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A notion of limit for

enriched categories

Francis Borceux and G.M. Kelly

For a V-category B , where V is a symmetric monoidal closed
category, various limit-like notions have been recognized:

ordinary limits (in the underlying category BO ) preserved by

the UV-valued representable functors; cotensor products; ends;
pointwise Kan extensions. It has further been recognized that,
to be called complete, B should admit all of these; for which
it suffices to demand the first two. Hitherto, however, there
has been no single limit-notion of which 811 these are special
cases, and particular instances of which may exist even when B
is not complete or even cotensored. In consequence it has not
been possible even to state, say, the representability criterion
for a V-functor T : B+ V , or even to define, say, pointwise Kan
extensions into B , except for cotensored B . (It is somewhat
as if, for ordinary categories, we had the notions of product and
equalizer, but lacked that of general limit, and could not
discuss pullbacks in the absence of products.) In this paper we

provide such a general limit-notion for V-categories.

1. Introduction

V is a symmetric monoidal closed category with tensor product & ,
identity object I , and internal-hom [ , ] ; recall that [X, Y] is

also the V-valued-hom V(X, Y) for the V-category V . We write BO

for the ordinary category underlying the V-category B ; in particular,
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the ordinary category underlying V is VO . For the basic facts about

V-categories we refer to Eilenberg and Kelly [4]1, Kelly [5], Day and Kelly
2], and Dubuc [3].

All our classes of objects (for a category or for a V-category) and
our classes of morphisms (for an ordinary category) are sets; 8mall sets
are those in some universe chosen once for all; Sel is the category of
small sets; an ordinary category is loecally small if its hom-sets are
small, that is, if it is a Set-category; a V-category is small if its
set of objects is small; an ordinary category is small if it is a small

Set-category, that is, if its set of morphisms is small.

It has been recognized [2] that, for instance, the product of objects
B and C in a V-category B should be an object B X C , with
projections in BO to B and to C , such that for each A the

projections define an isomorphism

(1.1) B(4, BxC) = B(A, B) x B(4, C)
in VO , the right side being the ordinary product in Vo . Applying the
underlying-set functor VO(I, -) from VO to (possibly large) sets, we

deduce that the projections also define an isomorphism

(1.2) B (4, BXC) = BO(A’ B) x BO(A, )

of sets, so that B X C is a fortiori the ordinary product of B and C
in BO . In general, however, (1.2) is far from implying (1.1); for
instance, when V is graded abelian groups, BO(A, B) contains only an

infinitesimal part of the information in B(4, B) . We call B X C
satisfying (1.1) the product in B ; if it merely satisfies (1.2) it is
what is classically called the product in BO . The latter is, of itself,

clearly not the proper object of interest for V-categories. Another way
of saying that B X C 1is the product in B 1is to say that it is the
product in BO and that it is preserved by the V-valued representables
B(4, =) : BO > VO for all A . Similar remarks apply to the limit in B
and the limit in BO of any ordinary functor & : K + BO . (Some authors

speak of strong and weak limits, or of V-limits and limits.)
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The existence in B of such limits for all small K and all & is
not, however, enough to allow us to prove the V-analogues of those resuilts
that, in the case of ordinary categories, would follow from completeness of
B . We need also the notion [5] of the cotensor product [X, B] € B of
X €V with B € B , namely the object giving a V-representation

(1.3) B(4, [x, B]) =[x, B(4, B)] .

When V = Set +this is just the product of X copies of B , or the X-th
power of B , and falls under the ordinary notion of limit. For a general
V , however, it is an independent limit-like notion. We call B
cotensored if [X, B] exists for all X and B ; V itself is always

cotensored, [X, B] +then being the internal-hom.

B is called complete in [2] if it is cotensored and admits all small
limits; various results are established in [2], {31, and [1] for such
complete B . Other limit-like notions of great utility are also
introduced: ends in (2], pointwise Kan extenstons in [2] and [3]. The
former are shown to exist (for a small domain) if B 1is cotensored and
admits certain limits; the latter are not even defined (except for
ordinary categories - see Mac Lane [6], p. 239) unless B 1is cotensored

(C31, p. s4).

For ordinary categories all limits are, in the complete case,
combinations of products and equalizers; but in the incomplete case a
particular limit may exist although products do not. For V-categories,
replacing "product" by "cotensor product"” and "equalizer" by "limit in B ",
the analogue of the first clause is true but that of the second is
meaningless — for there is no general limit-notion containing cotensor
product and limit in B as special cases. Our purpose is to provide such

a notion.

2. Outline

Ordinary limits involve a functor G : A > B and a cone over it; a
cone involves the idea of a constant functor A + 1 + B where 1 is the
unit category; and the last is lacking for V-categories. We still have
the unit V-category 1 with one object 0 and with I(0, 0) =TI , and
V-functors T + B still correspond to objects of B ; but there is no

canonical V-functor A + 1 . The limit-notion we propose for a
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V-category B involves a V-functor G : A+ B and, in place of a

constant functor, an arbitrary VU-functor F : A+ V ,

To these we assign as our "limit" (when it exists) an object {F, G}
of B. If B admits the cotensor products [FA, GA] for each A €A,
it will be the object

(2.1) {F, G} = J [FA, G4A] ,

A
existing whenever the integral (= end) on the right exists. So the name we
give it is mean cotensor product of F and G . To define it when the
indicated cotensor products do not exist, observe that applying B(B, -)
to (2.1) gives
(2.2) B(B, {F, G}) = J [FA, B(B, GA)] ;

A
here the cotensor products on the right certainly exist, being merely
internal-homs in V , If now the integral on the right exists for each
B , it is a V-functor of B ; if moreover +this V-functor admits a
V-representation as in (2.2), we call the representing object {F, G} ;

which is then said to exist.

All the other limit-notions ere now special cases. Taking A =1 and
identifying for example G : I + B with an object G of B , we see that
{F, G} vecomes the ordinary cotensor product [F, G] . Taking A to be
the free V-—category on the ordinary category K (which exists if K is
locally small and VO admits small copowers), and taking G : A > B to be

the V-functor induced by the ordinary functor @ : K + B0 , we do now have
a canonical V-functor # : A >V (induced by the functor K + Y
constant at I ), and {#%, G} is precisely the limit of @ in B . For

A=0?Q®0D and F=b’omv:DOP®D+V,itturnsoutthat {Homp, G} is
precisely the end J G(D, D) . PFinally, if we have a U~functor
D

K: A+ (C and set F = C(C, K-) , we recover the pointwise Kan extension
of G along K in the form

(2.3) (RanKG)C' = {c(c, &-), G} .
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The dual notion involves V-functors H : A°®> >V and G : A+ B ,

and is the mean tensor product H * G € B ; defined by
(2.4) H+*G={H, "?} ,

where G°F : A°P » g°P , and given by

A
(2.5) H*G=JHA®GA

when the tensor products in the integrand exist.

The above approach uses the (very special) end on the right of (2.2)
to define {F, G} ; since ends are a special case of {F, ¢} this offends
against economy or aesthetics; whence we give an account requiring no
prior knowledge of ends. To do so we have only to recognize that we get

something equivalent to (2.2) if we apply VO(X, -} to both sides, for an

arbitrary X € V , and then re-write the right side in terms of a set of

V-natural transformations.

3. The main definition

The mean cotensor product {F, G} of the V-functors F : A+ V and
G : A+ B is said to exist if there are an object {F, ¢} of B and a

V-natural transformation

(3.1) A : F > B({F, G}, G-)

such that, for each B € B and each X € V , the function

(3.2) T vo(x, B(B, {F, G}))} » V-nat(F, [Xx, B(B, G-)])

is bijective; here the codomain of (3.2) is the set of V-natural
transformations F + [X, B(B, G-)] and T sends f to the composite

(3.3) F = B({F, G}, G-} —zr=— [B(B, {F, ¢}), B(B, G-)]

B(B,-)
TFaT [x, 8(B, ¢-)] .

Taking X = I in (3.2) and simplifying, we get a bijection

(3.4) m' : By(B, {F, G}) » V-nat(F, B(B, G-)} ,

sending g to the composite
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(3.5) F > B({F, G}, G-) W B(B, G-) .

This exhibits {F, ¢} and A as the representing object and the
characteristic morphism for the functor given by the codomain of (3.4), and

shows their uniqueness, when they exist, to within a unique isomorphism.

It is clear that V-natural transformations o : F' - F and

B : G~ G' induce, when the domain and codomain exist, a unique
(3.6) {a, B} : {F, G} » {F', G'}
with the appropriate relation to (3.2).

The following Yoneda-type result generalizes [2], 3.5, reducing to it

when B is cotensored.

THEOREM 3.1. Let G : A+ B be a V-functor and let A €A . We
have

(3.7 {A4, =), Gt =,
the corresponding A being G : A(4, -) ~ B(&4, G-) .

Proof. Use the lower~level V-Yoneda-Lemma of [4], Chapter I, Theorem

8.6 to replace the codomain of (3.2) by VO[I, [x, B(B, G4)]) , isomorphic
to vo(x, B(B, G4)) . 0

4., Cotensor products

As we said in 82, when A is the unit UV-category 1 we identify F
and G with objects of V and of B respectively, and call {F, G} the
eotensor product [F, G] of these objects. In this case the codomain of
(3.2) is Just VO(F, [X, B(B, G)]) ; replacing this by its isomorph

VO(X, {F, B(B, G)]] replaces T in (3.2) by Vo(l, 8) , where

(4.1) s : B(B, [F, G]) » [F, B(B, G)]
is the composite

(4.2) B(B, [F, 61) =y [BUF, Gl, 6), B(B, 6)] 5o [F, B(B, )] .

Since (3.2) is an isomorphism for all X if and only if (4.1) is an
isomorphism, we conclude that the cotensor product [F, G] exists
precisely where [F, G] and X : F -+ B([F, G], G) provide a
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V-representation of the V-functor B+ [F, B(B, G)] . This is the

definition given in [5].
When B 1is cotensored, that is when [F, G] exists for all F and

G , (4.1) exhibits [-, G] as the V-left-adjoint of B(-, G) : B°? > v .
In this case, by the results of [5], F, G+ [F, G] is a V-functor

VP ® B> B in such a way that (4.1) is V-natural in all variables.

Similarly for the dual notion of tensor product H® G € B of H €V
and G € B , for which (4.1) becomes

(4.3) B(mc, B) = [H, B(G, B)] .

Of course V itself is tensored and cotensored, H® G and [F, G}

being the usual temsor product and internal-hom.

5. The weaker definition

Returning to a general A , we call an object {F, G} of B along
with the V-natural A of (3.1) the weak mean cotemsor product of F and
G if the 7' of (3.4) is a bijection; we then say that {F, G} exists
weakly. Thus by §3 existence implies weak existence; the converse is
false in general. The distinction is analogous to that of §1 between

limits in B and limits in Bo ; and, as there, weak existence is not in

itself of interest in the context of V-categories. We introduce it only

because in certain cases it impliee existence; and it is easier to verify.

PROPOSITION 5.1. Weak existence implies existence if B 1is
tensored, and thus in particular if B =1V .

Proof. Replacing B by X® B in (3.4) gives (3.2). u

PROPOSITION 5.2. Weak existence implies existence, for any B , if
V 1is the category of algebras for a monoidal monad on Set ; for example,
if V=S8et, or Ab, or R-Mod for a commutative ring R .

Proof. In these cases the underlying-set functor VO(I, -) is
faithful and reflects isomorphisms; and [X, Y] is made from VO(X, Y)
by defining the operations element-wise.

Moreover UO here is locally small, whence Bo too is so. Since
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(3.4) is a bijection by hypothesis, its codomain is a small set. Element-
wise operations on V-natural transformations (which, since the underlying-
set functor is faithful, are just the natural ones) turn this latter set

into an object Y of V , and 7' is easily seen to be a Vo-morphism

B(B, {F, ¢}) > Y . It is an isomorphism because VO(I, -) reflects
isomorphisms.

Finally the codomain of (3.2) is easily identified with UO(X, Y),
whereupon 7 becomes Vo(l, m') , an isomorphism because ' is. O

In the case V = Set we have introduced nothing transcending the

ordinary notion of limit; for we have:

THEOREM 5.3, In the case V = Set write I not only for the one-
point set but also for the functor 1 + Set sending the unique object 0
of 1 to I . Let I/F denote the comma category of I : 1 - Set and
F : A > Set, commonly called the category of elements of F ; and let
d : I/F + A be the projection. Then for G : A+ B we have

(5.1) {F, 6} = 1im Gd ,
etther side existing if the other does.

Proof. By Proposition 5.2 weak existence of {F, G} coincides with
existence. The codomain of (3.4) is easily identified with the set of

conves over Gd with vertex B . a

In analogy with the case of limits in B discussed in §1, existence

reduces via the representables to wesk existence in V :

PROPOSITION 65.4. {F, G} and the A of (3.1) constitute the mean
cotensor product of F : A+ V and G : B>V <if and only if, for each
B € B, the object B(B, {F, G}) and the composite V-natural
transformation

(5.2) F 5 B({F, G}, G-) BE) [(B(B, {F, G}), B(B, G-)]

constitute weakly the mean cotemsor product {F, B(B, G-)} of F: A+ 1V
and B(B, G-) : A+ V.,

Proof. Compare (3.5) with (3.3). O
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6. Preservation, representability, adjoints

Let {F, G} along with the A of (3.1) be the mean cotensor product
of F:A>V and G:A>B. A V-functor T : B> C is said to
preserve {F, G} if T{F, G} , along with the V-natural transformation

(6.1) F = B({F, G}, G-) - c(r{r, G}, TG-\)

(which we write as TeX ) , is the mean cotensor product {F, TG} of F
with 7G : A+ C .

When A =1 +this agrees with the definition of "preserving cotensor

products" given in [5].

If {F, G} exists weakly and if 7T{F, G} eand T\ constitute
{F, TG} weakly, we say that T weakly preserves {F, G} .

THEOREM 6.1. The representables B(B, -) : B » V pregerve any
{F, G} that exists.

Proof. Proposition 5.4 and Proposition 5.1. O

By a left adjoint for a V-functor we mean of course a V-left-
adjoint. Recall from [5] that the VU-functor T : B > C has a left
adjoint if and only if C(C, T-) 1is representable for each C € C .

~

THEOREM 6.2. If T : B+ C has a left adjoint it preserves any
{F, G} that exists.

Proof. {F, G} 1is, by Theorem 6.1, preserved by C(C, T-) ; the
result follows on applying Proposition 5.4 to T{F, G} and T-A . a

The notion of mean cotensor product enables us to give for the first
time a necessary and sufficient condition for representability of a
V-functor, without extraneous conditions. (The necessary and sufficient
condition for the existence of a left adjoint, given in [3], Theorem I1.L4.1,
does not in general give a criterion for representability.) To cover
representability and adjoints in one theorem, it is convenient to prove the

following:

THEOREM 6.3. Let G : A+ B be a V-functor, let B € B, and
denote by 1 the identity 1 : A+ A . Then the following are equivalent:

(1) B(B, G-) : A+ V <48 representable;

(i1} {B(B, G-), 1} exists and ige preserved by G ;
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(iii) {B(B, G-), 1} exists weakly and is weakly preserved by
G .

Then the representing object is {B(B, G-), 1} and the corresponding
A : B(B, G-) ~ A({B(B, G-), 1}, -} provides the representation, being in

fact an isomorphism.

Proof. (i) implies (iZ) by Theorems 3.1 and 6.1, and (Z%) implies
(21%) trivially. To prove that (iiZ) implies (Z) we construct, under the

hypotheses of (Z1%1), an inverse of A .

Since G{B(B, G-), 1} and G*A weakly constitute {B(B, G-), G} ,
there is a unique g : B » G{B(B, G-}, 1} such that the V-natural

transformation
(6.2) B(8, ¢-) > A({B(8, ¢-), 1}, - v B(¢{B(8, ¢-), 1}, G-)

_—_——’B(g,l) B(8, G-)

is the identity. Writing W for the composite of the last two factors in
(6.2) we have PA = 1 , The other composite

s A((B(B, 6-), 1}, =) ~ A({B(B, ¢-), 1}, -)

is, by the ordinary V-Yoneda-Lemma, of the form A(f, 1) for some
endomorphism f of {B(B, G-), 1} . Since uA =1 we have ApA =X or
A(f, 1)A = A(L, 1)A . Using the definition of weak existence of

{B(B, G-), 1} we conclude from this that f = 1 and hence that Ap =1 .0

Taking B=V and B = I in Theorem 6.3, we get:

THEOREM 6.4. For a V-functor G : A+ V the following are
equivalent:

(i) G 1is representable;
(i2) {G, 1} existse and is preserved by G ;
(ii2) {G, 1} exists weakly and ig weakly preserved by G .

Then X 4is an isomorphism and the representation is
A6+ Al{g, 1}, =) . o

Quantifying over B in Theorem 6.3 gives:

THEOREM 6.5. For a V-functor G : A+ B the following are
equivalent:
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(i) G has a left adjoint;
(it) for each B, {B(B, G-), 1} existe and is preserved by
G;
(iii) for each B, {B(B, G-), 1} exists weakly and is weakly
preserved by G .

Then the left adjoint S of G <s given on objects by
sg = {B(B, G-), 1} . a

7. Ends

Given a V-functor X : D°P ® D+ B we write Homv . p°P ®0D->V for

the V-valued Hom-functor and define the end of X , written J k(p, D) ,
D

by

(7.1) I K(D, D) = {Hom,, K}
D

whenever the right side exists: in which case we say that the end (also

called the integral) exists. The dual notion is the co-end or co-integral
D
(7.2) J K(D, D) = Hom, * X .

The corresponding A : Homv(D', ") + B[J k(p, D), K(D', D")]

D

corresponds by the V-Yoneda-Lemma to a V-natural

TR J K(D, D) » K(D', D') . (This is of course the "extraordinary"
D

{-naturality of [4], Chapter III, §5.) Weak existence of (7.1) merely asks
that u be terminal among V-natural v : ¢ -+ K(D', D') ; true existence
demands a similar terminal property of B(B, u) among the B(B, v) for

each B € B . Our definition of end, therefore, agrees precisely with the
original definition in [2], including the two levels at which it may exist.
Once again, we have no serious interest in weak existence except insofar as

it implies existence. Further, preservation in our sense of {Homv, K} by

T : B+ C coincides with preservation of the end J K(D, D) as defined
D
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in [2]. We leave the reader to check the details.

Conversely, we get the expression (2.1) of our Outline above, for

{F, G} as an end, when the necessary cotensor products exist:

PROPOSITION 7.1. Let F :A+V and G : A+ B, and let the
cotensor product [FA, GA] exist for each A € A ; which it certainly
does if B 18 cotemsored and in particular if B = V . Then we have

(7.3) {r, 6} = I (F4, @] ,
A

either side existing if the other does.

Proof. Writing in for clarity the varisble 4 € A in which there is
to be V-naturality, and admitting extraordinary V-naturality into our
formulas, we transform as follows the codomain of (3.2) using the cotensor

products:

V'nat(xa [FA’ B(Bs GA)])
v-nat (X, B(B, [F4, &])) .

V-nat (F4, [X, B(B, G4)])

1R

iR

After similar transformations of the A of (3.1) and the 7 of (3.2), the

result is immediate. 0O

For ends it is particularly easy to estsblish the V-functoriality of
J XK(D, D, E) in the extra variable E , where here KX : PPRPRE+B ;
D
related results about the V-naturality of induced morphisms; and the
Fubini Theorem. These things are treated in [2], §3, and in more detail in

(1], §2; the proofs can hardly be improved and we just take these results

over.

In particular, for F : A+ V and G: A+ B,

(7.4) {F, B(B, G-)} = L (74, B(B, G4))

is a V-functor in B if it exists for all B . We can now get the
definition of (P, G} given in (2.2) of our Outline above.

THEOREM 7.2. {F, G} exists if and only if (1.4) exists for each

B € B and is representable ags a V-functor BP >V ; the repregenting
object ie {F, G} , so that we have
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(7.5) p : BB, {F, 6}) g[ (7, B(B, @)1,
A

and the characteristic map I-vj [FA, B({F, G}, GA)] 1is just the
A4

transform of A .

Proof. If {F, G} exists then, by Theorem 6.1, {F, B(B, G-)}
exists and is given by B(B, {F, G}) along with B(B, -)+*A . It is easily
checked that the isomorphism (7.5) is given in terms of X as stated in

the theorem, and is therefore V-natural in B , as desired.
For the converse we have only to apply VO(X, -} to (7.5) and

transform the right side into the codomain of (3.2), at the same time

checking that the isomorphism becomes the T given by (3.3). a

The following lemma is "classical" and has been used in many special
cases, for instance in [5], 3.3 and 3.5; but there does not seem to be an

explicit reference in the literature:

LEMMA 7.3. If the V-functor T : A°° ® B » V {is such that we have
for each fixed B a representation p : A(4, SB) 2 T(4, B) of T(-, B),
then there ie a unique way of making S into a V-funector S : B+ A
rendering p V-natural in B .

Proof. By [4], Chapter III, Proposition 7.9, p is V-natural in B
if and only if the characteristic morphism o : I » T(SB, B) is so. The
latter says that SBB' : B(B, B') » A(SB, SB') followed by [a, 117(-, B')
should equal [a, 1]J7(SB, -) . But [a, 1]T(-, B') equals the isomorphism
ip : A(SB, SB') » T(SB, B') » [I, T(SB, B')] . Thus we are forced to

define Spp, as p-li-l[a, 1]7(SB, -) . We then easily verify the axioms
for a V-functor. O

The lemma, with Theorem 7.2, at once allows us to transfer the

"dependence on extra variables" results from ends to arbitrary {F, G} :

PROPOSITION 7.4, If F:AQ@C~+V and G: A®D+ B, and if
{P(-, ¢), G(~, D)} exists for each C and D , there is a wnique way of

making this into a V-functor CP @ D > B that renders the p of (7.5)
V-natural in € and D . ]
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We leave to the reader the easy verifications in:

PROPOSITION 7.5. The {a, B} of (3.6) ie V-natural in any extra
variables in F and G . The isomorphism (3.7) is V-natural in 4 and
in any extra variables in G . o

8. Kan extensions

The classical notion of Kan extension (as distinct from that of point-
wise Kan extension) can be defined in any 2-category. In our 2-category
of V-categories, UV-functors, and V-natural transformations, it is as

follows.

Given V-functors X : A+ D and G : A ~+> B , we understand by the

right Kan extension of G along K a V-functor ran,G : D + B together

X

with a VUV-natural transformation

(8.1) € : (ranG)K > G

such that, for each V-functor P : D » B , the function

(8.2) o : V—nat(P, ran

(G) > V-nat(PK, G)

is a bijection; where O sends a to the composite

(8.3) PR = (ren,0)K — G .

Clearly ranKG and € , if they exist, are unique to within a unique
isomorphism.

We say that the right Kun extension above is respected by a V-functor
r:B~»C if T(ranKG) and Te constitute ran, TG . It is classical

([3], Proposition I.4.2) that right Kan extensions are respected by any T
that has a left adjoint, but need not be respected by the representables
B(B, =) : B>V , even in the case V = Set .

Where we say that T respects a Kan extension, most authors say that
T preserves it. The latter term is unfortunate and leads to confusion;
in the case V = Set , any 1limit notion should be preserved by
representables, and yet the usual terminology suggests otherwise for Kan
extensions. The truth of the matter is that the Kan extension lives not in

B but in the functor-category [P, B] ; it is a limit indeed, but in
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[P, B] not in B ; to say that it is respected by T 1is to say that it
is preserved by [1, T] : [D, B] = [P, C] ; if T has a left adjoint so
does [1, T] , so that [1, T] preserves and T respects; but if T is
the representable B(B, -) it is not in general the case that [1, T] has
a left adjoint.

The point is sufficiently illustrated by considering, again in the
case V = Set , an ordinary limit in a functor category [D, B) . It is
said to exist pointwise if for each D € U the corresponding limit exists
in B ; the totality of these then automatically constitutes the limit in
[D, B] . Yet a fortuitous relation between ¥ and B may allow a limit
to exist without existing pointwise. Mere existence requires a certain
completeness of [U, B] ; pointwise existence requires a certain
completeness of B . The limit exists pointwise if it exists and is

preserved by the evaluations Ep : [P, B} + B ; +this is the same as asking

it to be preserved by [1, B(B, -)] for each B € B , or to be respected
by the representables 'B(B, -) , as an easy calculation shows.

This suggests our definition below of pointwise Kan extension; in the
case V = Set it reduces to that of Mac Lane ([61, p. 240); for a general
V it has been defined by Dubuc ([3], p. 54) only for cotensored B , where
there is an integral formula for it; our notion of mean cotensor product
extends this formula to the case of any B whatsoever. Results similar to

those of this section have been given by Zandarin-Vandenbeyvanghe [7].

We remark finally that we know of no important result involving Kan
extensions where these are not pointwise; pointwiseness, if not explicit
in the hypotheses, is at least a consequence of them. It is convenient to
indicate notationally that a right Kan extension exists pointwise by using
a capital R and writing RanKG in place of ranKG .

We say, then, that RanKG : D+ B together with ¢ : (RanKG)K > G is
the pointwise right Kan extension of G along K if we have (7) and (i7):

(Z) RanKG with ¢ 1is the right Kan extension of G along K ;

(i1) this right Kan extension is respected by the representable

B(B, =) : B>V for each B €B .

We express the existence of this pointwise Kan extension by saying
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"Ra.nKG exists". Let us re-write (1) explicitly sas:

(iii) for each B € B, B(B, (RanKG)-) with B(B, €-) is the
right Kan extension of B(B, G-) along K.

In detail, (iiZ) means that for each B € B and for each V-functor
Q@ : D+ V , the function

(8.4) ¢ : V-nat(q, B(3, (Ra.nKG)-)) + V-nat (Qx, B(B, G-))
is an isomorphism, where ¢ sends B to the composite
(8.5) & gz B(8, (RanyG)K-) gz=my BB, &) .

Now in fact we can replace (1) and (Zi1) as the definition by (Z7Z) &lone,

since
PROPOSITION 8.1. (iiZ) Zmplies (Z).

Proof, Given P : D+ B take § in (8.4) to be B(B, P-) . Then
the V-Yoneda~Lemma, with [4], Chapter III, Proposition 7.9, turns (8.L)
into (8.2). a

A further simplification is given by:

PROPOSITION 8.2. In order that the ¢ of (8.4) be an isomorphiem
for all @ , it suffices that it be so for all @ of the form
(D, -)®X, where D €D and X €V.

Proof. Taking Theorem 3.1 along with Proposition 7.1 and Proposition

7.5, and dualizing, we express an arbitrary @ as JD (D, -) ® @D ; the
result follows easily. a
This now yields the "formula' for pointmse right Kan extensions:
THEOREM 8.3. The pointwise right Kon extension (Ra.nKG e) of
G:A+B along K: A+ D exigts if and only if, for each D € D , the
mean cotensor product ({D(D, k-), G}, AD) exists. We have

(8.6) (Ra.nKG)D = {0(D, k-), G} ,

while €, (Ranlﬁ)m + GA corresponds wnder the Yoneda isomorphism to
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(8-7) Ap.a @ D(D, KA) > B({D(D, k-), G}, G4) .

Proof. Proposition 8.2 allows us to replace § by D(D, -) ® X in
(8.4), which then transforms under the V-Yoneda-Lemma into an isomorphism
(8.8) = : O(X, B(B, (Ren,6)D)) = V-nat(0(D, k-), (X, B(B, 6-)]) .
Comparing this with (3.2) gives the "only if" part. For the "if" part we

have to use Proposition 7.4 to make the right side of (8.6) V-functorial

in D ; we leave the easy details to the reader. 0
By Theorem 7.2, it comes to the same thing (ef. [7]) to say that for

each D the V-functor of B given by J [D(D, KA), B(B, GA)] exists
A
and admits a representation

(8.9) B(8, (Rany)D) ng [0, K4), B(B, G4)] -

The formula (8.6) contains as special cases the two classical ones:

for arbitrary V if B 1is cotensored Proposition 7.1 allows us to write
(8.6) as

(8.10) (Ran,G)D =J [D(D, K4), GA] ,
A

Ra.nKG existing if and only if the right side exists for all D . Again for
V = Set and arbitrary B , Theorem 5.3 allows us to replace (8.6) by
(8.11) (Ran,G)D = 1im(D/K —> A —=> B)

RanKG again existing if-and only if the right side exists for a2ll D .

(In (8.11) we have replaced the comma category I/D(D, K-) of Theorem 5.3
by the isomorphic comme category D/K , in which D denotes the unique
functor 1 + D with image D € D )

In one case pointwiseness is automatic:

PROPOSITION 8.4. If B <is temsored and ra.nKG exists, it exists
pointwise.

Proof. B(B, -) : B+ V has a left adjoint and therefore respects all
right Kan extensions. O
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Since only the pointwise case is of real interest, we want the
correspondingly stronger notion of "respects'. We say that T : B> C
respecte Ran, [ (as distinct from ran}(G ) if T(RanKG) with Te is

Ra.nKTG (and not just ra.nKTG ). Since the representables B(B, -) land

in V , wvhich is tensored, it follows from Proposition 8.4 that they
actually respect RanKG . In general, it is clear from (8.6) that T

respects RanKG if and only if it preserves {D(D, K-), G} for each D .
The classical elementary results about pointwise right Kan extensions

now follow without any hypothesis that B is cotensored; the next few

propositions give examples.
PROPOSITION 8.5. If Ran ¢ existe and K <is fully faithful, € 1is

an isomorphism; 8o that RanKG 18 indeed an "extenston" of G .

Proof. By (8.6) we have (RanKG)KA = {D(KA, K-), G} ; since K is

fully faithful as a V-functor, this is isomorphic to {A(4, -), ¢} , which
is GA by Theorem 3.1. (]

We call KX codense if the canonical map

(8, D) j [D(D, K4), D(B, Ka)]
y:|

is an isomorphism for all B, D €D .

PROPOSITION 8.6. To say that K 4is codense is to say that
{0(D, k-), K} =D for all D, or equally to say that Ran K exists and

ig the identity 1 : D+ 1D . a

PROPOSITION 8.7. If XK : A+ D has a left adjoint L : D+ A then
Ren, G exists and is given by GL , while € : GLK -+ G comes from the

counit of the adjunction. In this case Ran, G 18 respected by any
T : B+ C whatever.

Proof. The {D(D, k-), G} of (8.6) becomes {A(LD, -), G} , which is
GLD Yy Theorem 3.1. The last statement of the proposition is evident. a

Our Theorem 6.5 translates into:

PROPOSITION 8.8. G : A + B has a left adjoint if and only if
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Ran-l exists and is respected by G , where 1 1is the identity A > A . O

In fact the same is true ([3], Theorem I.L.1) with ran] replacing
RanG; . By Proposition 8.7, however, the extra strength of the latter

result is only apparent.

9. Functor categories

On the existence of functor categories, we have nothing to add to the

account in [2]; we get from V-categories A and B a V-category
[A, B] called the functor category if the end IA B(TA, SA) exists for
all T, S : A+ B ; then this end is [A, B](T, S) . The underlying
ordinary category [A, B]o is that of the V-functors from A to B and
the V-natural transformations between them.

When [A, V] exists we can write (7.5) as

(9-1) B(Bs {Fs G}) = [Aa V](F: B(By G_)) H
vhen [AOP, V] exists we have the dual

(9.2) B(#xG, B) = [A°®, V] (&, B(G-, B))
these formulae have clearly influenced our choice of notation.

When the functor categories [A, V] and [A, B] exist, we can take
F and G themselves as the "extra variables" in Proposition 7.4, so that

{, } bvecomes a V-functor

(9.3) {, }:[A VI°QI[A, B]+B.
Again by Proposition 7.5 the isomorphism {A(4, -), ¢} = GA of Theorem
3.1 is V-natural in both 4 and G .
When [A, V] exists write Y : A > [A, VI°? for the Yoneda embedding
sending A to A(4, -) . For F : A+ V the isomorphism
{A(4, -), F} @ FA becomes [A, V](YA, P) =FA , or [A, VI°°(F, va) >~ Fa .

PROPOSITION 9.1. Let [A, V] exist, let Y : A+ [A, VI°P be the

Yoneda embedding, and let G : A > B be a V-functor. Then RanYG exists
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if and only if {P, G} exists for all F € [A, V] ; and
(9.4) (RanG)F = {F, G} .

Proof. By (8.6) we have (Ran,G)F = {[A, vI°®(F, 1-), G} ; and
(A, VI®(F, ¥-)=F. O

PROPOSITION 9.2. Let [A, V] exist and let Y : A > [A, VI®P pe
the Yoneda embedding. For each F € [A, V] we have
(9.5) {r, 7} =F.
Thus by the preceding proposition Ra.ny.Y i8 the identity, or Y 4is
codense.

Proof. We use Theorem T.2. We have

J [F4, (A, VI®®(T, 14)] =[ (Fa, 4] = [A, VI®(7, F) . D
A A
Finally we observe that Theorem 7.2 together with Proposition 7.4

gives, using the Fubini Theorem for ends:

PROPOSITION 9.3. Let F: AV, G : A~ [K,B]; and suppose
that G corresponds to H : AQK+ B . If {F, H(-, K)} exists for each
K then {F, G} exists and {F, G}K = {F, H(-, K)} . O

10. Completeness and ordinary limits

We call the V-category B complete if {F, G} exists for all
F:A>VU and G: A>B when A is small. Since I is small, this
implies that B is cotensored; and is equivalent to the assertion that B

is cotensored and admits all ends with small domain.

If V is complete the functor category [A, B] exists whenever A
is small. The converse is also true: if. all functor categories with small
domain exist, then [A, V] exists and thus, by Proposition 7.1, {F, G}
exists for F, G : A~»V .

It is clear from (8.6) that, for K : A>D and G : A+ B, Ra.nKG

exists if A is small and B is complete. If V is complete, so that

[A, V] exists for small A , Proposition 9.1 provides a converse: B is
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complete if and only if Ran,G exists for all G : A+>B with A small,

Y being the Yoneda embedding A + [A, VI°P |

To analyze completeness - that is, the existence of {F, G} - in more
familiar terms, we turn to the question of ordinary limits in B , as
adumbrated in §1. We have left these until last; for one thing they do
not arise until we mix ordinary categories with our V-categories, and for
another they do not come as a special case of {F, G} without a mild

hypothesis on V .

Suppose we have an ordinary category K , a V-category B , and
ordinary functors F : K ~» Vo and G : K~ BO . We modify the definition

of §3 to define the mean cotensor product {F, G}' of F and G ; it
is an object {(F, G}' of B together with a (merely) natural
transformation A : F -+ B({F, G}', G-) such that the function

m: Vo (x, BB, {F, 6}")) »nat(F, (X, B(B, G-)])

is an isomorphism, where m still sends f +to the composite (3.3).

The reader will easily verify that virtually all we have said carries
over to this case without change. We still get the cotensor product by
taking K to be the unit (ordinary!) category I ; we still have weak and
strong existence; we still have Theorems 6.1 and 6.2; we can define ends

in B of an ordinary bifunctor into BO 3 we can define the V-functor
RanKG from the ordinary functors K and G by using (8.6) as a
definition; and the ordinary functors K -+ BO form a V-category [K, B}

(if the appropriate ends exist), whose underlying ordinary category
[K, B]0 is the ordinary functor-category [K, Bo] . The theorems that are

lacking are those involving the representable A(4, -) , which we no longer

have. ~

Of course in the case V = Set there is no difference between
{F, G}' and {F, G} - except that the latter is defined only for Set-
categories K , that is, only for locally small ordinary categories K .

We can now express in terms of {, }' the notion of the 1limit in

B (as distinet from the limit in BO ) of an ordinary functor G : K - BO ,
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as discussed in §1. We write Lim ¢ for the limit in B , retaining 1lim @

for the mere limit in BO .

THEOREM 10.1. Denote by + : K+ V

0 the constant functor at I .

Then for G:K-»B0 we have

(10.1) Lim 7 = {*, G}' ,

either side existing if the other does. We also have

(10.2) lim G = {*, G}',

the left side existing precisely when the right side exists weakly.

Proof. For the second statement, observe that the codomain of (3.4),
with V-nat now replaced by nat , may be identified with the set of cones
of vertex B over G . The first statement follows then by (the analogue
of ) Proposition 5.h4. a

Suppose now that VO admits small copowers; in practice this is an

extremely mild condition, for the base category V 1is usually highly
respectable; if it were not, one would anticipate some untidiness in the
notion of completeness for V-categories. Then on any locally-small
ordinary category K we can form the free V-category A , with the same
objects as K , by taking for A(4, B) the K(4, B)-th copower of I .

There is now a bijection between ordinary functors G : K =+ BO and
V-functors G : A+ B ; and we have
(10.3) r, 6}' = {F, G} ,

so that we do not need {F, G}' as a separate notion after all. 1In

particular we have
(10.4) LinG = {*, G} ,

where now * : A > V is the constant V-functor at I induced by

* : K~ V0 . This justifies our claim that all hitherto-used limit notions

for V-categories are subsumed under our notion {F, G} of mean cotensor

product.
Splitting up the existence of limits in B into their existence in

BO and their preservation by the representables B(B, -) : BO > VO , we
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have
THEOREM 10.2. For a V-category B , consider the assertions

(a) B is complete in the above sense that all {F, G} exist
for small A ;

(b) B 1is cotensored, BO admits small limits, and each

B(B, -) preserves them.

Then (b) implies (a), while (a) tmplies (b) if V0 admits small copowers.

When B <is temsored, (b) can be replaced by

(b') B 1is cotensored and B0 admite small limits.

When B is V <itself, (b) can be replaced by

(b") V0 admits small limits.

Finally in the case V = Set , B <8 complete if and only if it
admits small limits.

Proof. We have seen that B 1is complete if and only if it admits
cotensor products and small ends. That the latter exist under the

hypotheses (b) is proved in [2], 3.3. VWhen VO admits small copowers, the

converse implication (a) = (b) follows from (10.4). Proposition 5.1 allows
the reduction of (b) to (b’), while the further reduction to (b") is
trivial since V 1is cotensored. The final remark about the case V = Set

follows from (10.2) and Theorem 5.3. (]

N

The usual definition of completeness has been the slightly stronger

(b); the case where VO does not admit small copowers is too rare to

Justify an attempt to introduce separate names for (aq) and (b) in this

general account.

With the remark that preservation of {*, G}' by T is precisely
vhat is normally meant by preservation of Lim G by T , we leave it to the

reader to formulate for preservation by T the analogue of Theorem 10.2.
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