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AUTOMORPHISM GROUPS OF LAMINATED NEAR-RINGS

by K. D. MAGILL, JR.
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1. Introduction

Let N be an arbitrary near-ring. Each element a €E N determines in a natural way
a new multiplication on the elements of N which results in a near-ring Na whose
additive group coincides with that of N but whose multiplicative semigroup generally
differs. Specifically, we define the product x * y of two elements in Na by x * y = x a y
where a product in the original near-ring is denoted by juxtaposition. One easily
checks that Na is a near-ring with addition identical to that of JV. The original
near-ring N will be referred to as the base near-ring, Na will be referred to as a
laminated near-ring of N and a will be referred to as the laminating element or
sometimes more simply as the laminator.

Throughout this paper N will be the near-ring of all continuous selfmaps of the
real numbers under pointwise addition and composition of functions. For our
laminating element, we take any odd degree polynomial P and we completely
determine the automorphism group of the laminated near-ring NP. We will find that
there are precisely three possibilities. Aut NP is isomorphic to either the multi-
plicative group of nonzero real numbers, the cyclic group of order two or the trivial
one element group. Furthermore, it will be apparent that in most instances, NP is
rigid. That is, it is the third possibility which generally prevails.

A slight digression is appropriate at this point. The multiplicative part of the
near-ring is, of course, a semigroup and there is the problem of determining its
automorphism group. The solution to that problem turns out to differ considerably
from the analogous problem for near-rings which we treat in this paper. The
automorphism group of the laminated semigroup turns out to be isomorphic to a
Schutzenberger group of the base semigroup. However, this is not really the place to
go into the details and we leave that for a future paper.

2. The main results

Let us first agree upon some notation. The product of two elements / and g in N is
their composition and will be denoted by fog. The product of those same two
elements in the laminated near-ring NP will be denoted by fg. In other words
fg = / ° P ° g. And now we proceed with
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Theorem 2.1. Let P be any odd degree polynomial. Then the following statements
are equivalent

NP has more than two automorphisms; (2.1.1)

Aut NP is isomorphic to RM the multiplicative group of nonzero real numbers; (2.1.2)

NP is isomorphic to N; (2.1.3)

P is a homeomorphism. (2.1.4)

Proof. We show first that (2.1.1) implies (2.1.4). Let <p be an automorphism of NP..
According to Theorem (3.1) of (2, p. 286) there exists a homeomorphism h from R
onto R and a topological isomorphism t from the additive group R of real numbers
such that for each / in NP the following diagram commutes

/ P
R >R >R

We next wish to note that if <pi and <p2 are two different automorphisms then the two
topological isomorphisms t\ and t2 associated with them as in diagram (2.1.5) must
also be different. Suppose to the contrary, that ts = t2 and let /i, be the two homeomor-
phisms associated with cp,(/ = 1,2) as in (2.1.5). Then because the diagram commutes,
we have

ht ° P = P o ti = P ° t2 = h2 o P

Since P is surjective, this means that ht = h2 and this fact together with tt = t2 implies
<P\ = <p2 in view of diagram (2.1.5).

Now let us return to the automorphism <p and the associated topological isomor-
phism t. There exists a nonzero real number a such that t (x) = ax for each x ER.
Since Np has at least three automorphisms and since different automorphisms give
rise to different topological isomorphisms, we are justified in assuming that a¥^ 1, — 1.
We can, in fact, assume still more without any loss in generality. We can assume
a > 1. The reasons for this follow. If a <0, choose the automorphism <p2. One verifies
that the topological isomorphism associated with <p2 is t2 which means t\x) = a2x for
all x. If a2> 1 we are through. If not, choose the automorphism (<p2)"' = <p~2. One then
verifies that the topological isomorphism associated with <p~2 is t~2 which is given by
t~2(x) = a~2x and since 0 < a 2 < 1 we have a~2> 1. Thus, we may, as we previously
asserted, assume that a > 1.

Now we consider the automorphism <p", that is, the n th iteration of <p. The
homeomorphism associated with <p" is h" and the topological isomorphism is t" where
h and t are the maps associated with <p. Thus, t"(x) = a"x for each xGR. Suppose
P(jc) = P(y). Because <p\ h" and t" satisfy a commutative diagram like (2.1.5), we
have

P(a"x) = P o f(x) = h" o P(x) = hn o P(y) = P o f(y) = P(any) (2.1.6)

and this holds for each positive integer n. We want to show that x = y. If x = y = 0 we
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are through. Otherwise, one of them, say y^O. Since P is an odd degree polynomial
and since a > 1, we can choose n so large that

p-\P{any)) = {any). (2.1.7)

This, together with (2.1.6) implies that a"x = a"y which, in turn, implies that x = y.
Thus, P is injective and this completes the verification that (2.1.1) implies (2.1.4).

Now assume that (2.1.4) holds and define a map from NP into N by cp(f) = f° P.
Continuity of P alone is sufficient to insure that <p is a homomorphism. Furthermore,
(f> is injective because P is surjective and <p is surjective because P is a homeomor-
phism. Consequently, (2.1.4) implies (2.1.3).

We established in (1) (see Corollary 4.3 and Example 4.4, p. 105) that Aut N is
isomorphic to RM so that (2.1.3) implies (2.1.2) and since (2.1.2) so obviously implies
(2.1.1) the proof of the theorem is complete.

Now we consider the case where NP has exactly two automorphisms and this
compels us to introduce the following

Definition 2.2. A continuous function / mapping R into R is pseudosymmetric if
f(a) = f{b) implies f(-a) = f(-b).

Theorem 2.3. The automorphism group Aut NP of the laminated near-ring NP is
isomorphic to Z2 the cyclic group of order two if and only if P is pseudosymmetric and
not a homeomorphism.

Proof. Suppose first that P is pseudosymmetric and not a homeomorphism. In
view of Theorem 2.1 Aut NP cannot have more than two elements so we need only
show that it has an automorphism other than the identity. With this in mind, we define
a mapping h from R into R as follows: let any y E R be given. Choose any x e R
such that P(x) — y and define

/i(y) = P(-x) . (2.3.1)

Since P is pseudosymmetric, the definition of /i(y) does not depend upon the point x.
Now suppose that h(y{) = h(y2). Then P(-Xi) = P(-x2) where P(x,) = y, and P(x2) =
y2. But P(—X\) = P(—x2) implies P(*i) = P(x2) again because P is pseudosymmetric.
Thus yi = y2 and h is injective. In addition, it is surjective since P is surjective and it
follows immediately from (2.3.1) that

h ° P(x) = P(-x) for each xeR. (2.3.2)

Among other things, this means that h ° P is continuous so that for any closed subset
H of R we have (h ° P)~l[H] = P'l[h~x[H]] is also closed and since any polynomial is
a quotient map, this means h~l[H] is closed. Thus h is continuous and since it is a
bijection from R onto R, this means that ft is a homeomorphism. Now define a
mapping t from R onto R by t(x) = -x. It then follows from (2.3.2) that

hop = pot. (2.3.3)

We define a mapping <p from NP into itself by <p(f) = t°f° h~l. Since both f and h
are homeomorphisms, <p is a bijection and one easily shows that it is additive. To see
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that it is also multiplicative, use (2.3.3) and get

<p(f)<p(g) = t°f° h~l<> P °t °g o/i"1 = t °f° h~l° h° P ° g° h~l

= t°f°P°g°h-l = t°fg°h-l = <p(fg).

Thus, <p is an automorphism of NP.
We want to show now that <p is not the identity automorphism. Suppose it is and

for any real number x, let (x) denote the constant function which maps everything into
x. Then

This implies t(x) =,x for all x which is a contradiction. Consequently, <p is not the
identity automorphism and the sufficiency portion of the proof has been established.

Now suppose Aut NP is isomorphic to Z2. Then P is not a homeomorphism in
view of Theorem (2.1). Let <p be the automorphism which is different from the
identity. Then by Theorem (3.1) of (2, p. 286) there exists a homeomorphism h from R
onto R and a topological isomorphism t from the additive group R of real numbers
such that for each fE.NP the diagram (2.1.5) commutes. Just as in the proof of
Theorem 2.1, there is a nonzero real number a such that t(x) = ax for all x G R and if
a ¥• 1,-1, then P is a homeomorphism which is a contradiction. Suppose a = 1, that is,
t is the identity map. Then, according to diagram (2.1.5), h(P(x)) = P(t(x)) = P(x) for
all x which, since P is surjective, implies that h also is the identity map. This, in turn,
implies that <p is the identity automorphism which is a contradiction. Consequently,
a = - 1 and we have t{x) = -x for all xER.lt then follows from diagram (2.1.5) that if
P(x) = P(y) then

P(-x) = P(t(x)) = h(P(x)) = h(P(y)) = P(t(y)) = P(-y).

In other words, P is pseudosymmetric and the proof is complete.
The following corollary is an immediate consequence of the previous two

theorems.

Corollary 2.4. The near-ring NP is rigid (that is, admits only the identity
automorphism) if and only if P is not pseudosymmetric.

3. Discussion, examples and further results

In view of the crucial role played by pseudosymmetric polynomials in these
considerations, it is appropriate to discuss them in some more detail. When we speak
of a symmetric function here we mean a continuous selfmap of J? whose graph is
symmetric about the origin, in other words, a continuous function / such that
f(—x) = —f(x) for each x G R. Of course, the symmetric polynomials are simply those
polynomials with no terms of even degree. Evidently, every symmetric polynomial is
pseudosymmetric. To get a pseudosymmetric polynomial which is not symmetric, one
can take any symmetric polynomial and add to it any nonzero constant. There are less
trivial examples and the following result whose easy verification is omitted gives a
recipe for constructing them.
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Proposition 3.1. Let Q be a symmetric polynomial and let T be any polynomial
which is a homeomorphism from R onto R. Then T ° Q is pseudosymmetric.

Example 3.2. Take Q{x) = xi-x and T(x) = xi + x2 + x. Then

P(x) = T(Q(x)) = x9- 3JC7 + x6 + 3x5 -2x4 + x2-x

which is certainly not symmetric but according to the previous result is pseudosym-
metric. It is immediate from Theorem 2.3 that for this particular polynomial P, Aut NP

is isomorphic to Z2.
As we observed previously, an odd degree polynomial with no even degree terms

save the constant term is pseudosymmetric. In view of Example 3.2 the converse is
not true. In the next result we give additional conditions which will force the
converse.

Proposition 3.3. Let P be any odd degree polynomial such that the zeros of its
derived polynomial are all real and distinct. Then P is pseudosymmetric if and only if
it has no terms of even degree with the possible exception of the constant term.

It is convenient to have the following

Lemma 3.4. Suppose P is a pseudosymmetric polynomial and has a local maxi-
mum or a local minimum at the point a. Then it also has a local maximum or a local
minimum at the point -a.

Proof. Choose an increasing sequence {*„} and a decreasing sequence {yn} both
converging to a and satisfying P(xn) = P(yn) for each n. Since the polynomial P is
pseudosymmetric, it takes on either a maximum value in the interior of [—yn, — xn] or a
minimum value there for each n. For sufficiently large n, this must happen at the same
point and that point can only be —a. Consequently, P has either a local maximum or a
local minimum at -a.

Now we are in a position to prove Proposition 3.3. Sufficiency is immediate and we
say no more about it. As for necessity, let {a,-}" • denote the positive real numbers at
which P has either a local maximum or a local minimum. Then according to Lemma
3.4, P also has local maxima and minima at the points {-a,}?li. Now P cannot have a
local maximum or a local minimum at 0 since this would mean that P has an odd
number of local maxima and local minima and this would force the degree of P to be
even. It readily follows

P'(x) = b(x - a , ) . . . (x - aN)(x + a , ) . . . (x + aN) = b(x2-a2)... (x2-a2
N).

Thus P' has only terms of even degree and it readily follows that P has no even
degree terms except for possibly a nonzero constant term.

For a cubic polynomial P, one can determine the automorphism group of the
near-ring NP simply by inspecting the coefficients of the polynomial. The relevant
information is contained in the following.
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Proposition 3.5. Let P(x) = ax3 + bx2+ cx + d (a#0) be any cubic polynomial.
Then

Aut NP is isomorphic to RM the multiplicative group of nonzero (3.5.1)
real numbers if and only if b2« 3ac.

Aut NP is isomorphic to Z2 // and only if b = 0 and ca < 0. (3.5.2)

Aut NP consists of the identity automorphism if and only if b * 0 (3.5.3)
and lac < b1.

Statement (3.5.1) follows from Theorem 2.1. Statement (3.5.2) follows from
Theorem 2.3 and Proposition 3.3 and statement (3.5.3) follows from Corollary 2.4 and
Proposition 3.3.
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