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On soluble groups of prime-power exponent

Warren Brisley and L. G. Kovacs

2
Let p be a prime and A the variety of elementary abelian

by elementary abelian p-groups. A result of Brisley and

Macdonald is generalized as follows. If H is a finite group

2
in A and G is a soluble group of p-power exponent such

that no section of G is isomorphic to H , then G is

nilpotent and its class is bounded by a function of three

variables: H , the exponent of G , and the soluble length of

G . It is a corollary that if the variety generated by a

2
soluble group G of finite exponent contains A , then each

2
finite group in A is isomorphic to some section of G .

In a recent paper [/], Macdonald and the first-named author proved

(on the way to their Theorem 3.3) that the class of a metabelian regular

p-group of exponent p is at most 1 + m(p-l) . This paper is concerned

with extending their result.

The first step (suggested by Dr James Wiegold) is to use a well-known

argument based on a theorem of Ha I I [3] (sharpened by Stewart [6]) to

eliminate the assumption "metabelian" at the cost of replacing the class

bound 1 + m(p-l) by a function which depends also on the soluble length

of the group (and which we shall not attempt to optimize). The second is

to note that while in [/] regular p-groups were nilpotent by definition,

in this context it is sufficient to assume that we are dealing with a

soluble group (of finite exponent) whose finite sections are all regular
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p-groups. Thus if E, is the class of those finite p-groups which are not

regular', then H has the property (p) : if G is a soluble group of

p-power exponent such that no section of G belongs to II , then G is

nilpotent and i ts class is bounded in terms of i ts exponent and soluble

length. It is then natural to ask what other classes of groups have (p) .

(By a class of groups we always mean a union of isomorphism classes, but of

course we do not insist that a class should contain the one-element

groups.) The answer is that a class H has (p) if and (obviously) only

if i t contains at least one finite group from A (the variety of

elementary abelian by elementary abelian p-groups). Since the standard
2

wreath product of two groups of order p is an irregular group in A ,

this answer includes the claims made above. Its nontrivial core is the

2
THEOREM. If H is a finite group in A and G a soluble group

of p-power exponent such that no section of G is isomorphio to H , then

G is nilpotent and its class is bounded by a function of three variables:

H , the exponent of G , and the soluble length of G .

The proof splits into two parts. The f i rs t , based on the Hall-Stewart

Theorem mentioned earlier, results in

LEMMA 1. Let G be a soluble group of length s and exponent p
2

If the A -sections of G are all nilpotent, then G is nilpotent, and

its class is bounded in terms of s , p , and the maximum of the classes
2

of its A -sections.

The second part, which exploits properties of wreath products of

elementary abelian p-groups and makes use of a result of Gupta and Newman

[2] , yields what is s t i l l needed for the Theorem:

2
LEMMA 2. Let H be a finite group in A . If G is a group in

2
A such that no section of G is isomorphic to H , then G is nilpotent

and its class is bounded in terms of H .

In fact, the resu l t in [7] did not need to use the exponent of the
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group: the exponent of the commutator subgroup would have served equally-

well. Exploring the possibilities suggested by this fact, one may enquire

about classes II with the property (p, a) : if G is a soluble p-group

such that the (e+l)st term N. (G) of the lower central series of G has

finite exponent and no section of G belongs to H , then G is

nilpotent and its class is bounded in terms of a , the exponent of

N. (G) , and the soluble length of G . The answer (for o > 0 ) is that a

class H has (p, a) if and only if it contains at least one finite

elementary abelian by cyclic p-group and at least one finite group from

2
A . The proof runs along similar lines and we do not present it.

It is an immediate consequence of Lemma 2 that if a group G

2 2
generates A then each finite group in A is isomorphic to some section

of G . We do not know of any other varieties with this property. For

2
A , we have the more general

COROLLARY. If a class ^ of groups generates a soluble variety of

2 2
finite exponent which contains A , then every finite group in A is

isomorphic to some section of some group in )( .

2
For, suppose H is a finite group in A which does not occur as a

section of any group in X. • By our Theorem, every p-section of every

group in )C is nilpotent of class at most a , say. By Lemma k.3 of

2
Higman [4], each finite group of A is isomorphic to some section of some

finite direct product G, x • • • * G of groups from )C , and hence to a

section of a direct product K of finite subgroups K-., ..., K of groups

from X . The p-sections of K are sections of a Sylow p-subgroup p

of K , and P is isomorphic to a direct product of Sylow p-subgroups P.

of the groups K. . As the P. are p-subgroups of groups in X , their
% %• —

classes do net exceed c , so the class of P is also at most c . Thus

2
it would follow that every finite group in A has class at most c ,
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which is not the case.

Before proceeding to technicalities, we mention that it would be

interesting to know more about classes, especially single isomorphism

classes, which have the property (p*) : if G is a soluble group of

p-power exponent such that no section of G belongs to E , then G is

nilpotent. A slight extension of the proof of Lemma 2, together with Lemma

1, shows that if H is a direct product of a countably infinite

2
elementary abelian p-group and a finite group from A , then (the

isomorphism class of) H has (p*) . Does every extension of a finite

elementary abelian p-group by a countable elementary abelian p-group have

(p*) ? In particular, does a central product of countably many nonabelian

groups of order p 3 have (p*) ? Does the countable, restricted direct

power of a cyclic group of order p 2 have (p*) ? Can any nonnilpotent

group have (p*) ? We have no answers.

The rest of the paper consists of the proofs of the two lemmas. We

shall use the notation and terminology of Hanna Neumann's book [5], with

three exceptions: we use "section" rather than "factor"; we write the

verbal subgroup of a group G corresponding to the variety V. as VJ.G)

rather than V{G) , and we do not reserve the letters G and H for

relatively free groups. Some additional notation will be introduced as it

becomes necessary.

Our first aim is to prove Lemma 1 under the additional assumption that

G f. A A . This is done by induction on the exponent, say p , of

A (G) . If n = 1 then G ( A and there is nothing to prove. For

n > 1 , put q = pH~ and let a denote the class of G/k A (G) . If

g , g , ..., 0p are arbitrary elements of G , we have that

[gQ, gx, ..., gQ] = gq for some g in A (G) and that

[g, g , .. . , jjp ] € A. A (G) . Exploiting the facts that G is

metabelian and A A. (G) has exponent dividing q , standard commutator

calculations show that
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[0O, 9 V •-., 92a].= [gq, 9 O + 1 , •••, 92c\ = [9,

so that G is nilpotent of class (at most) 2c . (Clearly, a little more

care would have produced a much better estimate, but we are only concerned

here with showing the existence of a bound.)

We are now ready to prove Lemma 1 in general. Note that as G is

soluble of length s and has exponent p , it lies in A m S , so that if

k is the least positive integer with G € A then k 5 ms . The proof

runs by induction on k , starting with trivial initial steps k = 1, 2 .

k~ 1
For the inductive step, put N = A (C) and assume, as N € A , that

N is nilpotent and its class d is bounded in terms of the relevant

parameters. By the previous paragraph, we know that G/N' is also

nilpotent and its class o is similarly bounded. It remains to appeal to

Stewart [6] to obtain that G is nilpotent of class at most

ad + (e-l)(d-l) . This completes the proof of Lemma 1.

In preparation for the proof of Lemma 2, we note that it is sufficient

to prove that lemma for the case when H is a (standard) wreath product

Wy of a group C of order p and an elementary abelian group <f~ of

k 2

order p . Indeed, suppose H is any finite group in A , say, with

|A {H)\ = pa and |#/A (H)\ = p 6 . By the embedding theorem (22.21 in

[5]), H can be embedded in C1" Wr C6 , which in turn (use 22.lU of [5])
k 6

can be embedded in W, provided p 2 op . Thus if no section of a group

G is isomorphic to H , no section of G can be isomorphic to W1

either.

As further preparation, we take the (presumably well-known) fact that

W, is the unique extension of the regular C^-module V-, (over the field

of p elements: all modules considered will be over this field) by C

Uniqueness turns on the claim that every extension of V. by Cr splits;
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one quick way to see this is by exploiting the details of the embedding

theorem (22.21 of [5]) as follows. Let V be an arbitrary extension of

F, by C , and identify V, with the appropriate normal subgroup of V .

k Jc

Embed V and C in the wreath product W of V, by Cr , the latter as

a complement of the "base group" B of W , in such a way that the action

of Cr on V, by conjugation in W is the original regular action. Then

V. , as a regular and hence injective submodule of the C -module B , has

a complement K in B which is also a submodule of B , that is, a normal

subgroup of W . Since VB = W and V n B = V, so that VK = W and

V n K = 1 ,

V = VK/K = W/K = C^B/K = C^K/K.V K/K

with CrK/K n V,K/K = 1 . As in the isomorphism above V, corresponds to

V,K/K , this shows that V splits over V. as claimed.

We shall need one more fact, a direct consequence of the work of Gupta

and Newman [2]: a group G in A is nilpotent of class 1 + fc(p-l) if

[g, {p-l)g1, ..., {p-l)g/\ = 1 whenever g € G' and g±, ..., g^ t G .

In order to prove Lemma 2, it is now sufficient to show that if G is

2
a group in A and g € G' , g. g, i G such that

\_9' (p-llj,) •••» (p~l)£r,] ^ 1 5 then some section of G is isomorphic to

(7, . We proceed to select such a section. Let A denote A (G) , and S

the subgroup of G generated by g., ..., g, , and A : then 5/4 is an

elementary abelian p-group generated (possibly redundantly, for what we

know at this stage) by g.A g-,A , and A is an 5/4-module in the

obvious sense. Denote by U the normal closure of g in S , that is,

the submodule of A generated by g . Write W, as a semidirect product

CrV. ; let {a c,} be a generating set of Cr , and V a (free)

https://doi.org/10.1017/S0004972700046736 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700046736


Soluble groups 395

generator of 7, qua CT-module. Consider A also as a C -module via

the homomorphism a of u onto S/A which maps each a. to g .A , and

let i) be the ^-homomorphism of 7, onto V which maps v to g .

Now it is well known that \v, (p-l)o , ..., (p-l)e,] generates the unique

minimal normal subgroup of (/, , that is, the unique minimal submodule of

V, ; since this element is mapped by <J> to the nontrivial element

\g, (p-l)g , ..., (p-l)g,] , § must be an isomorphism. As 7, is a

faithful C; -module, this implies that so are U and A , and therefore

that a is also an isomorphism. Moreover, now we know that U is a

regular and hence injective submodule of A , so that U has a complement

T in A which is also a submodule, that is, a normal subgroup of S • It

follows that S/T is an extension of A/T by S/A , or of F, by Cr on

account of a and the composite of (j> with the natural isomorphism

U ->• UT/T = A/T . Hence S/T = W, , and the proof is complete.
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