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ABSTRACT. Today, it is possible to estimate the density of snow in many different
ways (gravimetry, attenuation of gamma rays and velocity of electromagnetic waves). In
this paper, we suggest using the acoustic properties of snow. First, we recall the main
studies on the acoustic properties of snow. Then, we show, from laboratory measurements,
the correlation between density and the acoustic parameters of snow. We found a very
good correlation between density and the modulus of the normalized characteristic impe-
dance. We also show that use of a three-parameter model simulating the propagation of an
acoustic wave in porous media allows one to calculate the density of snow from its acoustic

porosity.

LIST OF SYMBOLS

A Complex conjugate value of A

o Coefficient of attenuation of the propagation of
an acoustic wave through the snow

B Prandtl number

(@ Sound velocity in free air

Cy,Cp  Specific heats

d Density

e Backing length

i Frequency

¢ Phase of the characteristic impedance W of snow

¥ Propagation constant

By Propagation constant measured with impedance
tube

h Acoustic porosity

P Gravimetric porosity

I, (A)  Imaginary partof A

j Imaginary unit

J; Bessel’s function of order @

k Coeflicient of structure

K= H Ratio of specific heats

l Sample length

A Wavelength in free air

Napp Apparent thermal conductivity

Ab Thermal conductivity

Nt Minimal wavelength in air according to a plane-
wave condition in a tube

s Reflected component of py

P+ Incident component of p

Pi Fourier transform of acoustic pressure at micro-
phone i

q Cloefficient of tortuosity

R Pore radius

R? CloefTicient of determination

T Complex reflection coeflicient at sample surface

P Volumetric mass

Pe Equivalent complex volumetric mass
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Real(A) Real partof A

Ry, Pore radius taking into account thermal effects
JE Pore radius taking into account viscous effects

&y Pore-shape ratio factor

v Cinematic viscosity of air

w Characteristic impedance ratio with respect to

the free-air wave impedance

w Radian frequency

Wi Characteristic impedance ratio measured with
the impedance tube

A Sample normal acoustic impedance ratio

p = Rywfu

INTRODUCTION

In this paper, the notation of Zwikker and Kosten (1949)
will be used. No derivations of the formulae will be given,
because they can be found in Zwikker and Kosten (1949).

The experiments were performed to seek phenomenolo-
gical relationships between acoustic parameters and snow
density. For light snow (p < 300 kg m %, Oura (1952) indi-
cated that the air contained in the snow propagates the
acoustic wave. His observations were confirmed by Ishida’s
(1965) and Buser’s (1986) experiments. For the dense snow
400kgm * < p < 900kgm *) of Greenland, Smith (1965)
found a linear correlation between density and the longitu-
dinal acoustic wave velocity in the ice frame. According to
Bogorodsky and others (1974), Sommerfeld (1982) and Lee
and Rogers (1985), it seems clear that below 200 kg mfg, the
pore air is more important in sound propagation, whereas
above 300kgm “ propagation in the ice frame is more
important. Johnson (1982) tried to explain this phenomenon
by using the theory of Biot (1962) which predicts the exis-
tence of two longitudinal acoustic waves. They involve
coupled motion between the interstitial air and the ice
frame. Buser (1986) and Attenborough and Buser (1988) sug-
gested the rigid-frame model of porous media for snow when
only the movement of pore air is of interest, which has been
validated up to 400 kg m .
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To measure the density of all sorts of snow, the method
used by Smith (1965) would be the best if measurements of
the longitudinal wave pressure in the frame did not require
a perfect contact between the sensors and the ice grains of
the skeleton. However, Zephoris and others (1975) showed
that this experimental constraint is very difficult to meet
with light snow (p < 300kgm “). For these densities, Buser
and Good (1987) found that the acoustic porosity, h, a para-
meter of Zwikker’s and Kosten’s (1949, p. 18-21) rigid-frame
model is identical to the gravimetric porosity up to a density
of 400 kgm >,

Our final goal is to find a method of measuring the den-
sity inside the body of a flowing dense avalanche where the
density of the snow can reach 700 kgm 7,

In this paper, experiments were performed, first to seck
a correlation between the density of dense snow (up to
680 kgm ) and one of its acoustic parameters, and sec-
ondly to verify the validity of the rigid-frame model to des-
cribe acoustic waves in the pore air for this dense snow.

EXPERIMENTAL PROCEDURE

The selection of snow samples and the method used to meas-
ure their acoustic parameters are the main aspects of the ex-
perimental procedure to be described.

Sampling

Naturally deposited snow density wvaries from 200 to
500 kg m . Snow is a porous medium in which the ice grains
form a skeleton. The shape and the size of these grains vary
according to the state of snow metamorphism and deposited
snow density is not entirely independent of the ice-grain
shape. Usually, light snow is a compound of fresh or
branched snow and dense snow is composed of more
rounded particles produced by metamorphosis. Sound
propagation through snow pores may be influenced by the
frame structure. In this study, snow samples of each kind
were compacted mechanically to obtain 55 snow samples
with pvarying from 142 to 682 kg m * (Fig, 1). This sampling
includes and extends that used by Buser (1986).

The snow samples have a diameter of 3 cm. Their thick-
ness is between 6 and 4cm when p < 400kgm * and
between 2 and 1 em for dense snow.

To allow the snow-sample temperature to reach equili-
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Fig. 1. Snow samples.
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Fig. 2. The experimental pracedure for preparing the compact-
ing snow sample.

brium with the cold-room temperature, the snow samples
were prepared not less than 1 day before they were used for
acoustic measurements. They were stored in a cold room at
-10°C.

An hydraulic press was used to compact the snow in the
cold room (I mm min"), This procedure (Fig. 2) provided
homogeneous snow samples.

Acoustic measurements

The characteristic acoustic parameters of a material are W,
the characteristic impedance ratio with respect to the free-air
wave impedance, and 4, the propagation constant (see list of
symbols). A two-microphone impedance-measurement tube
was used. This method was developed by Chung and Blaser
(1980a, b), and the associated error analysis was studied by
Seybert and Socnarko (1980) and Bodén and Abom (1986).

The basic principle of the two-microphone method is to
measure the acoustic pressure of a broad-band stationary
random signal by microphones at two locations on the wall
of the tube. After a Fourier transform, the acoustic pressure
spectra at microphone | and microphone 2 (Fig. 3) may be
written as:

n(f) = pi(w) +p-(w), (1)

pa(f) = p (@) exp(—i G—d) + p- ) explie—d)  (2)

where f = w/27 is a frequency for which there is a plane
wave in the tube, p; is the Fourier transform of acoustic pres-
sure at microphone i, py and p_ are respectively the incident
and reflected component of py and Cy;, is the speed ol sound.
Using the notation of Figure 3, the complex reflection coef-
ficient at the surface of the sample is:

p+(f) <
) = i
(f) ) (3)
Using Equations (1) and (2), one obtains:
pi(f) W
e exp(—_}%“d)
r(f) =22 e (4)

exp(Jet9) — iy
Then the normal acoustic impedance ratio Z is:

1+7r
l1—r

B (5)

So, with only one measurement, the two-microphone
method can give Z for each frequency of the plane-wave do-
main. 1o calculate W and «, one needs two values of Z for
different backing distances e. With the two-microphone
method, it is impossible, for a random signal, to work with
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Fig. 3. The basic configuration of the two-microphone method.

only one wavelength. To obtain W and - one uses the basic
equations:

Z'(e = 0) cosh(+l) + W sinh(+1)

Ze =W G0y simbol) T W eosh(d) — 7 0t (6)
s Z'(€) cosh(ryl) + W sinh(vl)
“= Z’( ) sinh(~yl) + W cosh(~1) (7)
with
Z'(e=10) # Z'(e). (8)
Or,

Z'(e)= —jcot(Ci e) and Z(e=0)=o0. (9)

/air

So, Equation(8) implies
A
e ng (o

If one chooses 0 < & < Apip /2 (A
length in air satisfying the condition for plane waves in the
tube), one obtains from Equations (6) and (7):

cot(vyl) = %

w2 = Z()(Zr((f) on

integer # 0) . (10)

win 18 the smallest wave-

(11)
Z)— Ble)E . (12)

The real part of W is positive and there is only one pair
of complex solutions (W, ).

For the experiments presented in this paper, we used
Briicl and Kjer’s two-microphone impedance measurement
tube type 4206 with the high-frequency tube (from 500 to
6.4 kHz). This tube is supplied with two specially designed
%iuch condenser microphones type 4187 with preamplifiers
(type 2633) and application software BZ 5050. The meas-
urement set-up is controlled by a Briiel and Kjeer (1983) mul-
ti-channel analysis system. With this equipment, the time
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Fig. 4. Relation between denstty d and phase ¢ of the charac-
teristic impedance ratio W data_from Buser (1966) (M)
and this study( ).
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that the snow sample was in the sample holder was never
longer than 10 minutes. This is important when investigat-
ing snow, even in a cold room at —10°C.

According to Buser’s (1986) work, the frequency range of
interest is 5004096 Hz. Z. and Z, were calculated for 25
different frequencies with a step of 150 £ 2 Hz and e (Fig.
3) was taken equal to 0.0l m,

RELATIONSHIP BETWEEN DENSITY AND THE
ACOUSTIC PARAMETERS OF SNOW

The acoustic properties of snow are defined by the two
complex numbers, W = |W/|(cos¢ + jsing) and =

a+ jlw/C).

Four real numbers can be distinguished:

|W| and ¢, respectively the modulus and the phase of
the characteristic impedance W of the snow.

a and C, respectively the coeflicient of attenuation and
the velocity of propagation of an acoustic wave through
SNOW.

Relationship between d and respectively v and ¢

Figures 4 and 5 show there is no straightforward relation-
ship between density d and the coeflicient of attenuation o
of propagation of an acoustic wave through snow or the
phase ¢ of the characteristic impedance ratio W of snow.

Relationship between d and '

The density is not the main explicative parameter of sound
velocity, Measurements only show that the tendency of the
velocity is to decrease when the density increases (Iig. 6).
This can be explained by the fact that acoustic waves are
propagated through the pores of the snow. The higher the
density, the narrower and more tortuous the pores are. The
scatter observed is caused by the shapes of the ice grains.
The relation between d and C cannot be used to obtain an
acceptable estimate of d from a measurement of C.

Relationship between d and |IV|

There is a very good relation between log |W| and d (Fig. 7).
One obtains:

log(|W|) = 0.06 — 1.55log(1 —d)  R*=0.918 (13)

This relation indicates that the propagation of an acous-
tic wave through a snow sample cannot be compared to a

601

50 A

40 A MA
- A
'E 30 Mﬁé AﬁA A
=] A %

204 e A" A

- A A
10 o oh ﬁ.ﬂ A
0 T T | o | T T 1
0,0 0,1 02 03 04 05 06 07

Fig. 5. Relation hetween density d and atlenuation coefficient
ev; data from Buser (1986) (M) and this study( /).
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phenomenon of percolation, because the propagation
becomes impossible only when there are no pores in the
snow (d = 1). This result does not depend on the quality of
the surface of the sample.

THE RIGID-FRAME MODEL
Presentation

In this third part, the derivation of the theory developed by
Zwikker and Kosten (1949, p.25-48). restated by Buser
(1986) and Marco (1994) and revised by Attenborough
(1982), will not be presented. According to this theory and
the [requency range of interest, W and 5 are given by the
following mathematical expressions (Attenborough, 1982):

w_VE (1 _ 2i(u/=5) )*“-5
h /=3 Jo (/=)
(1 LU= 1), h(Bu\/T})
Bp/=jJo( Bu\/— )
= Y (14 2= DB/ y -0
G Bu\/_Ju(Bu\/_
(1 B 2Jl_(m/—7) ‘ ) R (14)
v/ =3 do(puv/=3)
J; 1s the Bessel’s function of order i; B is the Prandtl Num-
ber; & = C,/C}, is the ratio of specific heats; pu = R\/m
with v the kinematic viscosity of air included in the pores.
The three parameters of this wave-propagation model are :

R. Average radius of pores compared to cylindrical uni-
form tubes which are not interconnected. One may also
assume slits of uniform width. But according to Atten-
borough and Buser (1988), significant variations in pore
cross-sections along their length and between pores
might require different values of 1 in the density and
stiffness calculation. Attenborough suggested the use of
25, R in place of R. s,is frequency-dependent if the pores
are non-cylindrical and has a constant value of 0.5 if the
pores are cylindrical. Buser (1986) suggested that, if this
model needs a fourth parameter, one has the possibility
of considering two radii Ry and Ry, the first one for the
viscous effects (taken into account by an equivalent
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Fig. 7. Relation between density d and the modulus of charac-
1v: W Buser (1986);
@ ice grains in front of the surface of the sample; & sample
with a chipped surface.

complex density calculation) and the second one for the
thermal effects (taken into account by an equivalent
complex compressibility calculation).

h Acoustic porosity. In the equation of motion, this poros-
ity is taken as air in the main pores per unit of volume
(that means without closed or side holes where the air is
at rest (Zwikker and Kosten, 1949, p.19-21)). For snow,
up to 400 kg m ?, the value of the acoustic porosity para-

meter of this rigicl-l'r'\me model is equal to the value of
=1=1 09,041(1\\/{)1(0

k  Structure constant. Acmrding to Zwikker and Kosten
(1949, p.25-48), this parameter comes mainly [rom two
effects. The structural properties of the material plays the
most important part (orientation of the pores and ratio of
the total air content to that of the main pores). The second
effect can come from a possible light vibration of the small
parts of the solid skeleton. This parameter is always great-
er than 1. Attenborough (1982) replaced the structure
constant by parameter ¢(= v'k), called tortuosity. In this
paper the last parameter will be used.

grav: imetric pPor ()S]f\

Considering practical materials, Zwikker and Kosten
(1949, p.25-48) also introduced a further constant, the ap-
parent thermal conductivity ,\d[,p which is smaller than the
real thermal conductivity Ay (Aqpp/An < 1). Similarly, we get
an apparent Prandtl number B;.],I, With Bl B = X/ Ason:
This assumption is equivalent to the use of two radii with
Bt Ry = J\HPI)/Ah. The meaning of this fourth parameter
Ry, or Ay, is that the effects of viscosity, for a same pore,
are more important than the thermal ones (Ry, > Ry). For
a medium consisting of spheres, situated on a cubic lattice,
Aapp/An 1s constant and equal to 0.45 and independent of
[requency, radius of the spheres and porosity (Zwikker and
Kosten, 1949, p. 43).

In the first step, we obtain simultaneously the three
parameters by fitting the frequency dependent W and +.

Before each experiment, air pressure and temperature in
the cold room are measured to calculate the speed of sound
and characteristic impedance of the air. Then, functions
Wi(g=1,h=1, R, f) and y(g= 1,h = 1, R, f) are deter-
mined with B equal to 0.86. Values issued from experiments,
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Win(f) and v u( f) are obtained for 25 frequencies. Accord-
ing to the least-squares fitting method, and assuming that
the three parameters are independent of the frequency, the
solution (h, ¢, R) must minimize the function S:

’2

bZ(

+llavla =1,k =1L, B £) = vu(HI7).

We obtain the functions g(R) and h(R) such that S /0h = 0
and 9S/dq =0

+W(g=1,h=1R, fi) - Wulfi)

Z Real(y(h = 1, =1, R, fi) - ¥m(f))
g(R) ==——; (15)
Z yh=1,g=1,R, fi)]
i=1
1 > (W(h=1.=1,R )}
h(R) = =l
B =1m

Wa(f))

(16)

25
Y Real(W(h=1,9=1,R, f)-
i=1

Real(A): real part of complex A.
A: complex conjugate value of A.

So, we need only one parameter /f to minimize the func-
tion S(h(R),q(R), R). The mathematical software MAT-
LAB of Scientific Software Group (Mathworks, 1994), has
been used to fit R for each snow sample. Then, h and g are
calculated easily.

RESULTS

In another paper (Marco and others, 1996), we show that
the rigid-frame model proposed by Zwikker and Kosten
(1949) for porous media cannot explain the acoustic wave
propagation through all snow types, especially not for dense
snow. Certainly, one or more of its three parameters are not
constant in the frequency range used.

The only interesting result for our problem is the very
good correlation between the acoustic porosity h determined
by minimising S and the gravimetric porosity h, (Fig. 8).
With the phenomenological relationship obtained between d
and |W|, the use of the three-parameter model seems not to
be the most convenient way to determine the density of snow
from measurements of its acoustic parameters.

CONCLUSION

From experiments in a cold laboratory, we found a good re-

lationship between the density of snow and the modulus of

its characteristic impedance. This estimate is much more
convenient than the one obtained by using the existing
three-parameter model describing the propagation of an
acoustic wave through not very dense snow.

The main difficulties for conducting field measurements
to determine density are the uncertainties associated with
the experimental parameters. For example, the exact dis-
tance between the microphones and the surface of the snow
sample has to be known. Unfortunately, this condition will
he very difficult to fulfill for measurements inside the body

ofa Howing)avalanche and even in a natural snow cover.
8A0G26-1-92-96 Published online by Cambridge University Press
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Fig. 8. Relation between acoustic porosity h and gravimetric
porosity hy. O] this study; W Buser (1986); /\ ice grains in
Sront of the surface of the sample; O sample with a chipped
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