 1323–1335
doi:10.1017/S1351324924000068

EMERGING TRENDS

Emerging trends: evaluating general purpose
foundation models
Kenneth Ward Church1 and Omar Alonso2

1Northeastern University, Boston, MA 02139, USA and 2Amazon, Palo Alto, CA, USA
Corresponding author: Kenneth Ward Church; Email: k.church@northeastern.edu

(Received 4 November 2024; revised 4 November 2024)

Abstract
We suggest that foundation models are general purpose solutions similar to general purpose pro-
grammable microprocessors, where fine-tuning and prompt-engineering are analogous to coding for
microprocessors. Evaluating general purpose solutions is not like hypothesis testing. We want to know
how well the machine will perform on an unknown program with unknown inputs for unknown users
with unknown budgets and unknown utility functions. This paper is based on an invited talk by John
Mashey, “Lessons from SPEC,” at an ACL-2021 workshop on benchmarking. Mashey started by describ-
ing Standard Performance Evaluation Corporation (SPEC), a benchmark that has had more impact than
benchmarks in our field because SPEC addresses an import commercial question: which CPU should I
buy? In addition, SPEC can be interpreted to show that CPUs are 50,000 faster than they were 40 years ago.
It is remarkable that we can make such statements without specifying the program, users, task, dataset, etc.
It would be desirable to make quantitative statements about improvements of general purpose foundation
models over years/decades without specifying tasks, datasets, use cases, etc.

Keywords: GLUE; SPEC; benchmarking; general purpose computing; geometric mean

1. Lessons from SPEC
This papera is based on invited talk by John Mashey, “Lessons from SPEC,”b at the ACL-2021
Workshop on Benchmarking: Past, Present and Future (BPPF) (Church et al. 2021). JohnMasheyc
is very well known in Systems, but less so in Natural Language Processing.

Mashey played an important role in the creation of Standard Performance Evaluation
Corporation (SPEC)d (Dixit 1993). SPEC has had more influence than most benchmarks in natu-
ral language because SPEC addresses a commercially important question: which computer should
I buy? SPEC is the de facto standard for evaluating the performance of CPUs (and more).

Mashey’s talk starts out with a discussion of the history of the SPEC benchmark and then uses
some of those lessons to criticize GLUE/SuperGLUE (Wang et al. 2018, 2019), important bench-
marks in natural language processing. His criticisms are also applicable tomany/most benchmarks
in fields of interest to our community: machine learning, natural language processing, information
retrieval, etc.

aWork does not relate to the second author’s position at Amazon.
bhttps://github.com/kwchurch/Benchmarking_past_present_future?tab=readme-ov-file#Mashey
chttps://en.wikipedia.org/wiki/John_Mashey
dhttps://www.spec.org/

C© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S1351324924000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324924000068
https://orcid.org/0000-0001-8378-6069
https://orcid.org/0009-0009-2515-4771
mailto:k.church@northeastern.edu
https://github.com/kwchurch/Benchmarking_past_present_future?tab=readme-ov-file#Mashey
https://en.wikipedia.org/wiki/John_Mashey
https://www.spec.org/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1351324924000068&domain=pdf
https://doi.org/10.1017/S1351324924000068

1324 K. W. Church and O. Alonso

Table 1. It is easy to show that deep nets are becoming larger and larger over time (Church
2022), but harder to make quantitative statements about improvements in quality over time.
Can we quantify the impact of this progress for typical customers?

Year Deep Nets Reference Parameters (in Billions)

2016 ResNet-50 He et al. (2016) 0.023
.. .

2019 BERT Devlin et al. (2019) 0.34
.. .

2019 GPT-2 Radford et al. (2019) 1.5
.. .

2020 GPT-3 Brown et al. (2020) 175
.. .

2022 PaLM Chowdhery et al. (2023) 540

Table 2. SPECRatios have grown by a factor of 50,000 over 40 years

Interval Growth SPECRatio Reasons for Slowdown

1978–1986 20%/year 1–5
.. .

1986–2003 52%/year 5–6k
.. .

2003–2011 23%/year 6k–32k
.. .

2011–2015 12%/year 32k–50k Amdahl’s law limits
.. .

2015–2018 3.5%/year 50k Moore’s law ends

2. Goal: a task/Dataset-independent score of ML quality
It is common in the literature on foundation models to show that models are becoming larger and
larger over time, as illustrated in Table 1. The industry is moving toward bigger models because
it is widely believed that bigger models are better. That is, after programming with fine-tuning
and/or prompting and tweaking hyper-parameters, users can expect to see better scores if they
start with bigger foundation models (for many/most users/tasks/metrics).

But we do not have a way to quantify this consensus. It would be desirable to produce a chart
that shows gains over the past decade relative to a baseline such as BERT (Devlin et al. 2019),
or even better, human performance. ML Commonse is making progress in this direction, though
thus far, much of the effort has been focused more on measuring gains in execution speed for
a particular task and a particular dataset, as opposed to measuring gains in quality (scores) that
users can expect for their tasks and their workloads.

In short, we need a way to measure gains in quality over the long term (decades). This mea-
surement should help users decide which general purpose foundation model they should use. The
measurement should be credible over a wide range of tasks and datasets since general purpose
foundation models will be used by many users for many use cases.

We will show, when we discuss Table 2, that SPECmakes it possible to make quantitative state-
ments about performance improvements of general purpose computers over decades. The goal is
to make similar statements for general purpose foundation models.

ehttps://mlcommons.org/benchmarks/inference-datacenter/

https://doi.org/10.1017/S1351324924000068 Published online by Cambridge University Press

https://mlcommons.org/benchmarks/inference-datacenter/
https://doi.org/10.1017/S1351324924000068

Natural Language Engineering 1325

3. Evaluating general purpose solutions
SPEC was designed to evaluate CPUs, but CPUs are designed for general purpose computing. The
challenge is how to evaluate a machine that can do anything for anyone, or at least many different
things for many different users with many different needs under many different scenarios. How
can we evaluate a general purpose solution without addressing questions such as these:

• Who is going to use the machine to do what?
• What is a typical workload?
• What is a typical user?
• What is a typical use case?
• What is a typical scenario?

Evaluating general purpose solutions is not like hypothesis testing. We want to know how well
the machine will perform on an unknown program with unknown inputs for unknown users with
unknown budgets and unknown utility functions. If we were to evaluate a search engine, we could
hope to estimate typical workloads by sampling the logs. It is standard practice in many fields to
estimate workloads: databases (Zhang et al. 2018), networking (Calzarossa et al. 2016), and web
search (Broder 2002). But how do we sample typical workloads for a general purpose machine?

Clearly, CPUs are more general purpose than search engines and databases. By design, CPUs
are jack of all trades, master of none.f If we knew what the CPU was going to be used for, we could
design a special purpose solution that would work better on that task, but that is missing the point
for general purpose solutions; the point of general purpose solutions is to be general purpose.

Why did chip manufacturers decide to build general purpose chips? When Intel was starting
out, it was very expensive to design a chip. Intel had a contract in 1969 from Busicom,g a calculator
company, to build a twelve-chip set for a desktop calculator. Instead of building 12 chips, Intel
built a single chip, the 4004 programmable microprocessor (Faggin 2018). This microprocessor
could then be programmed to perform all 12 functions for this customer, as well as many other
functions for many other customers.h

The idea of general purpose computing, of course, was well known well before the micropro-
cessor (Turing 1936), but VLSI technology drastically reduced variable costs. While the fixed costs
to design the first instance of a chip remain high, with VLSI technology, the variable costs to print
each addition instance became a round-off error compared to previous technologies. Chip sup-
pliers quickly discovered that it was more profitable to design a single general purpose chip that
could be mass produced and sold to a mass market than to design many special purpose chips
for many smaller markets. In this way, design costs could be amortized over many customers and
many use cases.

We are beginning to encounter similar challenges and opportunities in our field. Foundation
models are becoming so expensive to train that we should think of them as general purpose solu-
tions for many customers andmany use cases.We think of fine-tuning and prompt-engineering as
methods of programming foundation models, not all that different from programming the Intel
4004 microprocessor. Under this view, evaluation of foundation model should be viewed more
like evaluating general purpose solutions as opposed to the way we have traditionally evaluated
special purpose solutions for more specific tasks such as web search.

fhttps://en.wikipedia.org/wiki/Jack_of_all_trades
ghttps://en.wikipedia.org/wiki/Busicom
hhttps://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-intel-4004.html

https://doi.org/10.1017/S1351324924000068 Published online by Cambridge University Press

https://en.wikipedia.org/wiki/Jack_of_all_trades
https://en.wikipedia.org/wiki/Busicom
https://www.intel.com/content/www/us/en/history/virtual-vault/articles/the-intel-4004.html
https://doi.org/10.1017/S1351324924000068

1326 K. W. Church and O. Alonso

4. SPEC use case: what should I buy?
Customers were asking for a simple answer to a simple question: what should they buy? They
want a single number, not a long complicated story such as a precision/recall curve. Consumers
are not going to read a thoughtful review like you might see in consumer reports. SPEC originally
proposed two numbers, but even that was too complicated. Themarket demanded a simple answer
to their simple question; customers want a simple credible number that is easy to interpret and
easy to use for comparing alternatives.

A simple credible number is also good for suppliers. Previous benchmarks such as Whetstonei
and Dhrystonej encouraged pointless exercises such as designing hardware features to do well on
the benchmarks in ways that will not generalize well to real workloads from real customers.

5. A benchmark walked into a bar
Mashey’s description of the history of SPEC (below) is entertaining, but there is a serious point
to his story. The computer industry owes a huge debt of gratitude to SPEC. If this tech-savvy bar
owner had not intervened as he did, then SPECmight not have happened.Without SPEC, it would
have been more difficult for customers to decide what to buy, and suppliers would have spent
many pointless hours gaming pointless benchmarks in counter-productive ways. Unfortunately,
our field has not benefited from such an intervention. As a result, our leaderboards encour-
age pointless SOTA-chasing (Church and Kordoni 2022), and our users are having difficulty
differentiating one foundation model from another.

[A tech-savvy bar owner in Silicon Valley said], ‘look, if you don’t like it, give me something better
I can use’. . .
and that’s how we ended up in his bar.
We all hated the fact that. . . Dhrystone plagued us because all of us had had marketing folks come
in and said ‘can’t you add an extra instruction that will do Dhrystone really well.’
‘No, no, stop; we don’t want that.’
We sort of compared notes, and we found we all used some of the same benchmarks, close, but not
quite the same inputs.
So we all used the GCC, okay, all right, but with different inputs. We all used the spice circuit
simulator, but with different inputs. So we all had to run stuff. . .
It was just a waste of time.
So we thought it would be a good idea. . ., if we did something more consistent. . .
So that’s really how SPEC got started in that bar.k

6. Benchmarks before SPEC
As mentioned above, there were a number of benchmarks before SPEC such as Whetstone and
Dhrystone, simple programs designed to test features such as floating point, integer arithmetic,
and string operations. The assessment in textbooks (Hennessy and Patterson 2012) (section 1.8) is
that “benchmarks based on running programs that are much simpler than a real application have
led to performance pitfalls.” Examples such as Whetstone and Dhrystone “are discredited today,
usually because the compiler writer and architect can conspire to make the computer appear faster
on these stand-in programs than on real applications.” Nevertheless, “Dhrystone is still the most
widely quoted benchmark for embedded processors.”

ihttps://www.netlib.org/benchmark/whetstone.c
jhttps://en.wikipedia.org/wiki/Dhrystone
khttps://www.youtube.com/watch?v=koSuxS3QFDk

https://doi.org/10.1017/S1351324924000068 Published online by Cambridge University Press

https://www.netlib.org/benchmark/whetstone.c
https://en.wikipedia.org/wiki/Dhrystone
https://www.youtube.com/watch?v=koSuxS3QFDk
https://doi.org/10.1017/S1351324924000068

Natural Language Engineering 1327

Table 3. SPEC CINT92 suite (from Table 2 in Giladi and Ahituv (1995))

Code App Area Lines Remarks

gcc Compiler 87,800 CNU C Compiler V1.35, compiles 76
soruces, 10% I/O

.. .

Espresso Logic Design 14,800 PALs generation tool, heuristic
minimization, little paging

.. .

Li Interpreter 7700 Lisp interpreter (XLIST 16), solves 8-queens
problem using recursive backtracking,
many jumps/loops

.. .

Eqntott Logic design 3500 Creates truth tables;> 95% of time in qsort
.. .

Compress Data compression 1500 Compress/decompress 1MB file 20 times
using adaptive Lempel-Ziv coding

.. .

Sc Spreadsheet 8500 Spreadsheet app based on Unix “curses”

7. Interpretation of SPECRatios
SPECRatios were designed to be interpretable. The baseline SPECRatio is set to 1 for 1978 VAX
11/780. All other SPECRatios can be interpreted as multiplicative speedups over this baseline.
For example, the 1986 VAX 8700 was assigned a SPECRatio of 5, which means that users can
expect the VAX 8700 to be 5 times faster than baseline. It is remarkable that we can make such
a statement given how little we know. Who are the users? What do they plan to do with these
machines?

Table 2 shows SPECRatios have grown dramatically by a factor of 50,000 over 40 years.l Most
benchmarks in our field are not interpretable in this way. It would be desirable to make quanti-
tative statements about improvements of general purpose foundation models over years without
having to specify tasks, datasets, use cases, etc. Mashey suggests part of the problem is related to
how we compute averages, as will be discussed in the next section.

8. Nomean feat
The title of this section was inspired by a talk that Mashey gave titled Summarizing performance
is no mean feat . . . (Mashey 2004, 2005). His point is that we should use geometric means (GMs)
instead of arithmetic means.

What are we averaging over? Many benchmarks in our field consist of a set of tasks. SPEC also
aggregates scores over tasks (programs), as illustrated in Table 3. The set of programs is constantly
evolving. See herem for a more recent set.

There are many challenges including how to come up with an appropriate set of tasks and how
to keep that set up to date with advances in technology. This section will focus on how to aggregate
scores over tasks to produce a SPECRatio score that can be interpreted as a speedup relative to a
baseline (1978 VAX 11/780).

The discussion of GMs and SPEC in textbooks, Hennessy and Patterson (2012) (section
1.8), henceforth HPs1.8, is more accessible than the primary literature. HPs1.8 start by defining

lTable 2 is based on slide 9 of https://courses.grainger.illinois.edu/CS433/fa2021/slides/chapter1-part1-post-lecture.pdf;
there is a similar chart in Figure 1.1 of Hennessy and Patterson (2012).
mhttps://www.spec.org/cpu2017/Docs/overview.html#benchmarks

https://doi.org/10.1017/S1351324924000068 Published online by Cambridge University Press

https://courses.grainger.illinois.edu/CS433/fa2021/slides/chapter1-part1-post-lecture.pdf
https://www.spec.org/cpu2017/Docs/overview.html#benchmarks
https://doi.org/10.1017/S1351324924000068

1328 K. W. Church and O. Alonso

execution time and performance. Suppose we have two computers, X and Y . When we say, X is n
times faster than Y , we mean

Execution timeY
Execution timeX

= n= PerformanceX
PerformanceY

(1)

where performance is defined to be the reciprocal of execution time. Note that execution time has
units (seconds), but ratios are dimensionless.

HPs1.8 then define SPECRatio to be an estimate of performance relative to a baseline. Note
that when we compare SPECRatios for two machines, A and B, the baseline conveniently drops
out. That is,

SPECRatioA
SPECRatioB

= PerformanceA/baseline
PerformanceB/baseline

≈ PerformanceA
PerformanceB

(2)

HPs1.8 then introduce the GM:

GM = 1
n

√√√√ n∏
i=1

samplei = exp

(
1
n

n∑
i=1

log(samplei)

)
(3)

where samplei is the SPECRatio for program i. In our benchmarks, we use task i instead of
program i.

Why use GMs instead of arithmetic means? HPs1.8 observe a problem with units: Since
SPECRatios have no units, comparing SPECRatios arithmetically is meaningless. For additional
motivation, they observe the following two properties of the GM:

1. The GM of the ratios is the same as the ratio of the GMs.
2. The ratio of the GMs is equal to the GM of the performance ratios, which implies that the

choice of the reference computer [baseline] is irrelevant.

The first property is a convenient invariant. Because multiplication is associative, we can com-
pute ratios in a number of different ways. The second property says that the choice of the baseline
is not that important for many of the comparisons that we want to make. In particular, if we want
to choose between buying machine X and machine Y , then we can compare the SPECRatios for
both machines. The fact that both of these ratios are defined to be relative to an old VAX is not
relevant.

That said, we will suggest below that ratios in our field should be defined in terms of something
more meaningful such as human performance. If we did that, then ratios can be interpreted as
performance of a system relative to human performance.

HPs1.8 conclude with: the motivations to use the GM are substantial, especially when we use
performance ratios to make comparisons.

GMs have also been suggested in Information Retrieval (Robertson 2006), though at a more
micro level. The discussion above uses GMs to aggregate performance over programs (tasks),
whereas Robertson (2006) uses GMs to aggregate over items in a test set. This suggestion runs
into difficulties with zeros (Ravana and Moffat 2008). Robertson (2006) introduces an arbitrary
small number, ε, to smooth GM scores:

ALε(x1, . . . , xn)= 1
n

n∑
i=1

log(xi + ε)

GMε(x1, . . . , xn)= exp(ALε(x1, . . . , xn)− ε (4)

Adding ε is easy to implement though there are better ways to smooth small counts (Gale and
Church 1994). If possible, it may be wise to avoid methods that depend too much on smoothing of

https://doi.org/10.1017/S1351324924000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324924000068

Natural Language Engineering 1329

Table 4. SuperGLUE results from Table 9 in (Sun et al. 2021). Humans are better than machines on 4 of 8
tasks . If the outlier in yellow is dropped, Human is ahead

Model BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC Score

Human 89.0 95.8/98.9 100 81.8/ 51.9 91.7/91.3 93.6 80.0 100 89.8

T5+Menna 91.4 95.8/97.6 98.0 88.3/63.0 94.2/93.5 93.0 77.9 96.6 90.4
.. .

DeBERTa 90.4 95.7/97.6 98.4 88.2/63.7 94.5/94.1 93.2 77.5 95.9 90.3
.. .

ERNIE3.0 91.0 98.6/99.2 97.4 88.6/63.2 94.7/94.2 92.6 77.4 97.3 90.6

small counts (Good 1953; Goodman 2001). Smoothing is necessary when aggregating over items
in a test set, but less so when aggregating over tasks.

9. Mashey’s criticisms of benchmarking in NLP
This section is based on Mashey’s talk, “Lessons from SPEC,” especially the underlined criticism:

I went to SuperGLUE. I looked at the leaderboard, which ended up being a lot like the tables we
used to do for SPEC. The one at the top was ERNIE 3.0. I looked at the paper. It was a like a 1980s
performance brief with lots and lots of benchmarks and comparisons with other people when
they could find them.n

This criticism is specifically in reference to Table 4, but is also applicable to many of our
benchmarks which use arithmetic means to average over a number of tasks:

• GLUE (Wang et al. 2018): CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, WNLI
• SuperGLUE (Wang et al. 2019): BoolQ, CB, COPA, MultiRC, ReCoRD, RTE, WiC, WSC
• MRQA (Fisch et al. 2019): SQuAD, NewsQA, TriviaQA, SearchQA, HotpotQA, Natural

Questions, BioASQ, DROP, DuoRC, RACE, RelationExtraction, TextbookQA, BioProcess,
ComplexWebQ, MCText, QAMR, QAST, TREC

• SciRepEvalo (Singh et al. 2023): biomimicry, cite_count, cite_prediction, cite_prediction_
new, drsm, fos, high_influence_cite, mesh_descriptors, nfcorpus, paper_reviewer_
matching, peer_review_score_hindex, pub_year, relish, same_author, scidocs_mag_mesh,
scidocs_view_cite_read, search, trec_covid, tweet_mentions

• BIG-bench (Srivastava et al. 2023): 204 tasks, contributed by 450 authors across 132
institutions.

Mashey’s slidesp raise a few additional criticisms:

1. Incompatible units (slide 22): Does it make sense to average accuracy, precision, F1,
correlations, etc.?

2. Headroom (slide 23): GLUE was replaced with SuperGLUE because “progress of the
last twelve months has eroded headroom” Mashey points out that this comment is
“Reminiscent of SPEC in early days.”

nhttps://youtu.be/KmwFw0GHET4?t=1972
ohttps://huggingface.co/datasets/allenai/scirepeval
phttps://github.com/kwchurch/Benchmarking_past_present_future/blob/master/slides/session3/Mashey2.pptx

https://doi.org/10.1017/S1351324924000068 Published online by Cambridge University Press

https://youtu.be/KmwFw0GHET4?t=1972
https://huggingface.co/datasets/allenai/scirepeval
https://github.com/kwchurch/Benchmarking_past_present_future/blob/master/slides/session3/Mashey2.pptx
https://doi.org/10.1017/S1351324924000068

1330 K. W. Church and O. Alonso

Table 5. Results from Table 4, relative to human performance. GM and GMrobust are geometric means with
and without the outlier in yellow

Model BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC GM GMrobust

T5+Menna 1.03 1.00/0.99 0.98 1.08/ 1.21 1.03/1.02 0.99 0.97 0.97 1.02 0.98
.. .

DeBERTa 1.02 1.00/0.99 0.98 1.08/ 1.23 1.03/1.03 1.00 0.97 0.96 1.01 0.98
.. .

ERNIE 3.0 1.02 1.03/1.00 0.97 1.08/ 1.22 1.03/1.03 0.99 0.97 0.97 1.01 0.98

3. Outliers andMeans (slide 25): Problematic usage of arithmeticmeans. Conclusions depend
on an outlier in yellow. Some tasks highlighted in blue point in one direction and other
tasks point in the other direction.

Mashey continues by noticing that the standard deviations for humans in Table 4 are much
larger than for machines because of an outlier highlighted in yellow. How robust is the conclusion
that machines are performing better than humans? He performed a standard robustness test and
found the conclusion depends on the outlier. That is, machines are better than people with the
outlier, but not without the outlier. We should be very concerned about this lack of robustness.
How confident are we in the outlier?

The blue highlighting in Table 4 calls out another concern with robustness that Mashey men-
tioned. Humans are better than machines on some tasks highlighted in blue, and worse on other
tasks. We should be concerned that half of the tasks point in one direction and half point in the
other direction. Our field should do more error analysis to understand why the blue tasks are
different from the other tasks, as well as why the yellow outlier is so different from all the other
tasks.

It is easier to say with confidence that one method is better than another when all/most of
the tasks point in the same direction. When there is a split decision, then it is likely your mileage
may vary. That is, one method might be better for some users and another method might be
better for other users. For example, in the case of CPUs, one could imagine that some machines
might be better for scientific computing and other machines might be better for memory bound
jobs. Consequently, there might be a split decision where some programs perform better on one
machine and other programs perform better on another machine. While there may be good
reasons for split decisions, split decisions are more complicated than unanimous decisions.

If possible, we should dive deeper into split decisions to understand why they split the way they
do.We need to help users make sensible decisions.Whichmachine/foundationmodel should they
use? The answer becomes complicated if it depends on factors we hope to abstract over such as
use cases.

10. Reporting scores relative to human performance
Mashey is also concerned about the use of arithmetic means, which is especially problematic given
incompatible units. (SuperGLUE averages scores on different scales such as accuracy and F1.)
Table 5 addresses this concern. By reporting results relative to human performance, all the scores
are dimensionless ratios. In addition, by reporting scores as GMs, then all of the ratios can be
interpreted as performance relative to human performance.

Unfortunately, Mashey’s concern about the outlier remains an issue in Table 5. Note that the
scores in the GM column are above 1 and the scores in the GMrobust column are below 1, indicating
that machines are better than humans with the outlier, but not if the outlier is removed. The blue
highlighting calls out the observation that humans are better on half of the tasks. This is even
easier to see in Table 5 where the blue columns have ratios less than 1, whereas the other columns

https://doi.org/10.1017/S1351324924000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324924000068

Natural Language Engineering 1331

have ratios greater than 1.We need to understand why some tasks appear to be easier for machines
and others appear to be easier for humans. There used to be more of this kind of error analysis in
ACL papers. We needmore deep-dives and exploratory data analysis (Hoaglin et al. 2000; Hoaglin
2003).

11. Additional concerns with benchmarks in our field
There are a few additional concerns:

1. Simplicity
2. Validity and reliability
3. Maintenance and processes for updating benchmarks
4. Challenging, Meaningful, and Informative tasks

11.1 Simplicity
Benchmarks should be as simple as possible, and no simpler. As mentioned above, “benchmarks
based on running programs that are much simpler than a real application have led to performance
pitfalls.” But on the other hand, many of our recent benchmarks are becoming larger and larger
over time. Newer benchmarks such as BIG-bench are often created by combining more and more
tasks, often by combining older benchmarks. When benchmarks become more complicated than
necessary, it becomes too difficult to perform error analysis.

11.2 Validity and reliability
Validity and reliability are discussed in Krippendorff (2018). Reliability is about data, and validity
is about truth (and use cases).

1. Reliability: Are results repeatable? Do we trust the gold labels? Is there reasonable inter-
annotator agreement?

2. Validity: How confident are we that these tasks span the space that needs to be covered for
evaluating general purpose foundation models?

11.3 Maintenance and processes for updating benchmarks
There are organizations such as SPEC and ML Commons with a mandate to keep their bench-
marks up to date, but most benchmarks in our field lack this type of support. It is inevitable that
new tasks will need to be added as technology evolves. So too, there need to be processes for retir-
ing old tasks, as tasks become less challenging, meaningful, or informative.We also need processes
to calibrate scores computed over different sets of tasks in order to establish improvements over
years/decades.

11.4 Challenging, meaningful, and informative tasks
Tasks should be informative. Tasks should be retired when the community is spending too much
time on pointless exercises that do not generalize well to real workloads from real customers

In addition, we will not learn much from tasks that are too easy or too hard. Consider the
Winograd Schema, a task in GLUE. The system is given input sentences such as

https://doi.org/10.1017/S1351324924000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324924000068

1332 K. W. Church and O. Alonso

• The city councilmen refused the demonstrators a permit because they feared violence.
• The city councilmen refused the demonstrators a permit because they advocated violence.

Depending on the underlined word, they refers to city councilmen or demonstrators. The task is
often formulated as binary classification.

See Kocijan et al. (2023) for the history of theWinograd Schema. This task was long considered
“AI-Complete.” The main point of Kocijan et al. (2023), though, is that systems have recently
“defeated” the Winograd task. That is, systems have found a way to perform considerably better
than baseline, though not in interesting ways that are likely to generalize well to real workloads
from real customers. Tasks such as this should be retired from benchmarks when they have been
“defeated.”

12. Principles for measuring and reporting performance
Since it takes time for the community to develop and implement great benchmarks, it is better to
start small and focus on common use cases first to debug the methodology. By adopting some of
the SPEC techniques, we can create and use benchmarks that are more robust, efficient, reliable,
and credible. The rest of this paper outlines principles that we think are appropriate for the NLP
community.

12.1 Interpretable scores
As mentioned above, SPECRatios can be interpreted as multiplicative performance gains relative
to as baseline (VAX 11/780 in 1978). Because of their use of GMs, SPECRatios can be used to
compare two more recent machines relative to one another. The details of the baseline drop out
when making these comparisons.

We suggest that our scores should also be defined as ratios, where the baseline would be
human performance. This implies that we replace arithmetic means with geometric means when
aggregating scores (ratios) over tasks.

12.2 Focus on real use cases that are challenging and informative
When measuring CPU performance, HPs1.8 suggest we focus on real applications and avoid syn-
thetic (or artificially constructed) programs. Some papers in our field refer to tasks in popular
benchmarks as “real,” but many of them are more synthetic than real. We have little reason to
believe that these tasks are representative of customer experience, or that they span the space of
common use cases.

Too many of the tasks in our benchmarks encourage pointless SOTA-chasing in ways that do
not generalize to customer experience. SPEC removed tasks that were insufficiently informative
because they were too easy or too hard, or because they encouraged pointless SOTA-chasing.

As technology and customer expectations evolve over time, benchmarks need to be updated. If
a task is no longer relevant (or challenging or informative), it should be retired. This is easier to
say than done, but it will not happen unless we make it a priority.

12.3 Easy to reproduce
The guiding principle of reporting performance is reproducibility. That is, all the details that are
needed so another person can replicate the results. This includes configurations and other spe-
cific information like prompts to avoid any confusion. The amount of development required to
reproduce results should be minimal.

https://doi.org/10.1017/S1351324924000068 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324924000068

Natural Language Engineering 1333

12.4 Rigorous development process
Care should be taken when implementing a benchmark. Every program requires a verification test
to assure correct execution and output metrics. Clearly document system configurations, datasets,
prompts, libraries, etc.; transparent reporting of metrics is a must. Best practices suggest using
statistical methods to analyze distributions. Constantly look for suspicious outliers. Allocate time
for error analysis.

13. Conclusions
There are many lessons to be learned from SPEC. SPEC has had more influence than benchmarks
in our field. By addressing a simple commercially important question, which computer should
I buy, SPEC helped the computer industry to become as important as it has become. As men-
tioned above, SPEC made a convincing credible quantitative statement about computer speeds
over decades. It is remarkable that we can make statements that generalize to what customers are
likely to expect even though different customers will use these machines to do different things.

We view foundation models as similar to general purpose computers, where fine-tuning and
prompt-engineering is analogous to programming an Intel 4004 microprocessor. Evaluating
general purpose solutions is different from evaluating special purpose solutions. The challenge
is to find ways to evaluate foundation models so we can make quantitative statements about
improvements of general purpose foundationmodels over years/decades without specifying tasks,
datasets, prompts, etc. In section 10, as a small step in this direction, we suggested normalizing
scores relative to human performance, and replacing arithmetic means with GMs.

From this perspective, we view SPEC as an existence proof that it is possible to make statements
about general purpose solutions that generalize over details (programs, inputs, etc.). If we succeed,
then there is hope that the entire LLM eco-system could benefit over the next few decades in ways
the resemble the growth of the tech sector over the past few decades. By the LLM eco-system, we
are referring not only to the companies that build foundation models but also the much larger
community that interacts with such models both directly and indirectly.

The definition of performance depends on what matters. In the case of SPEC, performance
was defined in terms of execution time whereas for foundation models, performance is defined in
terms of other metrics such as accuracy, F1, correlations, etc.

There are clearly opportunities for simplify our benchmarks. We have too many metrics and
too many tasks. One of the reasons that SPEC has been as successful as it has been is simplicity.

SPEC has also benefited from experience. Mashey criticized one of our papers as a typical 1980s
performance brief with lots and lots of benchmarks and comparisons with other people when they
could find them. The implication is that the state of evaluation in our field is similar to where they
were before the tech-savvy bar-owner challenged them to work together to improve the state of
the art in evaluation of general purpose computing. It will take time for benchmarking in our field
to learn from their experience and develop effective evaluations of general purpose foundation
models.

Another huge advantage of SPEC is cooperation (coopetition). Ellen Voorhees, an organizer
of many TREC events, is a strong advocate of coopetition, as discussed in her contribution to the
ACL-2021 workshop on benchmarking.q Mashey also discusses coopetition in his “Lessons from
SPEC.”r In response to a question from the press:

These are done by computer companies. Isn’t that letting foxes guard the henhouse?

qhttps://github.com/kwchurch/Benchmarking_past_present_future?tab=readme-ov-file#Voorhees
rSlide 14 of footnote p

https://doi.org/10.1017/S1351324924000068 Published online by Cambridge University Press

https://github.com/kwchurch/Benchmarking_past_present_future?tab=readme-ov-file#Voorhees
https://doi.org/10.1017/S1351324924000068

1334 K. W. Church and O. Alonso

Mashey responded with:

Nobody is better than a fox at keeping other foxes from eating the hens.

Mashey continued with:

Coopetition of fierce competitors can actually work well, once culture of trust and honesty built,
and people find benefits from avoiding duplicative efforts.

In short, we need an organization like SPEC or ML Commons to maintain benchmarks so they
challenge the community to make continuous progress and avoid pointless SOTA-chasing.

References
Broder A. (2002). A taxonomy of web search. ACM SIGIR Forum 36(2), 3–10.
Brown T. B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A.,

Agarwal S., Herbert-Voss A., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D. M., Wu J., Winter C., Hesse
C., Chen M., Sigler E., Litwin M., Gray S., Chess B., Clark J., Berner C., McCandlish S., Radford A., Sutskever I. and
Amodei D. (2020). Language models are few-shot learners. In Larochelle H, Ranzato M, Hadsell R, Balcan MF and Lin H.
(eds.), Advances in Neural Information Processing Systems. Curran Associates, Inc., pp. 1877–1901.

CalzarossaM. C.,Massari L. and Tessera D. (2016).Workload characterization: A survey revisited.ACMComputing Surveys
(CSUR) 48(3), 1–43.

Chowdhery A., Narang S., Devlin J., Bosma M.,Mishra G., Roberts A., Barham P., Chung H. W., Sutton C., Gehrmann
S. (2023). PaLM: scaling language modeling with pathways. Journal of Machine Learning Research 24(240), 1–113

Church K., Liberman M. and Kordoni V. (2021). Benchmarking: Past, present and future. In Church, K., Liberman, M.,
and Kordoni, V. (eds), Proceedings of the 1st Workshop on Benchmarking: Past, Present and Future, Online. Association for
Computational Linguistics, pp. 1–7.

Church K. W. (2022). Emerging trends: deep nets thrive on scale. Natural Language Engineering 28(5), 673–682.
Church K. W. and Kordoni V. (2022). Emerging trends: SOTA-chasing. Natural Language Engineering 28(2), 249–269.
Devlin J., Chang M.-W., Lee K. and Toutanova K. (2019). BERT: Pre-training of deep bidirectional transformers for lan-

guage understanding, In Burstein, J., Doran, C., and Solorio, T. (eds), Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol 1 (Long and Short
Papers), Minneapolis, Minnesota: Association for Computational Linguistics, pp. 4171–4186.

Dixit K. M. (1993). Overview of the SPEC benchmarks. The Benchmark Handbook 7.
Faggin F. (2018). How we made the microprocessor. Nature Electronics 1(1), 88–88.
Fisch A., Talmor A., Jia R., Seo M., Choi E. and Chen D. (2019). MRQA. 2019 shared task: Evaluating generalization in

reading comprehension. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering, ACL, pp. 1–13.
Gale W. A. and Church K. W. (1994). What’s wrong with adding one. In Corpus-Based Research into Language: In Honour

of Jan Aarts, pp. 189–200.
Giladi R. and Ahituv N. (1995). SPEC as a performance evaluation measure. Computer 28(8), 33–42.
Good I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika 40(3–4),

237–264.
Goodman J. (2001). A bit of progress in language modeling. ArXiv, cs.CL/0108005
HeK.,ZhangX.,Ren S. and Sun J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 770–778
Hennessy J. L. and Patterson D. A. (2012). Computer Architecture: A Quantitative Approach. Elsevier.
Hoaglin D. C. (2003). John W. Tukey and data analysis. Statistical Science 18(3), 311–318.
Hoaglin D. C., Mosteller F. and Tukey J. W. (2000). Understanding Robust and Exploratory Data Analysis, vol. 76. John

Wiley & Sons.
Kocijan V.,Davis E., Lukasiewicz T.,Marcus G. and Morgenstern L. (2023). The Defeat of the Winograd Schema Challenge.

Artificial Intelligence 325, 103971. https://doi.org/10.1016/j.artint.2023.103971.
Krippendorff K. (2018). Content Analysis: An Introduction to Its Methodology. London: Sage publications.
Mashey J. (2004). War of the benchmark means: time for a truce. SIGARCH Comput. Archit. News 32(4), 1–14.
Mashey J. (2005). Summarizing performance is no mean feat [computer performance analysis]. In IEEE International. 2005

Proceedings of the IEEE Workload Characterization Symposium 2005, pp. 1.
Radford A., Wu J., Child R., Luan D., Amodei D. and Sutskever I. (2019). Language Models Are Unsupervised Multitask

Learners. OpenAI Blog.

https://doi.org/10.1017/S1351324924000068 Published online by Cambridge University Press

https://doi.org/10.1016/j.artint.2023.103971
https://doi.org/10.1017/S1351324924000068

Natural Language Engineering 1335

Ravana S. D. and Moffat A. (2008). Exploring evaluation metrics: GMAP versus MAP. In Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval. Association for Computing Machinery, New York, NY.
https://doi.org/10.1145/1390334.1390452.

Robertson S. (2006). On GMAP: and other transformations. In Proceedings of the 15th ACM international conference on
Information and knowledge management, pp. 78–83.

Singh A., D’Arcy M., Cohan A., Downey D. and Feldman S. (2023). SciRepEval: A multi-format benchmark for scientific
document representations. In Bouamor, H., Pino, J., and Bali, K. (eds), Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, Singapore: Association for Computational Linguistics, pp. 5548–5566.

Srivastava A., Rastogi A., Rao A., Shoeb A. A. M., Abid A., Fisch A., Brown A. R., Santoro A., Gupta A., Garriga-Alonso
A., Kluska A., Lewkowycz A., Agarwal A., Power A., Ray A., Warstadt A., Kocurek A. W., Safaya A., Tazarv A., . . .
Wu Z. (2023). Beyond the imitation game: quantifying and extrapolating the capabilities of language models. Transactions
On Machine Learning Research

Sun Y.,Wang S., Feng S.,Ding S., Pang C., Shang J., Liu J., Chen X., Zhao Y., Lu Y. and et al. (2021). Ernie 3.0: large-scale
knowledge enhanced pre-training for language understanding and generation, arXiv preprint arXiv: 2107.0.2137.

Turing A. M. (1936). On computable numbers, with an application to the entscheidungsproblem. Journal of Mathematics
58(345-363), 5.

Wang A., Pruksachatkun Y., Nangia N., Singh A., Michael J., Hill F., Levy O. and Bowman S. (2019). SuperGLUE: a
stickier benchmark for general-purpose language understanding systems. In Wallach, H., Larochelle, H., Beygelzimer,
A., d’ Alché-Buc, F., Fox, E., and Garnett, R., (eds), Advances in Neural Information Processing Systems, vol. 32, Curran
Associates, Inc.

Wang A., Singh A., Michael J., Hill F., Levy O. and Bowman S. (2018). GLUE: A multi-task benchmark and analysis
platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, Association for Computational Linguistics, Brussels, Belgium, pp. 353–355.
https://doi.org/10.18653/v1/W18-5446

ZhangM.,Martin P., PowleyW. and Chen J. (2018). Workloadmanagement in database management systems: a taxonomy.
IEEE Transactions On Knowledge and Data Engineering 30(7), 1386–1402.

Cite this article:Church KW and Alonso O (2024). Emerging trends: evaluating general purpose foundationmodels.Natural
Language Engineering 30, 1323–1335. https://doi.org/10.1017/S1351324924000068

https://doi.org/10.1017/S1351324924000068 Published online by Cambridge University Press

https://doi.org/10.1145/1390334.1390452
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.1017/S1351324924000068
https://doi.org/10.1017/S1351324924000068

	
	Lessons from SPEC
	Goal: a task/Dataset-independent score of ML quality
	Evaluating general purpose solutions
	SPEC use case: what should I buy?
	A benchmark walked into a bar
	Benchmarks before SPEC
	Interpretation of SPECRatios
	No mean feat
	Mashey"2019`s criticisms of benchmarking in NLP
	Reporting scores relative to human performance
	Additional concerns with benchmarks in our field
	Simplicity
	Validity and reliability
	Maintenance and processes for updating benchmarks
	Challenging, meaningful, and informative tasks
	Principles for measuring and reporting performance
	Interpretable scores
	Focus on real use cases that are challenging and informative
	Easy to reproduce
	Rigorous development process
	Conclusions

