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We report the first experiments on hydrodynamic instabilities of a single-mode light/heavy
interface driven by co-directional rarefaction and shock waves. The experiments are
conducted in a specially designed rarefaction-shock tube that enables the decoupling
of interfacial instabilities caused by these co-directional waves. After the impacts of
rarefaction and shock waves, the interface evolution transitions into Richtmyer–Meshkov
unstable states from Rayleigh–Taylor (RT) stable states, which is different from the finding
in the previous case with counter-directional rarefaction and shock waves. A scaling
method is proposed, which effectively collapses the RT stable perturbation growths. An
analytical theory for predicting the time-dependent acceleration and density induced by
rarefaction waves is established. Based on the analytical theory, the model proposed
by Mikaelian (Phys. Fluids, vol. 21, 2009, p. 024103) is revised to provide a good
description of the dimensionless RT stable behaviour. Before the shock arrival, the
unequal interface velocities, caused by rarefaction-induced uneven vorticity, result in
a V-shape-like interface. The linear growth rate of the amplitude is insensitive to the
pre-shock interface shape, and can be well predicted by the linear superposition of growth
rates induced by rarefaction and shock waves. The nonlinear growth rate is higher than that
of a pure single-mode case, which can be predicted by the nonlinear models (Sadot et al.,
Phys. Rev. Lett., vol. 80, 1998, pp. 1654–1657; Dimonte & Ramaprabhu, Phys. Fluids,
vol. 22, 2010, p. 014104).

Key words: shock waves

1. Introduction

When an impulsive acceleration, such as a shock wave, is exerted on a perturbed
fluid interface with distinct densities, Richtmyer–Meshkov (RM) instability is triggered
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(Richtmyer 1960; Meshkov 1969). Conversely, when continuous accelerations caused by
such as rarefaction waves are exerted, Rayleigh–Taylor (RT) instability or stabilization
occurs (Rayleigh 1883; Taylor 1950; Mikaelian 2009), depending upon whether the
rarefaction waves propagate from heavy fluids into light fluids or vice versa. Interfacial
instabilities have received much attention due to their significant role in various scientific
and engineering applications such as supernova explosions (Kuranz et al. 2018; Musci
et al. 2020), supersonic combustions (Yang, Chang & Bao 2014) and inertial confinement
fusion (ICF) (Betti & Hurricane 2016; Chu et al. 2022). In these applications, shocks
and rarefaction waves, which provide complex acceleration histories, interact with the
interfaces, significantly influencing the development of flow structures. Specifically, in
ICF implosions, the shock wave arrives at the light layers, generating reflected rarefaction
waves that rarefy the previously shocked layers (Lindl et al. 2014). The shock ultimately
reaches the capsule centre and then reflects on itself, reshocking the implosion layers. The
interface between the shell materials and fuels mainly experiences the impacts of three
waves: the incident shock, the reflected rarefactions from the inner heavy/light interfaces
and the reflected shock from the capsule centre (Montgomery et al. 2018; Peterson,
Johnson & Haan 2018). The hydrodynamic instabilities resulting from the interactions
between these waves and the shell/fuel interface, cause the mixing of ablator materials
and fuels, preventing the fusion yield from reaching positive output (Clark et al. 2016).
As a result, it is of significance to study the interfacial instabilities induced by successive
shocks and rarefactions.

Most previous studies focused on the shock- or reshock-induced RM instability
(Brouillette 2002; Ranjan, Oakley & Bonazza 2011; Zhou 2017a,b; Zhou et al. 2019, 2021).
The shock-induced RM instability has been investigated extensively through theoretical
modelling (Goncharov 2002; Dimonte & Ramaprabhu 2010; Zhang & Guo 2016; Liu,
Zhang & Xiao 2023), experiments (Jacobs & Krivets 2005; Vanderboomgaerde et al. 2014;
Reese et al. 2018; Mansoor et al. 2020) and numerical simulations (Holmes et al. 1999;
Latini, Schilling & Don 2007; Dell, Stellingwerf & Abarzhi 2015; Thornber et al. 2019),
and the instability evolution in different regimes has been well understood. The impact
of reshock on an interface deposits additional vorticity, with the direction being either
opposite to or the same as that of vorticity deposited by the shock. In cases with the
opposite vorticity direction, initial multi-mode perturbations with reshock were primarily
focused on (Balakumar et al. 2008, 2012; McFarland et al. 2015; Mohaghar et al. 2017,
2019; Sewell et al. 2021). In these studies, the reshock impact destroys the shock-induced
ordered vorticity field, and thus the transition to turbulence is likely to be achieved.
Notably, if the vorticity deposited by the reshock and shock cancels out, the perturbation
growth is frozen (Mikaelian 1985; Charakhch’yan 2001; Chen et al. 2023b). In cases
with the same vorticity direction, the shock- and reshock-induced vorticity accumulates,
accelerating the instability evolution. Studies on initial single-scale interfaces showed
that the reshock impact does not disrupt the existing ordered vorticity field so that
the single-scale interface is maintained for a long time after reshock, and the trend of
perturbation growth after reshock exhibits similarities to that in singly shocked cases (Guo
et al. 2022a,b).

The rarefaction-induced RT instability was first numerically investigated by Li & Book
(1991) and Li, Kailasanath & Book (1991). It was found that the instability shows rapid
growth after the rarefaction impact, resulting in mixing enhancement in supersonic flows.
Liang et al. (2020) studied the RT instability induced by narrow-width rarefactions
and considered the effects of interaction periods and the strength of rarefactions on
the interface evolution. Wang et al. (2022b,c) studied the transition behaviour of
rarefaction-driven diffuse interfaces and found that the transition is delayed as the
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interface diffusion intensifies. Theoretically, Mikaelian (2009) developed a generalized
Layzer model (GLM) (Layzer 1955) with nonlinear and linear types to describe the
rarefaction-induced perturbation growth. It was shown that the linear GLM provides better
predictions than the nonlinear GLM in some cases. Additionally, Mikaelian (2009) found
that the rarefaction-driven RT instability has a much faster growth rate compared with the
shock-induced RM instability. Experimentally, Morgan et al. (2018); Morgan, Likhachev
& Jacobs (2016) generated two- (2-D) and three-dimensional (3-D) single-mode interfaces
using the membraneless technique (Jones & Jacobs 1997), and studied the linear and
nonlinear instability evolution in a vertical rarefaction tube. Later, 3-D multi-mode
perturbations were generated by Morgan & Jacobs (2020), and turbulent mixing induced
by rarefaction-driven RT instability was focused on.

The interfacial instability driven by successive shocks/rarefactions or rarefactions/shocks
is more complex than that caused by a single wave. Previous studies, involving
reshock–interface interactions (Hill, Pantano & Pullin 2006; Schilling, Latini & Don 2007;
Lombardini et al. 2011; Li et al. 2019, 2021) and fluid-layer behaviours (Liang & Luo
2021; Cong et al. 2022), have primarily focused on the interfacial instabilities induced
by different waves. In these studies, the constraints imposed by rigid walls or fluid-layer
interfaces cause shocks and rarefactions to bounce back and forth, resulting in repeated
interactions with the interface. Moreover, compression waves, generated by the impact of
rarefactions on a heavy/light interface, interact with the interface, further complicating the
flow dynamics. Consequently, in a system where multiple waves continually interact with
the interface, isolating the instabilities induced by different waves is challenging.

Mikaelian (2009) numerically studied the interfacial instability induced by two kinds of
waves: shock waves and rarefaction waves. The shock and rarefaction waves propagate in
opposite directions and interact with the interface only once. According to the sequence
of wave arrival at the interface, there were two scenarios. If the rarefactions reach the
interface first, the rarefaction-induced RT behaviour remains unchanged although the
shock deposits additional vorticity at the interface. Conversely, if the shock reaches the
interface first, the interface evolution changes from RM unstable states into RT unstable
or stable states, depending on whether the rarefactions impact a heavy/light or light/heavy
interface. The second scenario in the work of Mikaelian (2009), i.e. the interaction of
counter-directional shock/rarefactions with an interface, actually corresponds to the first
part of the interactions of three waves (the incident shock, the co-directional rarefaction
and shock waves) with the ablator/fuel interface in the context of ICF, as mentioned at
the beginning section. In this scenario, the incident shock effect is significantly attenuated
by the impact of rarefaction waves. Particularly, for an initial heavy/light interface, the
incident shock effect can, under certain conditions, be completely counteracted by the
impact of rarefaction waves (Chen et al. 2023a). Given that the influence of the incident
shock would be significantly attenuated, in the interactions of these three waves with an
interface, the second part, denoted as the interaction of co-directional rarefactions/shock
with an interface, is of great concern. However, the mechanism of instabilities induced
by such co-directional waves remains unclear. Particularly, after the shock acceleration,
whether the instability maintains the RT evolution state or transforms into RM instability
needs to be explored.

In this work, the interfacial instabilities induced by co-directional rarefaction and shock
waves are investigated experimentally and theoretically. To facilitate our study, we develop
a rarefaction-shock tube that allows for the decoupling of interfacial instabilities caused
by these waves. The remainder of this paper is organized into three main sections. The
rarefaction-shock tube used in the present work is described in § 2. One-dimensional (1-D)
analysis for the flow within this tube is presented in § 3. Experimental and theoretical
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Figure 1. Schematic of the rarefaction-shock tube.

results of 2-D single-mode interfaces, as well as the analytical theories for describing the
rarefaction-induced acceleration and density, are presented in § 4. Finally, conclusions are
presented.

2. Experimental apparatus

A rarefaction-shock tube, as sketched in figure 1, is developed to generate co-directional
rarefaction and shock waves. The rarefaction-shock tube, with an inner cross-sectional
area of 120 mm × 6 mm, has four main sections: a 1.0 metre long vacuum section, a
0.4 metre long transition section, a 0.45 metre long test section and a 1.0 metre long
reflection section. The generation process of co-directional rarefaction and shock waves
is briefly described as follows. First, a polyethylene terephthalate (PET) diaphragm is used
to separate the vacuum and transition sections. Then, air is discharged from the vacuum
section using a vacuum pump. When the pressure in the vacuum section reduces to the
endurance limit of the PET diaphragm, it is suddenly broken, generating rarefaction waves
propagating downstream along the transition section, and a shock propagating upstream
along the vacuum section. The shock arrives at the reflection wall in the vacuum section
and reflects, returning to chase the rarefactions. As a result, co-directional rarefaction and
shock waves are generated.

A complete rupture of the PET diaphragm is necessary for generating high-quality
co-directional rarefaction and shock waves. However, it is difficult to achieve complete
rupture simply relying on the pressure difference between the vacuum and transition
sections, since the cross-section of the tube is too narrow. To solve this problem, a set
of diaphragm-breaking clamps, as shown in figure 1, are designed. The clamps contain the
left and right two parts, with a sharp, blade-like rectangular edge in the middle of the left
part. During the rupture process, due to the pressure difference between the vacuum and
transition sections, the diaphragm bulges towards the vacuum section. When the pressure
in the vacuum section reduces to the PET diaphragm’s endurance limit, the sharp edge
of the left part cuts off the whole PET diaphragm, realizing the complete rupture of the
diaphragm.

To prevent the interface from running out of the observing window before the shock
arrival, it is necessary to control the time of shock reaching the interface. Rectangular
plates, which have the same cross-sectional area as the inner cross-section of the tube,
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are placed as the reflection wall in the vacuum section. By replacing rectangular plates of
different lengths, the shock arrival time can be adjusted. The distance from the reflection
wall to the diaphragm will be determined by 1-D theory in the next section.

3. One-dimensional rarefaction-shock tube flows

The rarefaction-shock tube flow mainly involves shock reflection, shock–rarefaction
interaction, rarefaction–rarefaction interaction, rarefaction–interface interaction and
shock–interface interaction. To solve such a complicated flow problem, a detailed 1-D
physical analysis of the flow is first presented. Then, theoretical calculations are performed
and the x–t diagram depicting the motions of waves and interfaces is presented. Finally,
experiments of an unperturbed interface impacted by co-directional rarefaction and shock
waves are conducted to examine the feasibility of the rarefaction-shock tube.

3.1. Physical analysis
The flow within the rarefaction-shock tube can be categorized into two distinct regions.
The first region primarily involves shock reflection and interactions between shocks and
contact surfaces, taking place within the vacuum section. The second region mainly
involves shock–rarefaction–interface interactions, occurring within the transition and test
sections. To ensure a clear understanding of the rarefaction-shock tube flow, the flow
features of these two regions will be presented individually.

The distributions of flow regions at specific times primarily observed in the vacuum
section are shown in figure 2; t = 0 and x = 0 are defined as the diaphragm rupture
moment and the diaphragm location, respectively. The sudden rupture of the diaphragm
generates a left-travelling shock (SW), right-travelling rarefactions (RW) and a contact
surface (CS1), as depicted in figure 2(b). The SW hits the solid wall and reflects, returning
to strike the CS1, and consequently, two shocks including a transmitted shock (SWt

1) and a
reflected shock (SWr

1) are generated, as depicted in figures 2(c) and 2(d). The SWr
1 repeats

the route of SW, generating a transmitted shock (SWt
2) and a reflected shock (SWr

3), as
shown in figure 2(e). Theoretically, there are an infinite number of shocks passing through
the CS1. However, according to 1-D theory (Han & Yin 1993; Zucker & Biblarz 2019),
which is described in Appendix A, the Mach number of SWt

2 in this work is 1.006, and the
subsequent transmitted shocks are weaker. Therefore, only the first transmitted shock SWt

1
is considered. The shock behaviours occurring in the vacuum section are summarized in
the x-t diagram, as illustrated in figure 3(a).

The distributions of flow regions at specific times in the transition and test sections are
shown in figure 4. Figure 4(a) shows the situation considered in this work: an air/SF6
interface is located in the test section and the rarefactions arrive at the interface before the
shock. In figure 4(b), the impact of RW on the interface (CSI) generates right-travelling
transmitted rarefactions (RWt) and left-travelling reflected rarefactions (RWr

1). The RWr
1

continuously collides with the RW, forming a flow region (RR) which contains both left-
and right-travelling waves. In figure 4(c), the SWt

1 reaches the tail of RW and then passes
through the rarefaction region R, giving rise to left-travelling compression waves (CW)
and a contact region (CR1). When the SWt

1 traverses the rarefaction region R, its intensity
gradually diminishes. Here, SWx represents the shock with varying intensity. The SWx
transforms the passing rarefaction region (R) into the post-shock flow region, i.e. the
position of the SWx becomes the position of the RW tail. Over time, the SWx arrives
at the region RR. When passing through the region RR, the SWx interacts not only with
the RW but also with the RWr

1, resulting in a complex flow pattern. After the collision of
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Figure 2. Distributions of flow regions at specific times primarily observed in the vacuum section. (a) The
initial flow state. (b) The moment just after the diaphragm rupture. (c) The moment before the reflected shock
SWr reaches the contact surface CS1. (d) The moment when the SWr has collided with the CS1, resulting in
the formation of SWr

1 and SWt
1. (e) The moment when the SWr

2 (generated by the SWr
1 hitting the solid wall)

has collided with the CS1, resulting in the formation of SWr
3 and SWt

2. Here, SW and RW denote the shock
and rarefactions generated by the diaphragm rupture, respectively, CS1 denotes a contact surface, SW with a
superscript ‘r’ or ‘t’ denotes reflected or transmitted shocks and similarly hereinafter.
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Figure 3. The x–t diagrams illustrating the wave dynamics in the vacuum section (a) and in the transition and
test sections (b).
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Figure 4. Distributions of flow regions at specific times in the transition and test sections. (a) The moment
when the shock SWt

1 chases the rarefactions RW. (b) The moment when the RW impacts the interface. (c) The
moment when the SWx passes through the rarefaction region R. (d) The moment when the SWx passes through
the rarefaction region RR. (e) The moment when the SWr

x and SWt
x have left the interface. Here, CW denotes

compression waves, RW with a superscript ‘r’ or ‘t’ denote reflected or transmitted rarefactions, CR1,2 denote
contact regions. The shock SWx has varying intensity due to continuously traversing the rarefaction region. In
(e), the shock SWr

x and SWt
x eliminate the rarefaction regions that they reach, generating a quasi-stable region

on both sides of the interface.

SWx with RWr
1, a contact region (CR2) is formed between the newly generated rarefactions

(RWr
2) and the shock SWx, as shown in figure 4(d).

The distributions of flow regions after the shock strikes the interface are shown in
figure 4(e). There is a quasi-stable region, which emerges due to the transformation of
the rarefaction region into the post-shock flow region by the transmitted shock (SWt

x) and
the reflected shock (SWr

x). Figure 3(b) shows the x–t diagram illustrating the process of
the shock–rarefaction–interface interaction that occurs in the transition and test sections.
On the left side of the interface, the compression waves (CW), the reflected rarefactions
(RW2

r ) and the reflected shock (SWr
x) are all left-travelling waves, which have no impact

on the interface evolution. There are two types of perturbations that arrive at the interface
following the shock impact. The first type is the right-travelling contact surface, formed
due to the shock–rarefaction interaction. The contact surface, with both the pressure
and flow velocity being equal on both sides, has a negligible influence on the interface
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evolution (Han & Yin 1993). The second type comprises compression waves generated by
SWt

x as it passes through the RWt region, and by SWr
x as it passes through the RWr

2 region.
Nevertheless, these compression waves reflected from the isentropic rarefaction regions
exhibit limited strength (Han & Yin 1993), thus having minimal effects on the interface
evolution. As a result, the region between SWr

x and SWt
x can be considered quasi-stable.

In short, the physical analysis of 1-D flows demonstrates the feasibility of generating
co-directional rarefaction and shock waves by the rarefaction-shock tube. Furthermore,
once the shock wave catches up with the rarefaction waves, it effectively eliminates
the rarefaction region. Ultimately, a quasi-stable region is formed on both sides of
the interface, thereby providing a favourable condition for decoupling the interfacial
instabilities induced by rarefaction and shock waves.

3.2. Theoretical calculation
The 1-D theory (see Appendix A) provides a rapid means to determine the motions of
waves and interfaces within the tube, thus enabling the assessment of the apparatus’s
design parameters. In this work, the initial interface location (x0), which is dependent on
the lengths of the transition and test sections, is 710 mm downstream of the diaphragm.
This situates the interface roughly one third along the viewing window, ensuring an
extensive observation range for interface evolution. The 1-D theoretical result shows
that x0 = 710 mm allows the rarefaction waves to reach the interface before the shock.
Through theoretical calculations and experimental attempts, we place the reflection wall
81 mm upstream of the diaphragm, which ensures that the evolving interface remains a
small-perturbation state at the time of shock arrival. Additionally, the reflection section
with a one metre length is verified to be sufficiently long. The theoretical result shows
that the reflection section causes the reflected wave from the right endwall to reach the
evolving interface after t ≈ 14 ms, while our experimental duration is only approximately
5 ms.

Figure 5 shows the x–t diagram of the 1-D rarefaction-shock tube flow based on x0
of 710 mm and the reflection-wall location x1 of −81 mm. For brevity, the waves on
the right side of the interface and on the left side of the shock are not presented. The
diaphragm rupture pressure for calculations is 45 kPa, which is consistent with that used
in the experiments. Before the shock SWt

1 catches up with the rarefaction waves, its Mach
number is 1.189. The arrival times of the rarefaction head and the shock at the interface are
2083 and 2835 μs, respectively. When the shock arrives at the interface, its Mach number
decreases to 1.128.

3.3. Experimental verification
Experiments of an unperturbed air/SF6 interface accelerated by co-directional rarefaction
and shock waves are conducted to examine the feasibility of the rarefaction-shock tube;
PET diaphragms with a thickness of 3μm are utilized to separate the vacuum and
transition sections, and the diaphragm rupture pressure is 45 ± 1 kPa for each case. The
improved soap-film technique is used to generate initial discontinuous interfaces (Li et al.
2023). Acrylic plates, with the borders pre-engraved to be the designed shape (flat for
the unperturbed case and sinusoidal for the 2-D single-mode case discussed later) are
fabricated into the interface formation device. Then, a super-hydrophobic-oleophobic
material is applied to the designated location on the interface formation device to constrain
the soap film into the designed shape (Li et al. 2023). The super-hydrophobic-oleophobic
coatings have no impact on the flow as they do not introduce obstacles (Wang et al.
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Figure 5. Theoretical x–t diagram of the 1-D rarefaction-shock tube flow based on x0 of 710 mm and x1 of
−81 mm. The initial interface is an unperturbed air/SF6 configuration.

2022a). By injecting SF6 into the test section to displace air on the right side of the
soap-film interface, an air/SF6 interface is generated. The volume fraction of air (SF6)
on the left (right) side of the soap-film interface is nearly 100 % for each case, resulting
in an Atwood number (A = (ρh0 − ρl0)/(ρh0 + ρl0), with ρl0 and ρh0 being the densities
of light and heavy fluids on both sides of the interface) of 0.67. A high-speed schlieren
system, as described in our previous work (Guo et al. 2022a), is utilized to capture the
flow field. Illuminated by a xenon light source, the flow is recorded by a high-speed
camera (FASTCAM SA5, Photron Ltd) with a CMOS sensor. The frame rate of the
camera is 65 100 frames per second and the exposure time is 1 μs. The pixel resolution
is 0.488 mm pixel−1. More details about the techniques for the interface formation and
flow field measurements can be found in the previous work (Guo et al. 2022a; Li et al.
2023).

Figure 6(a) shows the schlieren images of the unperturbed air/SF6 interface
accelerated by co-directional rarefaction and shock waves. Due to the limitation of
schlieren photography, it is very difficult to capture large-width rarefaction waves.
Therefore, corresponding schematics are provided below the schlieren images for better
comprehension. In figure 6(b), the experimental x–t diagram of the shock and unperturbed
interface is presented. Prior to the shock arrival, the interface undergoes variable
acceleration motion. At t ≈ 2835 μs, the shock wave reaches the interface, causing a
significant deceleration. Following this, the interface exhibits a tendency of uniform
leftward movement. Additionally, figure 6(b) includes the theoretical x–t lines of the
shock and interface. The experimental and theoretical results are in good agreement,
demonstrating the feasibility of our apparatus in generating co-directional rarefaction and
shock waves.
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Figure 6. (a) Schlieren images and their corresponding schematics of an unperturbed air/SF6 interface
impacted by co-directional rarefaction and shock waves. Numbers denote time with unit of μs. (b) Comparison
of the 1-D motions of the shock and interface between experiments and 1-D theory.

Case 1–40 1.5–40 2–40 1.5–60 2–60 3–60

a0 (mm) 1 1.5 2 1.5 2 3
λ (mm) 40 40 40 60 60 60
a0/λ 0.025 0.0375 0.05 0.025 0.033 0.05

Table 1. Initial interface parameters for different single-mode cases. Here, a0 and λ denote the initial
amplitude and wavelength, respectively.

4. Analysis of single-mode interface instabilities

Six kinds of single-mode air/SF6 interfaces with different amplitude–wavelength
combinations are considered. The values of initial interface amplitude (a0) and wavelength
(λ) for different cases are listed in table 1. A number combination such as 1-40 denotes the
case with a0 of 1 mm and λ of 40 mm. One can find that the initial amplitude–wavelength
ratio (a0/λ) for each case is no more than 0.05, satisfying the small-amplitude hypothesis
(McFarland, Greenough & Ranjan 2014; Liu et al. 2018).

4.1. Qualitative analysis of single-mode interface evolution
Figure 7 presents the schlieren images of six single-mode cases accelerated by
co-directional rarefaction and shock waves. Notably, due to the limitation of the camera’s
temporal resolution, the schlieren image at the moment (t = 2083 μs) of the rarefaction
head reaching the interface cannot be captured. Prior to this moment, such as at t =
1975 μs, the interface remains static, as presented in figure 7. Case 2–40, as shown in
figure 7(c), is taken as an example to illustrate the interface evolution. Following the
rarefaction head, the subsequent trailing rarefaction waves constantly impact the interface,
resulting in baroclinic vorticity deposition on the interface and an acceleration directing
from SF6 to air. As a result, the RT stabilization is triggered, characterized by interface
phase reversal (1975–2835 μs). Notably, in the RT stabilization stage, the interface has
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Figure 7. Schlieren images of single-mode cases with different initial amplitude–wavelength combinations.
The rarefaction head and the shock arrive at the interface at t = 2083 and 2835 μs, respectively. Here, a denotes
the interface amplitude, defined as half the distance from the leftmost side to the rightmost side of the interface;
SHOC represents the super-hydrophobic-oleophobic coating used to restrain the soap film.

different curvatures at the upstream and downstream positions, as observed at t = 2835 μs.
The shock reaches the interface at t = 2835 μs when the first phase reversal has been
completed. Subsequently, phase reversal no longer emerges, while the interface amplitude
continues to increase and the asymmetry of the interface shape becomes more pronounced.
This phenomenon indicates that, after the shock impact, the interface evolution transitions
into the RM unstable state from the RT stable state. In the late stage, large-scale nonlinear
structures including spikes and bubbles are formed (3941–4863 μs). A small vortex pair
appears at the spike head, while the bubble head develops into a round shape.

4.2. Quantitative analysis in the RT stabilization stage
Figure 8(a) shows the temporal variations of perturbation amplitudes for single-mode
interfaces in the RT stabilization stage. The perturbation amplitude first decreases to
zero and then enters a negative growth state. The Froude number (Fr), characterizing
the relation of strength of inertial forces to buoyancy forces, is generally used to scale
the perturbation growth of RT instability (Ramaprabhu et al. 2006; Wilkinson & Jacobs
2007; Wei & Livescu 2012; Morgan et al. 2018). In the current work, we also use
the Fr (= (V − V∗)/

√
gλ) to normalize the perturbation growth rate during the RT
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Figure 8. (a) Time variations of perturbation amplitudes of single-mode cases in the RT stabilization
stage. The error bars represent the uncertainty in manual amplitude measurements arising from the diffuse
thickness of the interface. (b) The RT stable perturbation growth rates scaled by the Froude number (Fr =
(V − V∗)/

√
gλ). Since the amplitude is scaled as (a − a∗)/λ, the error bars represent the uncertainty of the

non-dimensional amplitude.

stabilization stage, as shown in figure 8(b). The amplitude a is normalized as (a − a∗)/λ
(Ramaprabhu et al. 2006; Wilkinson & Jacobs 2007; Morgan et al. 2018). Here, V is
the perturbation amplitude growth rate; g is the rarefaction-induced acceleration, which
can be obtained from the analytical solution (4.12) presented below; and a∗ and V∗
denote the perturbation amplitude after the rarefaction head leaves the interface and
the corresponding perturbation growth rate at a∗, respectively. This conventional scaling
method only collapses the data for the cases with the same a0/λ. To achieve an effective
collapse of all data from different cases, we propose that the perturbation growth rate and
the amplitude are scaled as Fr/(a0/λ) and a/a0, respectively. As illustrated in figure 9,
this scaling method achieves a robust collapse of all data.

The interface acceleration and fluid density in the rarefaction region are continuously
varying, making it challenging to predict the rarefaction-induced RT perturbation growth.
Only Mikaelian (2009) derived an analytical model based on the theory of Layzer
(1955) for describing the RT stable perturbation growth of cases with time-dependent
accelerations and densities. Notably, the analytical model proposed by Mikaelian (2009)
has both nonlinear and linear forms. The linear form serves as a simplification of the
nonlinear counterpart when ka0 � 1, where k denotes the wavenumber defined as k =
2π/λ. Mikaelian (2009) found that, for ka0 > 0.1, specifically ka0 = 0.169 and 0.338,
the model of the nonlinear form failed in predicting the numerical RT stable perturbation
growth; conversely, the model of the linear form remained effective under these conditions.
In the current work, the ka0 for different cases ranges from 0.157 to 0.314. As a result, the
Mikaelian model of the linear form is chosen to assess the RT stable perturbation growth.
The Mikaelian model of the linear form can be expressed as

ρh
d
dt

[
1
ρh

d
dt

(ρha)

]
+ ρl

d
dt

[
1
ρl

d
dt

(ρla)

]
− (ρh − ρl)gka = 0, (4.1)

where the subscripts ‘h’ and ‘l’ are for heavy and light fluids, respectively. Notably, (4.1)
is a fundamental expression for cases with time-dependent accelerations and densities.
However, the actual values of acceleration (g) and densities (ρl and ρh) need to be
determined based on specific situations. To the best knowledge of the authors, there
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Figure 9. The RT stable perturbation growth rates scaled by our developed method and its prediction obtained
from the modified Mikaelian model (mMik model). The mMik model is derived by substituting the analytical
theories of acceleration (4.12) and densities (4.15)–(4.16) into the Mikaelian model (4.1).

are currently no analytical solutions available for the time-dependent acceleration and
densities induced by rarefaction waves. In this work, we derive analytical theories
to describe the rarefaction-induced acceleration and density. The detailed deviation is
described as follows.

(i) We first consider the case in which the initial properties on both sides of a gas particle
are the same. Notably, in a 1-D rarefaction-driven flow, the motion trajectory of a gas
particle is equivalent to that of an interface. As a result, to obtain the analytical solution
for rarefaction-driven interface motion, we only need to derive the motion trajectory of a
gas particle. The x–t diagram of the gas particle accelerated by centred rarefaction waves
is shown in figure 10(a), where the dashed line denotes the gas particle trajectory. The
points (x0, t0) and (xn, tn) correspond to the states when the rarefaction head and tail reach
the gas particle, respectively.

The motion of the rarefaction-driven gas particle satisfies the dynamic equation

du
dt

= − 1
ρL

∂pL

∂x
= − 1

ρR

∂pR

∂x
, (4.2)

where u is the gas particle velocity; and ρL (pL) and ρR (pR) are the densities (pressures)
on the left and right sides of the gas particle, respectively. As presented in figure 10(a),
after t = t0, the gas particle undergoes a continuous acceleration in the leftward direction
starting from its initial state of rest. The trajectory of the gas particle can be described by
the following motion equation:

∫ t

t0
u = x(t) − x0. (4.3)
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Figure 10. The x–t diagrams of a gas particle accelerated by rarefaction waves, with the same (a) and different
(b) initial gas properties on both sides of the particle. The points (x0, t0) and (xn, tn) correspond to the states
when the rarefaction head and tail reach the gas particle, respectively. The point (xm, tm) corresponds to the
state of the particle at any given time.

According to 1-D gas dynamics theory (Han & Yin 1993), the pressure and density in
rarefaction waves satisfy the isentropic relations

p = p0

(
1 + γ0 − 1

2
u
c0

)2γ0/(γ0−1)

, (4.4)

ρ = ρ0

(
1 + γ0 − 1

2
u
c0

)2/(γ0−1)

, (4.5)

where p0, ρ0, c0 and γ0 are the initial pressure, density, sound speed and adiabatic index,
as illustrated in figure 10(a). The characteristic line of a centred rarefaction wave can be
expressed by a geometric relation

v = x
t

= c0 + γ0 + 1
2

u, (4.6)

where v is the local velocity of a rarefaction wave. Substituting (4.4) and (4.5) into (4.2)
yields

du
dt

= −p0

ρ0

(
1 + γ0 − 1

2
u
c0

)
γ0

c0

∂u
∂x

. (4.7)

Substituting (4.6) into (4.7) yields

du
dt

= −p0

ρ0

⎛
⎜⎝1 + γ0 − 1

γ0 + 1

x
t

− c0

c0

⎞
⎟⎠ 2γ0

(γ0 + 1)c0t
. (4.8)

Substituting (4.3) into (4.8) and then making a simplification, we obtain

t2
du
dt

= −p0

ρ0

⎛
⎜⎜⎜⎝1 + γ0 − 1

γ0 + 1

∫ t

t0
u + x0 − c0t

c0

⎞
⎟⎟⎟⎠ 2γ0

(γ0 + 1)c0
. (4.9)
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Differentiating (4.9) with respect to time and then making a simplification, we obtain an
Euler equation

t2
d2u
dt2

+ 2t
du
dt

+ p0

ρ0

2γ0(γ0 − 1)

(γ0 + 1)2c2
0

u = −p0

ρ0

4γ0

(γ0 + 1)2c0
. (4.10)

The analytical solution of the gas particle velocity can be solved from (4.10)

u = ξ1tθ1 + ξ2tθ2 − 2
γ0 − 1

c0. (4.11)

By differentiating (4.11), the gas particle acceleration can be written as

g = θ1ξ1tθ1−1 + θ2ξ2tθ2−1. (4.12)

Integrating both sides of (4.11), the gas particle displacement can be written as

x = ξ1

θ1 + 1
tθ1+1 + ξ2

θ2 + 1
tθ2+1 − 2

γ0 − 1
c0t + η, (4.13)

where

θ1,2 = 1
2

(
− 1 ±

√
1 − 4p0

ρ0

2γ0(γ0 − 1)

(γ0 + 1)2c2
0

)
, (4.14)

and ξ1, ξ2 and η are unknowns.
To obtain ξ1, ξ2 and η, three equations are considered: u(t0) = 0, x(t0) = x0 and

v(tn) = xn/tn = c0 + ((γ0 + 1)/2)ux. The first two equations are given by substituting the
initial state conditions into (4.11) and (4.13). The third equation is given by the geometric
relation of the rarefaction tail. Notably, two additional unknowns (tn and xn) are introduced.
To make the equations for determining the unknowns closed, another two equations of
u(tn) = un, x(tn) = xn are introduced. Here, x0 and t0 (= x0/c0) are known; ux, which
can be obtained by combining (A2) with (A8) (see Appendix A for details of (A2) and
(A8)), is the flow velocity at the rarefaction tail and is equal to the particle velocity un. By
simultaneously solving these five equations, all the unknowns can be determined.

(ii) We consider the case in which the initial properties on both sides of a gas particle
are different. The corresponding x–t diagram of the rarefaction-driven particle motion
is shown in figure 10(b). Since there is a contact discontinuity at the particle position,
reflected waves are generated when the incident rarefactions arrive at the particle. In
comparison with the region on the left side of the particle, the region on the right side
of the particle is simpler as it only contains transmitted rarefactions. We assume that the
transmitted rarefactions are centred ones. Consequently, (4.11), (4.12) and (4.13) are also
the expressions of the velocity, acceleration and displacement of the particle for the case
illustrated in figure 10(b), respectively. Notably, the parameters ξ1, ξ2 and η need to be
re-determined.

Due to the introduction of two additional unknowns (xn and tn), the calculations for
ξ1, ξ2 and η also require five equations: u(t0) = 0, x(t0) = x0, u(tn) = un, x(tn) = xn and
v(tn) = xn/tn = c1 + ((γ1 + 1)/2)ux. In comparison with the calculations for the case
illustrated in figure 10(a), there are two differences. First, c1 and γ1 are used instead of
c0 and γ0 for calculating v(tn). Second, the particle velocity (un) is no longer equal to the
flow velocity (ux) at the rarefaction tail due to the existence of reflected waves. For the
case of reflected rarefaction waves (a light/heavy configuration), un can be obtained by
(A2) (see Appendix A for details of (A2)). For the case of reflected compression waves (a
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Case θ1 θ2 ξ1 ξ2 η

x0 = 400 mm −0.04475 −0.95525 2814.608 91.877 −1727.326
x0 = 710 mm −0.04475 −0.95525 2891.696 151.428 −2900.550
x0 = 1000 mm −0.04475 −0.95525 2936.669 209.205 −4066.742

Table 2. Values of θ1, θ2, ξ1, ξ2 and η in (4.11), (4.12) and (4.13) for the case of an unperturbed air/SF6 interface
with varying initial interface location x0. The case of x0 = 710 mm corresponds to the condition used in the
experiments. The other two cases correspond to those used for evaluating the analytical theory, as presented in
figure 13 in Appendix B.

heavy/light configuration), un can be obtained by combining (A1) with (A2) (see Appendix
A for details of (A1)). Ultimately, the unknowns ξ1, ξ2 and η can be determined by solving
the five equations. Alternatively, the coordinate (xm, tm) of a gas particle (a flat interface)
at any given time can be obtained through 1-D experiments or simulations. Then, using
only three equations of u(t0) = 0, x(t0) = x0 and x(tm) = xm, the unknowns ξ1, ξ2 and η

can also be determined. The values of ξ1, ξ2 and η as well as θ1 and θ2 used in (4.11), (4.12)
and (4.13) for the cases of a flat air/SF6 interface with varying x0 are listed in table 2. The
evaluation of the analytical theory for predicting the rarefaction-driven interface motion is
described in Appendix B.

The densities in the rarefaction region can be obtained by substituting (4.11) into the
isentropic relation (4.5). For the case with reflected waves on the left side of the interface
(see figure 10b), the isentropic relation is used twice to determine the density of fluids on
the left side. The analytical expressions of densities (ρR and ρL) on the right and left sides
of the interface can be respectively expressed as

ρR = ρR0

(
1 + γR − 1

2
u

cR0

)2/(γR−1)

, (4.15)

ρL = ρL0

(
1 + γL − 1

2
u∗

cL0

)2/(γL−1) (
1 − γL − 1

2
u − u∗

c∗

)2/(γL−1)

, (4.16)

where ρR0 and ρL0 (cR0 and cL0) are initial densities (sound speeds) of fluids on the right
and left sides of the interface, respectively; u∗ = (x/t − cL0)(2/(γL + 1)) and c∗ = cL0 −
((γL − 1)/2)u∗; u and x can be obtained by (4.11) and (4.13).

By substituting (4.12), (4.15) and (4.16) into (4.1), we obtain the modified Mikaelian
model (mMik model), which incorporates the analytical solutions of rarefaction-induced
accelerations and densities. Figure 9 presents the comparison of RT stable perturbation
growth between experimental results and the mMik model. It can be observed that a good
agreement between experimental and theoretical results is achieved.

4.3. Quantitative analysis in the RM instability stage
Figure 11 shows the dimensionless temporal variations of amplitudes for initial
single-mode interfaces impacted by co-directional rarefaction and shock waves. The
perturbation amplitude is scaled as k(|a| − a+), where a+ is the post-shock amplitude.
The time is scaled as kVE

0 (t − t+), where VE
0 is the post-shock amplitude growth rate

obtained from experiments and t+ is the corresponding time at a+. As presented in
figure 11, the perturbation amplitude immediately transitions to linear growth and then
to nonlinear growth after the shock acceleration. The linear and nonlinear growth trends
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Figure 11. Comparison of perturbation amplitude growth for different single-mode cases between
experimental results and theoretical predictions. Symbols represent the experimental results and lines represent
the mMik model, the ZS model (Zhang & Sohn 1997), the SEA model (Sadot et al. 1998), the DR model
(Dimonte & Ramaprabhu 2010) and the ZG model (Zhang & Guo 2016). Notably, the linear growth rate V0
in the ZS, SEA, DR and ZG models are obtained by combining the mMik and Richtmyer models (Richtmyer
1960).

closely resemble those observed in a singly shocked case (Collins & Jacobs 2002; Motl
et al. 2009; Liu et al. 2018; Mansoor et al. 2020). This indicates a transition of the
interface evolution from the RT stable state to the RM unstable state after the shock arrival,
qualitatively demonstrating that the RT stabilization and RM instability are decoupled.
In the later discussion, it will be shown that the linear amplitude growth rate after the
shock impact is equal to the sum of the rarefaction-induced RT growth rate and the
shock-induced RM growth rare, which quantitatively demonstrates the decoupling of RT
and RM dynamics under the impacts of co-directional rarefaction and shock waves.

In the previous numerical investigation (Mikaelian 2009), which examined the
interfacial instabilities induced by counter-directional rarefaction and shock waves, it
was confirmed that the shock impact was unable to eliminate the rarefaction-induced RT
behaviour. However, a different phenomenon is observed in the present co-directional case.
This discrepancy arises from the distinct rarefaction–shock interaction behaviours between
the cases of co- and counter-directional rarefaction and shock waves. In the co-directional
case, the rarefaction region overtaken by the shock is eliminated, as described in § 3.1.
Consequently, the rarefaction waves will not deposit vorticity on the interface after the
shock strikes the interface, which supports the decoupling of the RT and RM dynamics.
Conversely, in the counter-directional case, the rarefaction waves persist after colliding
with the shock (Han & Yin 1993; Zucker & Biblarz 2019). As a result, rarefaction-induced
vorticity is continually deposited on the evolving interface after the shock impact, causing
the original RT evolution state to remain.

Before theoretically quantifying the perturbation amplitude growth in the RM instability
stage, the interface shape at the time of shock arrival is examined. For all single-mode
cases, the interface phase reversal resulting from RT stabilization has been completed
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Figure 12. Schematics of the interface shape and vorticity distributions at an initial stage (a) and after phase
reversal (b). The gradient blue area represents the rarefaction region. (c) Schematic of the temporal variations
of perturbation amplitudes and cumulative vorticity deposited on the interface.

prior to the shock impact. It should be noted that after phase reversal, the interface
shape transitions from an initial single-mode pattern to a V-shape-like pattern. The reason
for the interface deformation during the RT stabilization stage can be understood by
the schematics in figure 12, which displays the interface morphologies at initial stages
(figure 12a) and after phase reversal (figure 12b).

As shown in figure 12(a), the magnitude of vorticity deposited at the interface gradually
decreases from right to left due to the decreasing intensity of rarefaction waves from
the wave head to the wave tail. Consequently, the vorticity-induced leftward velocity at
point S exceeds the vorticity-induced rightward velocity at point B, leading to asymmetric
interface development. In figure 12(b), the vorticity direction after the phase reversal
remains unchanged. This behaviour can be explained by figure 12(c) which presents the
schematic of the interface amplitude and the cumulative vorticity deposited at the interface
as a function of time. When the interface amplitude decreases to zero, the cumulative
vorticity reaches its maximum value. As the interface amplitude becomes negative, the
cumulative vorticity decreases but remains positive. As a result, at the time of shock
arrival, the vorticity magnitude near point S is still greater than that near point B, resulting
in unequal induced velocities at points S and B. Additionally, as shown in figure 12(b),
after phase reversal, the points S and B become the tips of spikes and bubbles, respectively.
Previous studies have shown that the spike tip tends to be sharp for cases with high Atwood
numbers (Zhang 1998), while the bubble tip tends to be round regardless of the Atwood
number (Goncharov 2002). These factors eventually lead to a V-shape-like interface at the
time of shock arrival.

Fourier expansion has indicated that the first-order mode contributes 81 % of the total
amplitude of a V-shaped interface (Mikaelian 2005). This motivates us to describe the
linear and nonlinear amplitude growths of a V-shape-like interface based on the models
proposed for a single-mode case. Note that the post-shock linear amplitude growth rate
of the V-shape-like interface comprises the rarefaction-induced RT growth rate and the
shock-induced RM growth rate. The rarefaction-induced RT growth rate can be predicted
by the mMik model, as described in § 4.2. The shock-induced RM growth rate will be
examined by the impulsive models. The first impulsive model examined is the Richtmyer
model (Richtmyer 1960), which was proposed for predicting the linear amplitude growth
rate of a small-amplitude case

VR
0 = kUca+A+, (4.17)

where a+ = a−(1 − Uc/Ui). Here, a− is the pre-shock amplitude; Ui and Uc are the
incident shock velocity and the shock-induced jump velocity, respectively; and A+ =
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Case 1–40 1.5–40 2–40 1.5–60 2–60 3–60

a−/λ 0.0146 0.0219 0.0292 0.0021 0.0036 0.0065

VE
0 5.02 7.56 9.97 4.33 5.55 8.35

VM+R
0 4.55 6.83 9.10 3.82 5.12 7.79

VM+V
0 4.67 6.99 9.30 3.80 5.10 7.78

VM
0 2.53 3.80 5.07 3.40 4.54 6.81

VR
0 2.02 3.03 4.03 0.42 0.58 0.98

VV
0 2.14 3.19 4.23 0.40 0.56 0.97

Table 3. Experimental and theoretical perturbation amplitude growth rates of different single-mode cases.
Here, a−/λ is the pre-shock amplitude–wavelength ratio with a− being the pre-shock amplitude obtained from
the mMik model; VE

0 is the experimental post-shock linear amplitude growth rate obtained linear fitting; VM
0

is the pre-shock amplitude growth rate obtained from the mMik model; VR
0 and VV

0 are the post-shock linear
amplitude growth rates obtained from the Richtmyer and VMG models, respectively; VM+R

0 is the sum of VM
0

and VR
0 ; and VM+V

0 is the sum of VM
0 and VV

0 . The unit of velocities is m s−1.

(ρ+
h − ρ+

l )/(ρ+
h + ρ+

l ) is the post-shock Atwood number. For calculating A+, the
pre-shock densities ρ−

h and ρ−
l are first determined through (4.15) and (4.16), and then,

ρ+
h and ρ+

l can be obtained by solving the 1-D Riemann problem of the shock–interface
interaction (Han & Yin 1993). The second impulsive model involved is the VMG model
(Vandenboomgaerde, Mügler & Gauthier 1998)

VV
0 = 1

2 kUc(a+A++a−A−), (4.18)

where A− = (ρ−
h − ρ−

l )/(ρ−
h + ρ−

l ) is the pre-shock Atwood number. Equation (4.18)
considers both the variations of Atwood numbers and amplitudes due to the
shock-interface interaction.

To evaluate the validity of (4.17) and (4.18) in predicting the shock-induced RM growth
rate, VR

0 and VV
0 are respectively superimposed with the RT growth rate (VM

0 ) given by
the mMik model. Then, the resulting theoretical growth rates, VM+R

0 (= VM
0 + VR

0 ) and
VM+V

0 (= VM
0 + VV

0 ), are compared with the experimental post-shock linear amplitude
growth rate (VE

0 ). Detailed results obtained from the comparison are presented in table 3.
Notably, the theoretical values of VM+R

0 and VM+V
0 are approximately equal, and both

are in good agreement with the experimental values (VE
0 ). This indicates that for the

V-shape-like interface, which has a dominant mode (Guo et al. 2020, 2022a), both (4.17)
and (4.18) are effective in predicting the shock-induced RM growth rate in the linear stage.
More importantly, this analysis verifies that, for a small-amplitude single-mode interface
accelerated by co-directional rarefaction and shock waves, the post-shock linear amplitude
growth rate conforms to the principle of linear superposition.

Several nonlinear models, initially proposed for single-mode cases, will be employed
to examine the nonlinear amplitude growth of the V-shape-like interface. Using a Padé
approximant, Zhang & Sohn (1996, 1997) derived a weakly nonlinear theory (the ZS
model) to describe the nonlinear amplitude growth rates of single-mode interfaces. The
ZS model can be expressed as

VZS
amp(t) = V0

1 + V0a+k2t + max
(

0, a+k2 − A+2 + 1
2

)
V2

0 k2t2
, (4.19)
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where V0 is the linear amplitude growth rate, and Vamp is the overall amplitude growth
rate.

Based on their own experimental results, Sadot et al. (1998) matched the weakly
nonlinear solution (Zhang & Sohn 1996, 1997) at early times with the asymptotic solution
(Alon et al. 1994; Hecht, Alon & Shvarts 1994) at late times, and developed an empirical
nonlinear model (the SEA model)

VSEA
bu/sp(t) = V0

1 + kV0t

1 + (1 ± |A+|)kV0t +
(

1 ± |A+|
1 + |A+|

)
(kV0t)2

2πC

, (4.20)

where ‘bu’ and ‘sp’ denote bubbles and spikes, respectively; C = 1/(3π) for A+ � 0.5 and
1/(2π) for A+ → 0. The overall growth rate (Vamp) can be obtained by (Vbu + Vsp)/2.

Based on numerical simulations, Dimonte & Ramaprabhu (2010) proposed an empirical
nonlinear model (the DR model) applicable to the cases with various Atwood numbers and
pre-shock amplitude–wavelength ratios. The DR model can be written as

VDR
bu/sp(t) = V0

1 + (1 ∓ |A+|)kV0t
1 + Cbu/spkV0t + (1 ∓ |A+|)Fbu/sp(kV0t)2 , (4.21)

with Cbu/sp = (4.5 ± |A+(2 ∓ |A+|)|ka+
0 |)/4 and Fbu/sp = 1 ± |A+|.

By considering the governing equations for incompressible, inviscid and irrotational
fluids with arbitrary density ratios in two dimensions, Zhang & Guo (2016) proposed a
model (the ZG model) to describe the nonlinear growth of bubbles and spikes

VZG(t) = V0
1

1 + α̂kV0t
, (4.22)

where α̂ = [ 3
4((1+A+)(3+ A+)/(3+ A+ + √

2(1+ A+)1/2))][(4(3+A+) + √
2(9 + A+)

(1 + A+)1/2)/((3 + A+)2 + 2
√

2(3 − A+)(1 + A+)1/2)], with the positive Atwood
number for bubbles and its negative counterpart for spikes with the same density ratio.

When calculating the nonlinear amplitude growth rate for V-shape-like interfaces, the
value of VM+R

0 is utilized to replace V0 of these nonlinear models. The subsequent
calculation process aligns with that of these nonlinear models in the single-mode case.
Figure 11 presents the comparison of perturbation amplitude growth for the V-shape-like
interface between experiments and nonlinear theories. It can be observed that the ZS
model is effective for dimensionless time smaller than 1.3. After this time, it gives an
underestimation. Compared with the ZS model, the ZG model gradually underestimates
the nonlinear amplitude growth when the dimensionless time exceeds 0.6. The DR and
SEA models show similar predictions for dimensionless time smaller than 2.5. Beyond this
time, the theoretical lines of the two models diverge, while both provide good predictions
of the nonlinear amplitude growth within the experimental duration.

Note that the previous investigation has demonstrated that, among the four models, the
ZG model provides the most accurate prediction of the nonlinear amplitude growth for the
single-mode case (Liu et al. 2018). However, when applied to the V-shape-like interface,
the ZG model gives the underestimation, as illustrated in figure 11. This indicates that the
V-shape-like interface has a higher nonlinear amplitude growth rate in comparison with
a purely single-mode interface. According to the Fourier expansion (Mikaelian 2005),
high-odd-order modes, which have the same sign as the first-order mode, exist on the
V-shape-like interface. In the nonlinear stage, the effects of high-odd-order modes are
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superimposed with that of the first-order mode (Liang et al. 2019; Guo et al. 2022a),
promoting the nonlinear amplitude growth of the V-shape-like interface, and thus resulting
in the underestimation of the ZG and ZS models.

The performance of the DR model in our study diverges from the findings in previous
work (Luo et al. 2019; Guo et al. 2020), where the DR model was found to underestimate
the nonlinear amplitude growth of the V-shape interface. Notably, among the four models
considered, only the DR model relies on pre-shock amplitude–wavelength ratios (a−/λ).
For a smaller a−/λ, the DR model gives a higher prediction (Dimonte & Ramaprabhu
2010). In the current work, the a−/λ, ranging from 0.0021 to 0.0292 (see table 3), is
smaller than that (ranging from 0.044 to 0.144) in the previous work (Luo et al. 2019; Guo
et al. 2020). Consequently, the theoretical result of the DR model is higher, resulting in an
agreement between the theoretical and experimental results, as presented in figure 11.

The SEA model has demonstrated its validity in predicting the nonlinear amplitude
growth for both V-shaped (Luo et al. 2019; Guo et al. 2020, 2022b) and inclined
(Mohaghar 2019) interfaces with various pre-shock amplitude–wavelength ratios. The
results illustrated in figure 11 further support the SEA model’s validity for V-shape-like
cases. These findings motivate us to investigate why the SEA model, originally designed
for a single-mode case, is applicable to the nonlinear amplitude growth in V-shaped
cases. It is found that the interface evolution and perturbation growth in the work of
Sadot et al. (1998) differ from later single-mode studies (Collins & Jacobs 2002; Jacobs
& Krivets 2005; Liu et al. 2018), aligning more closely with the results of V-shaped
cases (Luo et al. 2019; Guo et al. 2020). This discrepancy may be attributed to the
imprecise nature of the initial single-mode interface of Sadot et al. (1998), formed using
the nitrocellulose-membrane technique. In other words, although Sadot’s intention was
to create a single-mode interface, the resulting interface resembles a V-shape. Given that
V-shaped interfaces share an 81 % similarity with purely single-mode cases (Mikaelian
2005), Sadot et al. (1998) habitually referred to a V-shaped case as a single-mode case, as
described in their later study (Sadot et al. 2003). This habitual designation is not unique
and is evident in other literature (Farley et al. 1999; Mohaghar et al. 2017, 2019). In
short, Sadot et al. (1998) formulated the SEA model based on their own experimental
results, while these experimental results are more consistent with those of V-shaped cases,
enabling the SEA model to provide good predictions of nonlinear amplitude growth for
V-shaped interfaces.

5. Conclusions

The hydrodynamic instabilities of single-mode air/SF6 interfaces induced by
co-directional rarefaction and shock waves are experimentally studied. The experiments
are conducted in a specially designed rarefaction-shock tube which enables the decoupling
of interfacial instabilities induced by these co-directional waves. The 1-D flow within the
rarefaction-shock tube is examined through physical analyses, theoretical calculations and
experiments. Six kinds of single-mode interfaces with different amplitude–wavelength
combinations are focused on in experiments. The results show that after sequential impacts
of co-directional rarefaction and shock waves, the interface evolution transforms into RM
unstable states from RT stable states, which is different from the finding in the previous
case with counter-directional rarefaction and shock waves (Mikaelian 2009). The rapid
transition of instability indicates a decoupling of RT stabilization and RM instability.

A scaling method, which is different from the method used in previous RT studies, is
proposed, achieving an effective collapse of the data for RT stable perturbation growth.
To establish flow conditions for quantifying the RT perturbation growth, we derive an
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analytical theory for characterizing time-dependent accelerations and densities induced by
rarefaction waves. To the best knowledge of the authors, it is the first time for deriving
the analytical solution for describing the features of rarefaction-induced flows. Based
on this analytical solution, the model proposed by Mikaelian (2009) is revised, and the
modified Mikaelian model gives a good prediction of the RT stable perturbation growth.
The uneven baroclinic vorticity, induced by rarefaction waves along with the different
evolution behaviours of bubbles and spikes, results in distinct velocities at the upstream
and downstream locations of the interface. As a result, the initially sinusoidal interface
deforms into a V-shape-like case at the time of shock arrival. The linear amplitude growth
rate after the shock impact is found to be a superposition of the growth rates induced by
rarefaction and shock waves. The nonlinear amplitude growth rate is higher than that of
a pure single-mode case. The models proposed by Sadot et al. (1998) and Dimonte &
Ramaprabhu (2010) are verified to be effective in predicting the nonlinear perturbation
growth. This study enhances our understanding of interfacial instabilities in the presence
of rarefaction and shock waves. In the future, experiments on manipulating the instability
development by co-directional rarefaction and shock waves will be conducted.
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Appendix A. One-dimensional theory for calculating the flow parameters

The flow relations ahead of and behind a shock can be written as
ub − ua

ca
= ± δ( pb/pa − 1)

[α( pb/pa) + 1]0.5 , (A1)

and the flow relations ahead of and behind a rarefaction wave can be written as
ub − ua

ca
= ± 1

γβ
[( pb/pa)

β − 1], (A2)

where γ , u, c and p denote the adiabatic index, the flow velocity, the local sound velocity
and the pressure, respectively; the subscripts ‘a’ and ‘b’ correspond to the parameters
‘ahead of’ and ‘behind’ a wave, respectively; and ± are for a right- and a left-travelling
wave. Here, α = (γ + 1)/(γ − 1), β = (γ − 1)/2γ , δ = [2/(γ (γ − 1))]0.5. On both
sides of a contact surface, the pressure and velocity of the flow are equal, i.e.

pcs
a = pcs

b , ucs
a = ucs

b . (A3a,b)

The sound speed ratio (cb/ca), density ratio (ρb/ρa) and temperature ratio (Tb/Ta) can be
found using the following relations:

cb

ca
=

[
pb/pa( pb/pa + α)

1 + α(pb/pa)

]0.5

, (A4)

ρb

ρa
= 1 + α( pb/pa)

α + pb/pa
, (A5)
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Tb

Ta
=

(
cb

ca

)2

. (A6)

At the initial state, as shown in figure 2(a), the parameters in regions 1 and 2 are known.
After the diaphragm rupture (see figure 2b), the pressures (p3 and p4) in regions 3 and 4
can be found using

p3 = p4 = p1

[
1 + 2γ1

γ1 + 1
(M2

s − 1)

]
. (A7)

In (A7), only the shock Mach number Ms is unknown, which can be obtained using

p2

p1
=

[
1 + 2γ1

γ1 + 1
(M2

s − 1)

] [
1 − γ2 − 1

γ1 + 1
c2

c1

(
Ms − 1

Ms

)−(2γ2/(γ2−1))
]

, (A8)

where c2/c1 = √
(γ1M2T1)/(γ2M1T2) with M1 and M2 the molecular weights of gases in

regions 1 and 2, respectively. Based on (A1)–(A6) and p3 and p4, we can determine all
the unknown parameters in regions 3 and 4. Afterwards, the flow parameters of regions 3
and 4 are substituted into (A1)–(A6), and then the flow parameters of each region can be
obtained in sequence.

Appendix B. Evaluation of the analytical theories

To evaluate the validity of the analytical theory for describing the rarefaction-driven
interface motion, we conducted experiments and numerical simulations of an unperturbed
air/SF6 interface accelerated by rarefaction waves. Numerical simulations allow for easy
adjustment of the initial interface location x0 and can provide longer interface travel
time compared with experiments, thus allowing the analytical theory to be tested over
a long duration. The scenario of rarefaction waves accelerating a flat air/SF6 interface is
simulated by the hydrocode HOWD (Ding et al. 2017; Li et al. 2022) developed by our
group.

Figure 13 presents comparisons of interface displacements obtained from numerical
simulations, experiments, and the analytical theory (4.13). Notably, two theoretical lines
based on simulations or formulas are presented. These lines represent the two different
approaches as mentioned in § 4.2 for closing the equations for calculating the unknowns
(ξ1, ξ2 and η). In one approach, the particle coordinate (xm, tm) is obtained from
1-D simulations, while in the other approach, (4.6) is employed. One can find that
at early times, the theoretical lines based on these two methods match each other. At
later times, the theoretical line based on simulations exhibits good agreement with the
numerical displacement results, while the theoretical line based on formulas exhibits
a slight deviation. This deviation is attributed to the underlying assumption of (4.6)
that the characteristic line of a rarefaction wave is straight. However, the characteristic
lines of rarefactions on the left side of the interface have a slight curvature due to
rarefaction-rarefaction collisions. Additionally, as x0 decreases, more rarefaction waves
interact with the interface per unit time, resulting in a more pronounced bending of
characteristic lines of rarefaction waves. Consequently, for a smaller x0, the theoretical line
based on formulas deviates further from the numerical displacement results. Nevertheless,
within the experimental duration, the theoretical results given by both approaches provide
accurate predictions for the interface displacements.
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Figure 13. Displacement comparison of an unperturbed air/SF6 interface accelerated by rarefaction waves
between experiments, simulations and the analytical theory (4.13). The theoretical line based on formulas or
simulations means that the flow conditions obtained from (4.6) or simulations are used to make the equations
for determining the unknowns (ξ1, ξ2 and η) closed.
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