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1. Introduction

Mean dimensions are quantities that measure the complexity of dynamical systems with
infinite entropy. The concept of mean dimension was first introduced by Gromov in [20],
which is a topological invariant of dynamical systems to count the average number of
parameters needed per iteration for describing a point. Later, Lindenstrauss and Weiss
in [39] introduced the metric mean dimension and they related metric mean dimension
to the problem that whether a dynamical system can be embedded in the shift system.
The metric mean dimension of a dynamical system is not a topological invariant, as
it depends on the specific metric chosen for the phase space X ; however, there exists
an intriguing invariant property for metrizable topological spaces. Specifically, the infi-
mum of metric dimensions over all metrics on X that induce its topology is invariant
under topological conjugacy. In general, the metric mean dimension of a system may not
exceed its mean dimension. However, Lindenstrauss and Tsukamoto presented an excit-
ing result in [38]. They demonstrated that systems possessing the marker property can be
endowed with a metric ρ compatible with the topology of the phase space. Remarkably,
the metric mean dimension of ρ coincides with the mean dimension of the system.
Besides, in [37], Lindenstrauss and Tsukamoto delved into the concept of mean dimension
alongside rate distortion theory, a field that investigates the lossy data compression of
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stochastic processes under distortion constraints. Within this study, they established a
variational principle connecting rate distortion function to metric mean dimension. Later,
Gutman and Śpiewak [19] demonstrated that in the Lindenstrauss–Tsukamoto variational
principle, it suffices to consider the supremum over ergodic measures. In a more recent
study, Shi [46] established variational principles linking metric mean dimension with
Shapira’s entropy, Katok’s entropy and Brin-Katok’s entropy.
The fundamental theory of amenable group actions in the analysis of dynamical sys-

tems was established by Ornstein and Weiss in [43], which provides an approach to
generalize vast majority of entropic and ergodic theorems known for the actions of Z
such as [1, 36, 45]. As the core techniques in the analysis of dynamical systems with
amenable group actions, the ε-tiling and the ε-quasi-tiling were introduced in [42, 43].
The ε-tiling has been further developed by Weiss in [48], where he showed that countable
amenable groups from a large class admit a precise tiling by only one monotile belonging
to a selected Følner sequence. The ε-quasi-tiling has been developed by Downarowicz
et al. [17]. After Gromov–Lindenstrauss–Weiss’ fundamental works on mean dimension
theory, there are sequences of studies on mean dimensions in the context of amenable
group actions, for instance [10, 12, 13, 27, 30, 47].
Scholars showed interest in the ergodic theory of random transformations since 1980s,

which emerged from Kifer [24], Crauel [9], Ledrappier and Young [40], Bogenschutz [4, 5],
etc. For the classic Z+ or Z-system, the random transformations can be regarded as skew-
product transformations rather than iterations of just one map. The study within the
framework of bundle random dynamical systems (RDSs) with amenable group actions
was conducted by Dooley and Zhang in [16]. They introduced the notions of random
local pressures as well as entropies and a concept of (factor) excellent or good covers as
a crucial technique to establish the variational principle for random local pressures. We
refer to the elegant literatures [2, 26] for more information on the theory of RDSs and
[21, 29, 33–35, 41, 51–53] for the recent progresses on the entropy theory in RDSs.
An approach rooted in convex analysis arises as a method to investigate the ther-

modynamic formalism of dynamical systems, along with the study of the metric mean
dimension. In [8], Cioletti, Silva and Stadlbauer considered the pressure functional P (φ),
which is convex for the bounded continuous potentials φ defined on the sequence space
X = EN, where E is a general standard Borel space. They obtained the existence of
equilibrium states as finitely additive probability measures for any bounded continuous
potential. Bís, Carvalho, Mendes and Varandas in [3] established an abstract variational
principle for the so-called pressure functions acting on a Banach space of potentials of a
compact metric space, for which equilibrium states always exist. This approach was later
adapted by Yang, Chen and Zhou, as reported in [54], where they successfully proved
a variational principle for the upper metric mean dimension, incorporating the concept
of potential. In [7], Carvalho, Pessil and Varandas introduced the concept of the upper
metric mean dimension for a one-parameter family of scaled pressure functions. With
the approach supported by convex analysis, they established a corresponding variational
principle. Additionally, they examined the computability of this measure-theoretic map
and presented several examples.
The present work is dedicated to explore the notion of the random metric mean

dimension with potentials in the context of amenable group actions, which is mainly
inspired by the work on an abstract variational principle for upper semi-continuous affine
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entropy-like map [3] and the work on random metric mean dimension for skew product
transformations [55]. First, in §3.1, we introduce a notion of random upper metric mean
dimension with potentials for amenable group actions and study its basic properties.
Second, in §3.2, we introduce random upper measure-theoretic metric mean dimension
and present its several characterizations. Third, in §4, we establish a variational principle
between these two kinds of mean dimensions. Finally, in §5, we we introduce a notion
of equilibrium state for amenable random upper metric mean dimension with potentials
and discuss its properties.

2. Preliminaries and main result

In this section, we collect some basic notions and notations in literature and then state
the main result. An action on a set X induced by a group G (or we say G acts on X ) is
a set of maps fG = {fg : X → X|g ∈ G} satisfying:

(1) fe = idX , where e is the unit element of G,
(2) fg2 ◦ fg1 = fg2g1 for every g1, g2 ∈ G.

Note that fg is a bijection for each g ∈ G. For simplicity, we identify the the group G
with its action fG by writing gx := fg(x) for every g ∈ G and x ∈ X. A group action
G of a measurable space (X,B, µ) is said to be measure preserving (or we say µ is G-
invariant), if µ(gB) = µ(B) for every g ∈ G and B ∈ B. A probability measure µ on a
measurable space (X,B) with a group action G is said to be G-ergodic, if for any given
B ∈ B, we have µ(gB∆B) = 0 for every g ∈ G if and only if µ(B) = 1 or µ(B) = 0.
The setup of bundle RDS or RDS consists of a probability space (Ω,F ,P) together

with a group G acting on Ω measure preservingly, a compact metic space (X, d) with
corresponding Borel σ-algebra B, and a bundle E that is a measurable subset of Ω×X
with respect to the product σ-algebra F ×B such that the fibres Eω = {x ∈ X : (ω, x) ∈
E} for all ω ∈ Ω are compact and non-empty. A bundle RDS associated to (Ω,F ,P, G)
is a set of maps F = {Fg,ω : Eω → Egω|g ∈ G,ω ∈ Ω} satisfying

(α) Fe,ω = idEω for every ω ∈ Ω, where e is the unit element of G ;
(β) for any given g ∈ G, the map (E ,F × B|E) → (X,B) given by (ω, x) 7→ Fg,ω(x)

is measurable, where F × B|E = {A ∩ E : A ∈ F × B};
(γ) Fg2,g1ω ◦ Fg1,ω = Fg2g1,ω for every g1, g2 ∈ G and ω ∈ Ω.

If for P-a.e. ω ∈ Ω, and for every g ∈ G, the random transformation Fg,ω is continuous
(and is therefore a homeomorphism), then F is called a continuous bundle RDS asso-
ciated to (Ω,F ,P, G). The RDS F naturally induces an action f̃G = {f̃g : g ∈ G}
on E , given by f̃g(ω, x) = (gω,Fg,ω(x)) for every g ∈ G and (ω, x) ∈ E ; in the

absence of ambiguity, we still identify f̃G with G by denoting g(ω, x) := f̃g(ω, x) for
every g ∈ G, ω ∈ Ω and x ∈ Eω. According to [11, Chapter III], the map ω 7→ Eω
is measurable with respect to the Borel σ-algebra induced by the Hausdorff topol-
ogy on the space K(X) of compact subsets of X. This is equivalent to that for any
given x ∈ X the distance function ω 7→ d(x, Eω) is measurable for F . We denote
MP(E) the set of all probability measures µ on (E ,F × B|E) admitting marginal
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measure P, denote MG
P (E) = {µ ∈ MP(E) : µ ◦ g = µ for every g ∈ G} the set of all the

G-invariant measures in MP(E). According to [25, Lemma 2.1], MG
P (E) is compact with

respect to weak∗-topology, that is, the topology induced by the convergency that a
sequence (σn)n∈N ⊂ MP(E) converges to σ ∈ MP(E) if and only if limn→∞

∫
f dσn =

limn→∞
∫
f dσ for every f ∈ L1

E(Ω, C(X)) (see definition of L1
E(Ω, C(X)) in §3.1). To

see more backgrounds and details about random dynamical systems, we refer to [2, 4, 5,
24–26].
We collect some examples of continuous bundle RDSs below.

Example 2.1. Among interesting examples of continuous bundle RDSs are ran-
dom sub-shifts. In the case where G = Z, these are treated in detail in [6, 23, 25].
We present a brief recall of some of their properties. Let (Ω,F ,P) be a Lebesgue
space and ϑ : (Ω,F ,P) → (Ω,F ,P) an invertible measure-preserving transformation. Set
X = {(xi : i ∈ Z) : xi ∈ N ∪ {+∞}, i ∈ Z}, a compact metric space equipped with the
metric

d((xi : i ∈ Z), (yi : i ∈ Z)) =
∑
i∈Z

1

2|i|
|x−1
i − y−1

i |,

and let F : X → X be the translation (xi : i ∈ Z) 7→ (xi+1 : i ∈ Z). Then, the integer
group Z acts on (Ω×X,F × BX) measurably with (ω, x) 7→ (ϑiω, F ix) for each i ∈ Z,
where BX denotes the Borel σ-algebra of the space X. Now let E ∈ F × BX be an
invariant subset of Ω × X (under the Z-action) such that ∅ 6= Eω ⊂ X is compact for
P-a.e. ω ∈ Ω. This defines a continuous bundle RDS where, for P-a.e. ω ∈ Ω, Fi,ω is just
the restriction of Fi over Eω for every i ∈ Z.
A very special case is when the subset E is given as follows. Let k be a random N-valued

random variable satisfying

0 <

∫
Ω

log k(ω) dP(ω) <∞,

and, for P-a.e. ω ∈ Ω, let M(ω) be a random matrix (mi,j(ω) : i = 1, . . . , k(ω), j =
1, . . . , k(ϑω)) with entries 0 and 1. Then, the random variable k and the random matrix
M generate a random sub-shift of finite type, where

E = {(ω, (xi : i ∈ Z)) : ω ∈ Ω, 1 ≤ xi ≤ k(ϑiω),mxi,xi+1
(ϑiω) = 1, i ∈ Z}.

It is not hard to see that this is a continuous bundle RDS. In [16], Dooley and Zhang
studied the local variational principle of general group G action RDS.

Example 2.2. There are many other interesting examples of continuous bundle RDSs
coming from smooth ergodic theory, see, for example [28, 31], where one considers not
only the action of Z or Z+ on a compact metric state space but also on Riemannian
manifolds. Let M be a C∞ compact connected Riemannian manifold without boundary
and Cr(M,M), r ∈ Z+∪{+∞} the space of all Cr maps from M into itself endowed with
the usual Cr topology and the Borel σ-algebra. Let (Ω,F ,P) be a Lebesgue space and
{φt : Ω → Cr(M,M)}t≥0 be a stochastic flow of Cr(M,M) diffeomorphisms. It is well
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known that every smooth stochastic differential equation (SDE) in a finite dimensional
compact manifold has a stochastic flow of diffeomorphisms as its solution flow. When
the SDE is non-degenerate, it has a unique stationary measure, which is ergodic and
equivalent to Lebesgue measure. Hence, Pesin’s entropy formula holds true, which can
be viewed as a sharp contradiction with the deterministic dynamical systems.

A measure space (M,B,m) is called Lebesgue space or standard probability space if
there is an invertible map f : M → ∆, where ∆ ⊂ R is composed of an interval I ⊂ R
and at most countable set of points {xj ∈ R : j ∈ J ⊂ N}, such that f, f−1 both are
measurable and measure preserving, and m on I takes the usual Lebesgue measure and
m(xj) = mj such that m(∆) = m(I) +

∑
j∈J mj = 1. Any Lebesgue space (M,B,m) is

complete and countably separated; the latter means that there is (An)n∈N ⊂ B such that
{n ∈ N : x ∈ An} = {n ∈ N : y ∈ An} implies x = y for every x, y ∈M .
For G a group, we denote FG the set of all non-empty finite subsets of G. For each

K ∈ FG and δ > 0, we say F ∈ FG is (K,δ)-invariant, if
|∂KF |
|F | < δ, where | · | is the

cardinality of a set and ∂KF = {g ∈ G : Kg ∩ F 6= ∅,Kg ∩ F c 6= ∅} is the K -boundary
of F. Moreover, a sequence {Fn}n∈N ⊂ FG is called Følner sequence of G if

lim
n→∞

|gFn∆Fn|
|Fn|

= 0, for every g ∈ G.

A group G is said to be amenable if for any given K ∈ FG and δ > 0, there is F ∈ FG
such that |kF∆F |

|F | ≤ δ for every k ∈ K. According to [43, p. 11], if G is a countable group,

then G is amenable if and only if G admits a Følner sequence. To see more details about
amenable group action, we refer to [17, 22, 43, 49].
Throughout the rest of this paper, let (Ω,F ,P) always be a Lebesgue space together

with G, a measure-preserving countable discrete amenable group action, and s = {Fn}n∈N
be a Følner sequence of G. Moreover, let (X, d) always denote a compact metric space
with corresponding Borel σ-algebra B. Fix E ∈ F ×B such that for each ω ∈ Ω the fibre
Eω is non-empty and compact and F = {Fg,ω : Eω → Egω|g ∈ G,ω ∈ Ω} a continuous
bundle RDS associated with (Ω,F ,P, G). We emphasize under these settings MP(E) 6= ∅
(see, for example [25, Lemma 2.1 (i)]) and MG

P (E) 6= ∅ (see [16, p. 30]).
The main results of this work are as follows:

Theorem 2.3. (Variational principle). Suppose Ω admits a compact metric, F is the
corresponding Borel σ-algebra, and G acts ergodicly on (Ω,F ,P). Let E = Ω × X, if
RmdimE(F, s, d) <∞ then

RmdimE(F, s, d) = sup
µ∈MG

P (E)
RmdimE,µ(F, s, d),

where RmdimE(F, s, d) is the random upper metric mean dimension defined in
Definition 3.3 and RmdimE,µ(F, s, d) is the random upper measure-theoretic mean
dimension defined in Definition 3.16.

Let MP(E , f, s, d) denote the set of equilibrium states of a function f ∈ L1
E(Ω, C(X)),

as defined in Definition 5.1. Let TP(E , f, s, d) denote the set of tangent functionals at

https://doi.org/10.1017/S0013091524000257 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000257


6 D. Tang and Z. Li

f ∈ L1
E(Ω, C(X)), as defined in Definition 5.2. The second main result of our study estab-

lishes both the existence and uniqueness of the equilibrium states for f ∈ L1
E(Ω, C(X)).

Furthermore, it demonstrates that the set MP(E , f, s, d) of equilibrium states for f ∈
L1
E(Ω, C(X)) precisely coincides with the set TP(E , f, s, d) of tangent functionals at

f ∈ L1
E(Ω, C(X)).

Theorem 2.4. Suppose RmdimE(F, s, d) <∞ then

(1) MP(E , f, s, d) is non-empty, convex and compact for every f ∈ L1
E(Ω, C(X));

(2) for every f ∈ L1
E(Ω, C(X)),

MP(E , f, s, d) = TP(E , f, s, d) =
⋂
n≥1

Mn,

where Mn = {µ ∈ MP(E) : RmdimE,µ(F, s, d)+
∫
f dµ > RmdimE(F, f, s, d)− 1

n}
for every n ∈ N;

(3) there exists a dense subset L ⊂ L1
E(Ω, C(X)) such that MP(E , f, s, d) is a

singleton for every f ∈ L .

3. Random metric mean dimension

3.1. Random upper metric mean dimension with potentials

In this subsection, we present the notion and several properties of random mean
dimension with random potentials.
Let L1

E(Ω, C(X)) be the set of all the measurable functions f : E → R such that

(α) the function fω = f(ω, ·) : Eω → R is continuous for P-a.e. ω ∈ Ω,
(β) ||f ||P :=

∫
||fω||∞ dP <∞,

where ||fω||∞ = supx∈Eω |fω(x)|. Let L1
E(Ω, C(X)) be the quotient set L1

E(Ω, C(X)) mod
|| · ||P, that is, the set of all the equivalent classes of elements in L1

E(Ω, C(X)) in the sense
that identify f, g ∈ L1

E(Ω, C(X)) if ||f − g||P = 0. Note that (L1
E(Ω, C(X)), || · ||P) is a

Banach space.

Definition 3.1. A random potential on E is a map φ : FG → L1
E(Ω, C(X)). The set

of all random potentials on E is denoted by P(E).

For the sake of simplicity, for every φ, ψ ∈ P(E),

1. let φF := φ(F ) for every F ∈ FG;
2. φF,ω denotes the function φF (ω, ·) : Eω → R, for every ω ∈ Ω and F ∈ FG.
3. φ ≤ ψ denotes that φF ≤ ψF for every F ∈ FG;
4. φ=0 denotes that φF (ω, x) = 0 for every F ∈ FG, ω ∈ Ω, and x ∈ Eω.
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For each ω ∈ Ω, φ ∈ P(E), F ∈ FG and ε> 0, define

ΛE(ω,F, φ, F, d, ε) := sup
E∈sep(Eω,F,d,ε)

∑
x∈E

e| log ε|φF (ω,x),

where sep(Eω, F, d, ε) is the set of all (F, ε)-separated sets of Eω; i.e. E ∈ sep(Eω, F, d, ε)
if and only if E ⊂ Eω and dωF (x, y) := maxg∈F d(Fg,ωx,Fg,ωy) > ε for every distinct
x, y ∈ E.
With a slight modification to the proof of [25, Lemma 1.2], it is easy to see that

for any given φ ∈ P(E), F ∈ FG, and ε> 0, the functions ω 7→ ΛE(ω,F, φ, F, d, ε) and
ω 7→ s(Eω, F, d, ε) are measurable with respect to F , where s(Eω, Fn, d, ε) = max{cardE :
E ∈ sep(Eω, Fn, d, ε)}. Moreover, there is the following lemma:

Lemma 3.2. Let ε> 0 and φ ∈ P(E), then the function ω 7→ log ΛE(ω,F, φ, F, d, ε)
belongs to L1

P(Ω) for every F ∈ FG.

Proof. The statement follows from that

e−||φF,ω ||∞| log ε| ≤ ΛE(ω,F, φ, F, d, ε) ≤ s(Eω, F, d, ε)e||φF,ω ||∞| log ε|

for every F ∈ FG. �

This means that the following definition makes sense:

ΛE(F, φ, s, d, ε) := lim sup
n→∞

1

|Fn|

∫
log ΛE(ω,F, φ, Fn, d, ε) dP.

Definition 3.3. Let φ ∈ P(E), the quantity

RmdimE(F, φ, s, d) := lim sup
ε→0

1

| log ε|
ΛE(F, φ, s, d, ε)

is called the random upper metric mean dimension of F with random potential φ on E
with respect to the Følner sequence s. In addition, the quantity

RmdimE(F, s, d) : = lim sup
ε→0

1

| log ε|
lim sup
n→∞

1

|Fn|

∫
log s(Eω, Fn, d, ε) dP

= RmdimE(F, 0, s, d)

is called the random upper metric mean dimension of F on E with respect to the Følner
sequence s.

Remark 3.4. By the definition of random upper metric mean dimensions, it is pos-
sible that the values of RmdimE(F, s, d) and RmdimE(F, φ, s, d) are influenced by the
choice of the Følner sequence s. However, if (X, d) has tame growth of covering num-
bers, similar arguments as in [10, Proposition 3.4] also give that RmdimE(F, s, d) and
RmdimE(F, φ, s, d) are independent of the choice of the Følner sequence s.
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We present several basic properties of random mean dimension with random potentials.
We omit or only give a sketch of the proofs that can be directly deduced by the definition
or are obvious.

Fact 3.5. (Monotonicity of mean dimension). Let φ ≤ ψ be random potentials, then

RmdimE(F, φ, s, d) ≤ RmdimE(F, ψ, s, d).

Fact 3.6. If the function RmdimE(F, ·, s, d) : P(E) → R ∪ {∞} takes finite value for
every φ ∈ P(E), then RmdimE(F, ·, s, d) is convex.

Proof. Let φ, ψ ∈ P(E). For any ω ∈ Ω, t ∈ [0, 1], n ∈ N and ε ∈ (0, 1), we have

ΛE(ω, tφ+ (1− t)ψ, Fn, d, ε) = sup
E∈sep(Eω,Fn,d,ε)

∑
x∈E

(
1

ε
)tφFn+(1−t)ψFn (ω,x)

= sup
E∈sep(Eω,Fn,d,ε)

∑
x∈E

(
1

ε
)tφFn (ω,x)(

1

ε
)(1−t)ψFn (ω,x)

≤ sup
E∈sep(Eω,Fn,d,ε)

(
∑
x∈E

(
1

ε
)φFn (ω,x))t(

∑
x∈E

(
1

ε
)ψFn (ω,x))1−t

≤ (ΛE(ω,F, φ, Fn, d, ε))
t(ΛE(ω,F, ψ, Fn, d, ε))

1−t,

where the first inequality follows from the Hölder’s inequality. This shows the
statement. �

Fact 3.7. (Subadditivity of mean dimension). For any φ, ψ ∈ P(E), we have

RmdimE(F, φ+ ψ, s, d) ≤ RmdimE(F, φ, s, d) + RmdimE(F, ψ, s, d).

Proof. The statement follows from that∑
x∈E

e| log ε|φFn+ψFn (ω,x) ≤
∑
x∈E

e| log ε|φFn (ω,x) ×
∑
x∈E

e| log ε|ψFn (ω,x),

for any ω ∈ Ω, n ∈ N, ε> 0 and E ∈ sep(Eω, Fn, d, ε). �

Fact 3.8. If t ≥ 1, then

RmdimE(F, tφ, s, d) ≤ tRmdimE(F, φ, s, d);

if 0 ≤ t ≤ 1, then

RmdimE(F, tφ, s, d) ≥ tRmdimE(F, φ, s, d).

Proof. The statement follows from that the map x 7→ xt on R≥0 is convex when t ≥ 1
and concave when t ≤ 1. �
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Fact 3.9. Let φ ∈ P(E), then

RmdimE(F, φ, s, d) ≤ RmdimE(F, |φ|, s, d).

Definition 3.10. Let φ ∈ P(E), if there is f ∈ L1
E(Ω, C(X)) such that φF = SF f :=∑

g∈F f ◦ g for every F ∈ FG, then for every ω ∈ Ω, F ∈ FG, and ε> 0 denote

ΛE(ω,F, f, F, d, ε) := ΛE(ω,F, φ, F, d, ε),

ΛE(F, f, s, d, ε) := ΛE(F, φ, s, d, ε),

and

RmdimE(F, f, s, d) := RmdimE(F, φ, s, d).

Fact 3.11. Let f ∈ L1
E(Ω, C(X)) and c ∈ R, then

RmdimE(F, f + c, s, d) = RmdimE(F, f, s, d) + c.

Fact 3.12. Let f ∈ L1
E(Ω, C(X)), then

RmdimE(F, s, d) +

∫
inf
x∈Eω

f(ω, x) dP ≤ RmdimE(F, f, s, d) ≤ RmdimE(F, s, d) + ||f ||P.

In particular,

RmdimE(F, s, d)− ||f ||P ≤ RmdimE(F, f,s, d) ≤ RmdimE(F, s, d) + ||f ||P,

and

RmdimE(F, s, d) + inf
E
f ≤ RmdimE(F, f, s, d) ≤ RmdimE(F, s, d) + sup

E
f,

where infE f = inf(ω,x)∈E f(ω, x) and supE f = sup(ω,x)∈E f(ω, x).

This immediately deduces the following as ||f ||P <∞ for every f ∈ L1
E(Ω, C(X)).

Fact 3.13. The function RmdimE(F, ·, s, d) : L1
E(Ω, C(X)) → R ∪ {∞} either takes

finite values at all f ∈ L1
E(Ω, C(X)) or constantly ∞. Furthermore, RmdimE(F, f, s, d) =

∞ for all f ∈ L1
E(Ω, C(X)) if and only if RmdimE(F, s, d) = ∞.

Fact 3.14. Suppose RmdimE(F, s, d) <∞. For any f, g ∈ L1
E(Ω, C(X)), we have

|RmdimE(F, f, s, d)− RmdimE(F, g, s, d)| ≤ ||f − g||P.

In particular, the function

RmdimE(F, ·, s, d) : L1
E(Ω, C(X)) → R

is continuous on (L1
E(Ω, C(X)), || · ||P).

https://doi.org/10.1017/S0013091524000257 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000257


10 D. Tang and Z. Li

Fact 3.15. (Invariance of mean dimension). Let f, f∗ ∈ L1
E(Ω, C(X)), then for any

g ∈ G we have

RmdimE(F, f + f∗ ◦ g − f∗, s, d) = RmdimE(F, f, s, d).

In particular,

RmdimE(F, f ◦ g, s, d) = RmdimE(F, f, s, d).

Proof. Let g ∈ G, n ∈ N, (ω, x) ∈ E , ε ∈ (0, 1), and E ∈ sep(Eω, Fn, d, ε), then

SFnf(ω, x)− ||f∗gω||∞ − ||f∗ω||∞ ≤ SFn(f + f∗ ◦ g − f∗(ω, x) ≤ SFnf(ω, x) + ||f∗gω||∞
+||f∗ω||∞.

This shows that∑
x∈E

e| log ε|(SFnf(ω,x)−||f∗gω ||∞−||f∗ω ||∞) ≤
∑
x∈E

e| log ε|SFn (f+f∗◦g−f∗)(ω,x)

≤
∑
x∈E

e| log ε|(SFnf(ω,x)+||f∗gω ||∞+||f∗ω ||∞).

Combining with the following equality∑
x∈E

e| log ε|SFn (f+f∗◦g−f∗)(ω,x) =
∑
x∈E

e| log ε|(SFnf(ω,x)+f
∗(gω,Fg,ωx)−f∗(ω,x)),

then we derive the first part of the statement. The rest is immediately obtained if we
replace f∗ with f. �

3.2. Random measure-theoretical metric mean dimension

In this subsection, we present the notion and characteristics of random upper measure-
theoretical mean dimension.
Define a set

A =

{
f ∈ L1

E(Ω, C(X)) : RmdimE(F,−f, s, d) = 0

}
.

Note that A = ∅ if and only if RmdimE(F, s, d) = ∞. Indeed, if RmdimE(F, s, d) < ∞,
then by fact 3.11, we have RmdimE(F, f, s, d) − f ∈ A for every f ∈ L1

E(Ω, C(X));
conversely, according to fact 3.13, A = ∅ if RmdimE(F, s, d) = ∞.
In this paper, we use the conventions: any infimum taking over the empty set equals

∞, and inf∞ := ∞.
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Definition 3.16. For each µ ∈ MP(E), the quantity

RmdimE,µ(F, s, d) = inf
f∈L1

E (Ω,C(X))

(
RmdimE(F, f, s, d)−

∫
f dµ

)
is called the random upper measure-theoretical metric mean dimension of µ.

It is obvious that RmdimE,µ(F, s, d) = ∞ if and only if RmdimE(F, s, d) = ∞.

Proposition 3.17. Let µ ∈ MP(E), then

RmdimE,µ(F, s, d) = inf
f∈A

∫
f dµ.

Proof. Suppose RmdimE(F, s, d) < ∞. Let f ∈ L1
E(Ω, C(X)) and ϕ =

RmdimE(F, f, s, d)− f , then by fact 3.11 we have ϕ ∈ A. Thus,

RmdimE(F, f, s, d)−
∫
fdµ =

∫
ϕ dµ ≥ inf

ϕ∈A

∫
ϕdµ.

Letting f range over L1
E(Ω, C(X)) yields

inf
f∈L1

E (Ω,C(X))

(
RmdimE(F, f, s, d)−

∫
fdµ

)
≥ inf
ϕ∈A

∫
ϕdµ.

To see the inequality in opposite direction, let f ∈ A, then

inf
f∈L1

E (Ω,C(X))

(
RmdimE(F, f, s, d)−

∫
fdµ

)
≤ RmdimE(F,−f, s, d) +

∫
f dµ =

∫
f dµ.

Therefore,

RmdimE,µ(F, s, d) ≤ inf
f∈A

∫
f dµ.

When RmdimE(F, s, d) = ∞, we have A = ∅, so by the convention inff∈∅
∫
f dµ = ∞,

the statement holds. �

For each L ⊂ L1
E(Ω, C(X)), define

AL =

{
f ∈ L : RmdimE(F,−f, s, d) ≤ 0

}
.

Proposition 3.18. For any dense subset L ⊂ L1
E(Ω, C(X)) and µ ∈ MP(E), we have

RmdimE,µ(F, s, d) = inf
f∈AL

∫
f dµ.
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Proof. Fix L dense in L1
E(Ω, C(X)) and µ ∈ MP(E). Set

A′ = {f ∈ L1
E(Ω, C(X)) : RmdimE(F,−f, s, d) ≤ 0},

then by Proposition 3.17, we have the inequalities

inf
f∈A′

∫
f dµ ≤ RmdimE,µ(F, s, d)

≤ inf
f∈L1

E (Ω,C(X))

(
RmdimE(F,−f, s, d) +

∫
f dµ

)
≤ inf

f∈A′

∫
f dµ.

This shows RmdimE,µ(F, s, d) = inff∈A′
∫
f dµ, and what remains is to prove

inf
f∈AL

∫
f dµ ≤ inf

f∈A′

∫
f dµ.

To this end, fix f ∈ A′ and by fact 3.11 we can find an ε> 0 such that

RmdimE(F,−(f + ε), s, d) < 0.

As for any f1, f2 ∈ L1
E(Ω, C(X)), we have

|
∫
f1 dµ−

∫
f2 dµ| ≤

∫
Ω

∫
Eω

|f1(ω, x)− f2(ω, x)| dµx dP ≤ ||f1 − f2||P;

hence, the map f 7→
∫
f dµ is continuous on (L1

E(Ω, C(X)), || · ||P). Pick a sequence
(fn)n∈N ⊂ L such that ||fn − (f + ε)||P → 0 as n→ ∞, then

lim
n→∞

∫
fn dµ =

∫
f dµ+ ε.

Therefore, by fact 3.14,

lim
n→∞

RmdimE(F,−fn, s, d) = RmdimE(F,−(f + ε), s, d) < 0.

Then, there is N ∈ N such that RmdimE(F,−fN , s, d) < 0 and∫
fN dµ <

∫
f dµ+ 2ε,

which implies fN ∈ AL . Thus, letting ε→ 0 we end at

inf
f∈AL

∫
f dµ ≤ inf

f∈A′

∫
f dµ.

�
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Proposition 3.19. If RmdimE(F, s, d) < ∞, then the function RmdimE,·(F, s, d) :
MP(E) → R is

(1) concave;
(2) upper semi-continuous.

Proof. The concavity of RmdimE,·(F, s, d) directly follows by the definition. Note
that MP(E) is endowed with the weak∗-topology, then for every fixed f ∈ A
the function Ff (µ) =

∫
f dµ is continuous on MP(E). Hence RmdimE,·(F, s, d) is

upper semi-continuous since the infimum of a family of continuous functions is upper
semi-continuous. �

4. Variational principle

In this section, we present a variation principle between the random upper metric mean
dimension and the measure-theoretic one as the first main result of this paper. To this
end, we need the following notions and lemmas:
Suppose Y is a set and L is a family of real-valued functions on Y. We say that L is

a vector lattice if it is a linear space and f ∨ g := max{f, g} ∈ L for every f, g ∈ L. If, in
addition, f ∧ 1 := min{f, 1} ∈ L for every f ∈ L, then we call L a Stone vector space.
Let L be a vector lattice on Y. A function L : L → R is called a pre-integral if L is

linear, non-negative, and L(fn) decreases to 0 for every fn ∈ L with fn(x) decreasing to
0 for every x ∈ Y .

Lemma 4.1. ([ 18], Theorem 4.5.2). Let Y be a set and L be a pre-integral on
a Stone vector lattice L. Then, there exists a measure µ on (Y, σ(L)) such that for all
f ∈ L

L(f) =

∫
f dµ,

where σ(L) is the smallest σ-algebra on Y such that all functions in L are measurable.

Lemma 4.2. Let (νn)n∈N ⊂ MP(E), then the limit points in the weak∗-topology of the
sequence

µn =
1

|Fn|
∑
s∈Fn

vns
−1, n ∈ N

is not empty and is contained in MG
P (E).

Proof. Note that (µn)n∈N ⊂ MP(E), then by the compactness of MP(E) in the weak∗-
topology there are µ ∈ MP(E) and a sequence (nj)j≥1 such that,∫

f dµ = lim
j→∞

∫
f dµnj
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for every f ∈ L1
E(Ω, C(X)). Let ε> 0 and g ∈ G, then there is k ∈ N such that

|gFnj∆Fnj | ≤ ε|Fnj |,

for every j ≥ k. Therefore, for any f ∈ L1
E(Ω, C(X)) and (njl)l∈N such that j1 ≥ k we

have ∣∣∣∣∫ f ◦ g dµ−
∫
f dµ

∣∣∣∣ = lim
l→∞

∣∣∣∣∫ f ◦ g − f dµnjl

∣∣∣∣
= lim

l→∞

1

|Fnjl |

∣∣∣∣∣∣∣
∫ ∑

s∈Fnjl

(f ◦ gs− f ◦ s) dνnjl

∣∣∣∣∣∣∣
= lim

l→∞

1

|Fnjl |

∣∣∣∣∣∣∣
∫
(

∑
s∈gFnjl

f ◦ s−
∑

s∈Fnjl

f ◦ s) dνnjl

∣∣∣∣∣∣∣
≤ ε||f ||P.

As ε and g are arbitrarily chosen, we obtain µ ∈ MG
P (E), which shows the statement. �

Theorem 4.3. (Variational principle). Suppose Ω admits a compact metric, F is
the corresponding Borel σ-algebra, and G acts ergodicly on (Ω,F ,P). Let E = Ω×X, if
RmdimE(F, s, d) <∞ then

RmdimE(F, s, d) = sup
µ∈MG

P (E)
RmdimE,µ(F, s, d).

Proof. We firstly show

RmdimE(F, s, d) = sup
µ∈MP(E)

RmdimE,µ(F, s, d).

As the constant function RmdimE(F, s, d) is an element of A, by Proposition 3.17,
RmdimE,µ(F, s, d) ≤ RmdimE(F, s, d) for every µ ∈ MP(E), which implies

RmdimE(F, s, d) ≥ sup
µ∈MP(E)

RmdimE,µ(F, s, d).

To see the opposite direction of the above inequality, let

K =

{
f ∈ L1

E(Ω, C(X)) : sup
(ω,x)∈E

|f(ω, x)| <∞
}
,

then K is a normed subspace of (L1
E(Ω, C(X)), || · ||P). By the proof of [25, Lemma 2.1

(i)], we know that C(E) the set of all continuous functions on E is dense in L1
E(Ω, C(X)).
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Then, the compactness of E implies K is dense in L1
E(Ω, C(X)). Thus, by Proposition 3.18,

RmdimE,µ(F, s, d) = inf
f∈AK

∫
f dµ,

for every µ ∈ MP(E). By fact 3.14, AK is a closed convex subset of K. For simplicity, we
write α := RmdimE(F,−RmdimE(F, s, d), s, d). Note that α=0, so −(RmdimE(F, s, d)+
ε) 6∈ AK, which means −RmdimE(F, s, d) 6∈ AK + ε. Let K1 = {RmdimE(F, s, d)} and
K2 = AK + ε be two disjoint closed subsets of K, then by Hahn–Banach separation
theorem, there is a continuous linear functional L : K → R such that

inf
f∈K2

L(f) + L(RmdimE(F, s, d)) ≥ 0. (4.1)

Fix f0 ∈ K with f0 ≥ 0. Then, by fact 3.11 and fact 3.5, for any c> 0,

RmdimE(F,−(cf0 + 1 + RmdimE(F, s, d)), s, d) = RmdimE(F,−cf0, s, d)− 1

− RmdimE(F, s, d)

≤ RmdimE(F, s, d)− 1

− RmdimE(F, s, d) < 0.

This means cf0 + 1 + RmdimE(F, s, d) ∈ AK and then

L(−RmdimE(F, s, d)) ≤ cL(f0) + L(1 + RmdimE(F, s, d) + ε).

Hence, L(f0) ≥ 0, otherwise letting c→ ∞ deduces L(−RmdimE(F, s, d)) = −∞, which
is conflict to (4.1). As f 0 is arbitrary, we have L is non-negative. Let {fn} ⊂ K be a
sequence pointwisely decreasing to 0, then {fn(ω, ·)}n∈N ⊂ C(Eω) and fn(ω, x) decreases
to 0 as n → ∞ for every ω ∈ Ω and x ∈ X. Hence, for every ω ∈ Ω, by Dini’s theorem,
the function fn(ω) := fn(ω, ·) uniformly convergences to 0 as n → ∞; that is, for any
ε> 0 and ω ∈ Ω, there is N(ω, ε) such that ||fn(ω)||∞ < ε for every n ≥ N(ω, ε). This
means ||fn(ω)||∞ decreases to 0 as n → ∞ for every ω ∈ Ω. By monotone convergence
theorem,

lim
n→∞

||fn − 0||P = lim
n→∞

∫
||fn(ω)||∞ dP = 0.

This means that L(fn) decreases to 0 as n → ∞, because L is non-negative, continuous
and L(0) = 0. As L is not constantly zero and non-negative, we can find an ϕ ∈ K such
that ϕ ≥ 0 with L(ϕ) > 0. We set 0 ≤ h := ϕ

M ≤ 1, where M := sup(ω,x)∈E ϕ(ω, x).

Then, 0 ≤ 1 − h ≤ 1 and hence, L(1) = L(h) + L(1 − h) = 1
ML(ϕ) + L(1 − h) > 0.
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This shows that L(·)
L(1) is a pre-integral on K. Note that K is a Stone vector lattice, then

by Lemma 4.1, there is a measure µ on (E , σ(K)) such that

L(f)

L(1)
=

∫
f dµ (4.2)

for every f ∈ K. Note that σ(K) is a sub-σ-algebra of F × B. Let A ∈ F and B
be a closed subset of X. For each n ∈ N, let ϕn(ω, x) := 1A(ω) · bn(x) ∈ K, where
bn(x) = 1−min{nd(x,B), 1}. As

lim sup
n→∞

ϕn(ω, x) = 1A(ω)1B(x),

for every (ω, x) ∈ E , we have A × B ∈ σ(K) for every A ∈ F and closed B ⊂ X. This
means that σ(K) = F × B and then µ is a probability measure on E . For each f ∈ K,
n ∈ N and g ∈ Fn, we have f ◦ g ∈ K, and then by (4.2),

L( 1
|Fn|

∑
g∈Fn f ◦ g)

L(1)
=

∫
f d

1

|Fn|
∑
g∈Fn

µg−1. (4.3)

As E is compact, by [50, Theorem 6.5], the set of all probability measures on E denoted
by M(E) is compact in the weak∗-topology which is the topology such that the map
µ 7→

∫
f dµ is continuous on M(E) for every f ∈ C(E). Without loss of generality, we

may assume that

lim
n→∞

1

|Fn|
∑
g∈Fn

µg−1 = ν ∈ M(E).

Hence, by (4.3), for each compact subset A ⊂ Ω, we have

lim sup
n→∞

L( 1
|Fn|

∑
g∈Fn 1A×X ◦ g)
L(1)

≤ ν(A×X).

For each P-integrable function h : Ω → R, we can regard h as a function h∗(·, ·) ∈
L1
E(Ω, C(X)) by setting h∗(ω, x) = h(ω) for every (ω, x) ∈ E . Note that 1∗K = 1K×X . As

P is G-ergodic, by mean ergodic theorem [22, Theorem 4.23],

lim
n→∞

||( 1

|Fn|
∑
g∈Fn

1K ◦ g)∗ − P(K)||P = lim
n→∞

∫
| 1

|Fn|
∑
g∈Fn

1K(gω)− P(K)|dP

= lim
n→∞

|| 1

|Fn|
∑
g∈Fn

1K ◦ g − P(K)||L1 = 0,
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where || · ||L1 is the L1-norm on the integrable function space L1(Ω,F ,P). As L is
continuous, we obtain

lim
n→∞

L( 1
|Fn|

∑
g∈Fn 1

∗
K ◦ g)

L(1)
= lim
n→∞

L(( 1
|Fn|

∑
g∈Fn 1K ◦ g)∗)
L(1)

= P(K).

This means that P(K) ≤ ν(K ×X) for all compact subsets K ⊂ Ω. Analogously, we can
derive P(O) ≥ ν(O×X) for every open subset O ⊂ Ω with the similar argument. As the
measures P and ν are regular, we have P(A) = ν(A×X) for every A ∈ F . Thus,

ν ◦ proj−1
Ω = P,

where projΩ : Ω×X → Ω is the natural projection. By (4.3), for any f ∈ C(E), we have

lim
n→∞

L( 1
|Fn|

∑
g∈Fn f ◦ g)
L(1)

=

∫
f dν. (4.4)

This shows

L(−RmdimE(F, s, d))

L(1)
=

∫
−RmdimE(F, s, d) dν = −RmdimE(F, s, d). (4.5)

By Proposition 3.18, there is the equality that

RmdimE,ν(F, s, d) = inf
f∈AC(E)

∫
f dν, (4.6)

where AC(E) := {f ∈ C(E) : RmdimE(F,−f, s, d) ≤ 0}. By Fact 3.15, for each f ∈ AC(E)
and g ∈ G, we have f ◦ g ∈ AK, which yields by (4.4) and the linearity of L that∫

f dν = lim
n→∞

1

|Fn|
∑
g∈Fn

L(f ◦ g)
L(1)

≥ inf
f∈AK

L(f)

L(1)
. (4.7)

Thus, by (4.1), (4.5), (4.6) and (4.7) and the linearity and non-negativity of L, we obtain

RmdimE,ν(F, s, d)−RmdimE(F, s, d)+ 2ε ≥ inf
f∈K2

L(f)

L(1)
+
L(−RmdimE(F, s, d))

L(1)
+ ε > 0.

Letting ε→ 0 and µ range over MP(E) yields

RmdimE(F, s, d) ≤ sup
µ∈MP(E)

RmdimE,µ(F, s, d).

To prove RmdimE(F, s, d) = sup
µ∈MG

P (E) RmdimE,µ(F, s, d), it suffices to show that

there exists µ ∈ MG
P (E) such that RmdimE(F, s, d) ≤ RmdimE,µ(F, s, d). By Fact 3.15,
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for every f ∈ A and g ∈ G, we have f ◦ g ∈ A, and thus by Proposition 3.17, for each
µ ∈ MP(E), there is the inequality that

RmdimE,µ(F, s, d) ≤
∫
f dµg−1.

This yields, by letting f range over A,

RmdimE,µ(F, s, d) ≤ RmdimE,µg−1(F, s, d), (4.8)

for every g ∈ G. For each n ∈ N, pick νn ∈ MP(E) such that

RmdimE(F, s, d)−
1

|Fn|
≤ RmdimE,νn(F, s, d).

Let µn = 1
|Fn|

∑
g∈Fn νng

−1. By Lemma 4.2, there is a limit point µ ∈ MG
P (E) of (µn)n∈N

in weak∗-topology. Without loss of generality, we may assume limn→∞ µn = µ. For every
n ∈ N and g ∈ Fn by (4.8), we have

RmdimE(F, s, d)−
1

|Fn|
< RmdimE,νn(F, s, d) ≤ RmdimE,νng−1(F, s, d),

then summing g ∈ Fn and dividing |Fn| yields by (1) of Proposition 3.19 that

RmdimE(F, s, d)−
1

|Fn|
<

1

|Fn|
∑
g∈Fn

RmdimE,νng−1(F, s, d) ≤ RmdimE,µn(F, s, d).

Letting n → ∞ results in by (2) of Proposition 3.19 that RmdimE(F, s, d) ≤
RmdimE,µ(F, s, d), which shows the statement. �

Remark 4.4. The first key technique in the proof of our variational principle
is a convex analysis approach set up by Bís–Carvalho–Mendes–Varandas in [3] or
Cioletti–Silva–Stadlbauer in [8], where they considered an upper semi-continuous affine
entropy-like map, established an abstract variational principle for both countably and
finitely additive probability measures and proved that equilibrium states always exist.
As our mean dimensions can be regraded as is an entropy-like maps, we borrow part of
their idea to establish our variational principle.
The second key technique is borrowed from [55] by Yang et al. We use an approach

of Stone vector lattice to overcome the problem: according to Bís’s method in [3],
the Riesz’s representation is a critical tool to prove variational principle; however, the
Riesz’s representation theorem holds only for all continuous functions. Unfortunately,
f ∈ L1

E(Ω, C(X)) composing g ∈ G may be no longer continuous, which is an obstruction
to construct a probability measure on Ω × X having marginal P. Moreover, although
L1
E(Ω, C(X)) is also a Stone vector lattice, we still need construct the auxiliary set K, on

which L(·)
L(1) is a pre-integral, so that we can apply Lemma 4.1.
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5. Equilibrium states

In this section, we introduce a notion of equilibrium state for amenable random upper
metric mean dimension with potentials and discuss its properties.

Definition 5.1. Let f ∈ L1
E(Ω, C(X)), if a measure µ ∈ MP(E) satisfies

RmdimE(F, f, s, d) = RmdimE,µ(F, s, d) +

∫
f dµ,

then µ is said to be an equilibrium state of f with respect to the Følner sequence s and
metric d. Denote MP(E , f, s, d) the set of all equilibrium states of f with respect to s and
d.

Note that if RmdimE(F, s, d) = ∞ then by the convention that any infimum over empty
set equals ∞ we have MP(E , f, s, d) = MP(E).

Definition 5.2. Let µ be a finite sign measure on (Ω × X,F × B) with marginal
measure P. We say µ is a tangent functional at f ∈ L1

E(Ω, C(X)) with respect to s and d
if

RmdimE(F, f + ϕ, s, d)− RmdimE(F, ϕ, s, d) ≥
∫
ϕdµ

for every ϕ ∈ L1
E(Ω, C(X)). Denote TP(E , f, s, d) the set of all tangent functional at f

with respect to s and d.

Theorem 5.3. Suppose RmdimE(F, s, d) <∞ then

(1) MP(E , f, s, d) is non-empty, convex and compact for every f ∈ L1
E(Ω, C(X));

(2) For every f ∈ L1
E(Ω, C(X)),

MP(E , f, s, d) = TP(E , f, s, d) =
⋂
n≥1

Mn,

where Mn = {µ ∈ MP(E) : RmdimE,µ(F, s, d)+
∫
f dµ > RmdimE(F, f, s, d)− 1

n}
for every n ∈ N;

(3) there exists a dense subset L ⊂ L1
E(Ω, C(X)) such that MP(E , f, s, d) is a

singleton for every f ∈ L .

Proof. (1) By Proposition 3.19, the function RmdimE,·(F, s, d) : MP(E) → R is upper
semicontinuous, which implies MP(E , f, s, d) 6= ∅.
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Let µ, ν ∈ MP(E , f, s, d) and t ∈ [0, 1], then

RmdimE(F, f, s, d) = tRmdimE(F, f, s, d) + (1− t)RmdimE(F, f, s, d)

= tRmdimE,µ(F, s, d) + (1− t)RmdimE,ν(F, s, d)

+ t

∫
f dµ+ (1− t)

∫
f dν

≤ RmdimE,tµ+(1−t)ν(F, s, d) +

∫
f d(tµ+ (1− t)ν)

≤ RmdimE(F, f, s, d),

which shows MP(E , f, s, d) is convex.
Let µ ∈ MP(E) and (µn)n∈N ⊂ MP(E , f, s, d) such that limn→∞ µn = µ. By (2) of

Proposition 3.19,

RmdimE(F, f, s, d) = lim sup
n→∞

RmdimE,µn(F, s, d) +

∫
f dµn

≤ RmdimE(F, f, s, d).

This yields MP(E , f, s, d) is closed and compact.
(2) Note that MP(E , f, s, d) =

⋂
n∈NMn. Let µ ∈ MP(E , f, s, d), then

RmdimE(F, f + ϕ, s, d)− RmdimE(F, f, s, d)

≥ RmdimE,µ(F, s, d) +

∫
f + ϕdµ− (RmdimE,µ(F, s, d) +

∫
f dµ)

=

∫
ϕdµ.

Thus, µ ∈ TP(E , f, s, d) and MP(E , f, s, d) ⊂ TP(E , f, s, d).
Let µ ∈ TP(E , f, s, d), then for any ε> 0 and ϕ ∈ L1

E(Ω, C(X)) with ϕ> 0,

∫
ϕdµ+ ε = −

∫
−(ϕ+ ε) dµ

≥ − RmdimE(F, f − (ϕ+ ε), s, d) + RmdimE(F, f, s, d)

≥ − RmdimE(F, f − inf
(ω,x)∈E

(ϕ(ω, x) + ε)), s, d) + RmdimE(F, f, s, d)

= inf
(ω,x)∈E

(ϕ(ω, x) + ε).

This means that µ is a non-negative measure on E . By fact 3.11, if n ≥ 1, then we have

∫
n dµ ≤ RmdimE(F, f + n, s, d)− RmdimE(F, f, s, d) = n,
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which shows µ(E) ≤ 1. Likewise, if n ≤ −1, then we can derive µ(E) ≥ 1. Hence,
µ ∈ MP(E). Fix ϕ ∈ L1

E(Ω, C(X)). As µ ∈ TP(E , f, s, d), we have

RmdimE(F, f + ϕ, s, d)−
∫
f + ϕdµ ≥ RmdimE(F, f, s, d)−

∫
f dµ.

Then, by substituting ϕ with ψ = ϕ− f ∈ L1
E(Ω, C(X)) in above inequality, we obtain

RmdimE(F, ϕ, s, d)−
∫
ϕdµ ≥ RmdimE(F, f, s, d)−

∫
f dµ,

which means

RmdimE,µ(F, s, d) ≥ RmdimE(F, f, s, d)−
∫
f dµ.

Therefore, µ ∈ MP(E , f, s, d) and then TP(E , f, s, d) ⊂ MP(E , f, s, d).
(3) As L1

E(Ω, C(X)) is a Banach space, then by [15, Theorem 8, V.9.8] and Fact 3.6,
we derive the statement. �

Corollary 5.4. Let f ∈ L1
E(Ω, C(X)), b ∈ R and µ ∈ MP(E , bf, s, d) such that∫

f dµ 6= 0, then

RmdimE(F, bf, s, d) = 0 ⇐⇒ b = −RmdimE,µ(F, s, d)∫
f dµ

.

6. Open questions

There is still a problem untouched in this paper, i.e., what is the difference between a
random action and the non-random action of a group with respect to its metric mean
dimension? However, interesting examples of metric mean dimension for non-autonomous
dynamical systems are considered in [44, Examples 3.8, 5.7 and 5.8]. Their results suggest
that there are important differences between of a non-autonomous dynamical system
and an autonomous dynamical system with respect to its metric mean dimension. This
motivates us that there could be many other differences between a random action and
the non-random action of a group with respect to its metric mean dimension. We leave
it as an open question and further work.
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(19) Y. Gutman and A. Śpiewak, Around the variational principle for metric mean dimension,
Studia Mathematica 261(3), (2021).

(20) M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic
maps, I. Math. Phys. Anal. Geom., 2(4) (1999), 323–415.

(21) W. Huang and K. Lu, Entropy, chaos, and weak horseshoe for infinite-dimensional
random dynamical systems, Comm. Pure Appl. Math. 70 (no. 10) (2017), 1987–2036.

(22) D. Kerr and H. Li, Ergodic theory independence and dichotomies, Springer, (2016).

(23) K. Khanin and Y. Kifer, Thermodynamic formalism for random transformations and
statistical mechanics, Sinai’s Moscow Seminar on Dynamical Systems, Amer. Math. Soc.
Transl. Ser. 2, 171, Amer. Math. Soc., Providence, RI (1996), 107–140.

(24) Y. Kifer, Ergodic theory of random transformations, Progress in Probability and
Statistics, 10, Birkhäuser Boston Inc., Boston, MA, (1986).

(25) Y. Kifer, On the topological pressure for random bundle transformations, Translations of
the American Mathematical Society-Series, 2 (2001), 197–214.

https://doi.org/10.1017/S0013091524000257 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000257


A variational principle of amenable random metric mean dimensions 23

(26) Y. Kifer and P. Liu, Handbook of dynamical systems: chapter 5 – random dynamics,
Editor(s): B. Hasselblatt, A. Katok, Elsevier Science, 1Part B (2006), 379–499. ISBN
9780444520555.

(27) F. Krieger, Minimal systems of arbitrary large mean topological dimension, Isr. J. Math.
172 (2009) 425–444.

(28) P. Liu, Dynamics of random transformations: smooth ergodic theory, Ergodic Theory
Dynam. Systems 21no. 5 (2001), 1279–1319.

(29) P. Liu, A note on the entropy of factors of random dynamical systems, Ergodic Theory
Dynam. Systems 25no. 2 (2005), 593–603.

(30) H. Li and B. Liang, Mean dimension, mean rank, and von Neumann-Lück rank, J. Reine
Angew. Math. 739 (2018) 207–240.

(31) Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical
systems in a Banach space, Mem. Amer. Math. Soc. 206(no. 967) (2010), vi+106.

(32) Z. Lian, P. Liu and K. Lu, Existence of SRB measures for a class of partially hyperbolic
attractors in Banach spaces, Discrete Contin. Dyn. Syst. 37(no. 7) (2017), 3905–3920.

(33) Z. Li, Equilibrium states for random lattice models of hyperbolic type, J. Diff. Equat.
265(no. 10) (2018), 4798–4819.

(34) Z. Li and D. Tang, Entropies of random transformations on a non-compact space, Results
Math. 74(no. 3) (2019), Paper No. 120, 15.

(35) Z. Li and Y. Zhu, Entropies of commuting transformations on Hilbert spaces, Discrete
Contin. Dyn. Syst. 40(no. 10) (2020), 5795–5814.

(36) E. Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146(no. 2),
259–295 (2001).

(37) E. Lindenstrauss and M. Tsukamoto, From rate distortion theory to metric mean
dimension: variational principle, IEEE Trans. Inf. Theoryy, 64(5) (2018), 3590–3609.

(38) E. Lindenstrauss and M. Tsukamoto, Double variational principle for mean dimension,
Geom. Funct. Anal. 29 (2019), 1048–1109.

(39) E. Lindenstrauss and B. Weiss, Mean topological dimension. Israel J. Math. 115 (2000),
1–24.

(40) F. Ledrappier and L.-S. Young, Dimension formula for random transformations, Comm.
Math. Phys. 117 (1988), 529–548.

(41) X. Ma, J. Yang and E. Chen, Relative tail entropy for random bundle transformations,
Stoch. Dyn. 18no. 1 (2018), 1850005, 23.

(42) D. S. Ornstein and B. Weiss, Ergodic theory of amenable group actions, I. The Rohlin
lemma, Bull. Amer. Math. Soc. (N.S.) 2no. 1 161–164 (1980).

(43) D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable
groups, Journal d Analyse Mathématique 48(1) (1987), 1–141.
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