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THE HEAT FLOWS AND HARMONIC MAPS FROM
COMPLETE MANIFOLDS INTO REGULAR BALLS

JlAYU Li AND SlLEI WANG

We generalise the existence result for harmonic maps obtained by Hildebrandt-Kaul-
Widman to the case where the domain manifold is complete noncompact.

1. INTRODUCTION

Let M and N be two Riemannian manifolds of dimension m and n. Suppose their
metrics are given by ds2

M = gijdxidxj and ds% = ha/}duadu0. The energy density function
of u is given by

duadu\ |2

The total energy is defined by
E(u) = [ e{u)dx.

J M
A mapping u : M —> N is called a harmonic map if it is a classical solution of the
Euler-Lagrange equation of E(u), which can be written as

(1.1) T-(«(X)) = A«-(x) + r 2 , ( « ( * ) ) | £ | g > = 0

where r(u) is called the tension field of u. The corresponding parabolic system with
initial data uQ(x), known as the the heat equation for harmonic maps, is as follows

If M is a compact Riemannian manifold with boundary dM, then we may consider
the following Dirichlet problems:
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and

( L 4 )

where u0 € C\M, N), h0 € Cl(dM, N), uo\dM = h0.

When M and TV are compact without boundary and N has nonpositive sectional
curvature, Eells-Sampson [10] proved that any C1 map from M into N can be deformed
to a harmonic map, by solving (1.2). The analogous version for compact manifolds with
boundary was proved by Hamilton [12], who solved the equation (1.4).

Hildebrandt-Kaul-Widman [15] solved the equation (1.3) when ho(dM) is contained
in a regular ball. Later Jost [16] reproved the result by the heat flow method. In [1]
Aviles-Choi-Micallef considered the case where the domain manifold M is complete and
simply connected with sectional curvature KM satisfying —b2^ KM ^ —a2 < 0. They
proved that the Dirichlet problem at infinity for harmonic maps from M into a regular
ball has a solution, by using the continuity method.

Ding-Lin [8] showed that if M and N are compact without boundary and the uni-
versal covering of N admits a strictly convex function with quadratic growth then the
result of Eells-Sampson holds.

When M is a complete noncompact Riemannian manifold and N is a complete
Riemannian manifold with nonpositive sectional curvature, Li-Tam [22] proved the long
time existence result for the initial value problem of (1.2), provided the initial data
w0 has bounded energy density. If we impose some conditions on M and u0 we can
have the convergence of the heat flow u(x, t) to a harmonic map from M into N (see
[9, 20 , 22, 23]), which generalises the result of Eells-Sampson to the noncompact case.

But, it is well-known that the conclusion of Eells-Sampson can not be generally
achieved and one has to pose some assumptions on N to draw such a conclusion because
the solution of (1.2) and the solution of (1.4) may blow up in finite time (see [5, 6, 7]).

In this paper, we assume that M is a complete noncompact Riemannian manifold.

To state our conclusions we introduce some definitions.

D E F I N I T I O N 1.1: Let N be a Riemannian manifold and Q a bounded open subset
of N. We say Q satisfies condition (B) if there exists a positive function / 6 C2(fl)
satisfying

- V2 / - fK2{y)h > C0(Sl)h

0 < mi(fi) ^ /(y) < m2(fi) < oo

and
\vf(y)\ <oo
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for all y € ft, where K2(y) = supiK(y, n),0 | K(y,n) is the sectional curvature of a two

plane n 6 TyN}, and C0(ft) > 0.

DEFINITION 1.2: If ft satisfies condition (B) and there is a nonnegative convex
function /* on ft such that ft = ( /* ) - 1 HO,r)j, we call ft a generalised regular ball.

E X A M P L E 1.3. Suppose iV is a Riemannian manifold with nonpositive sectional cur-
vature. If ft C AT is a open bounded subset and there is a point y0 e N such that
Slf\Cut(yo) — 0, then ft satisfies condition (B). Br(yo) is a generalised regular ball if
Br{yo)f]Cut(yo)=ll>.

E X A M P L E 1.4. Suppose N is a Riemannian manifold, BT(y0) is a regular ball (see [13]),
that is Cut(yo)r\Br(yo) = 0, and y/Kr < n/2 where K ^ 0 is an upper bound of the
sectional curvature of N on BT(yQ), then Br(yo) is a generalised regular ball.

In this paper we mainly consider the heat flows and harmonic maps from a complete
noncompact Riemannian manifold into a regular ball.

For the heat flows we prove

THEOREM 1 . 5 . Let M be a complete noncompact Riemannian manifold. Sup-

pose that ft is a regular ball. Assume that u0 G Cl(M,Cl). Then (1.2) has a smooth

solution u(x, t) satisfying u[BR(x0) X [0, T)) CC fi for allR>0 and T > 0.

Such a solution is unique if M is compact or if there exists a point X\ € M and a

positive constant (3 such that Vol(BR(xif) ^ exp(j3{\ + R2))for all R>0.

For the convergence of the heat flow, we prove

THEOREM 1 . 6 . Let M be a complete noncompact Riemannian manifold. Let Q
be a regular ball. Assume that UQ € Cl(M, f2), and .E'(uo) < °°- Then (1.2) has a smooth
solution u(x,t) satisfying that U(BR{X0) X [O,T)^j CC ft for all R > 0 and T > 0 and
that there exists a subsequence tv —> oo such that u(x,tv) —> u^x), and u^x) is a
harmonic map.

REMARK 1.7. If M is a complete noncompact Riemannian manifold which admits a
compact convex exhaustion {ft;} (dftj is convex). Then by applying the existence theorem
in [21] instead of using Jost's result in the proof of Theorem 3.1, we can prove the
condition in Theorem 1.5 and Theorem 1.6 that ft is a regular ball can be replaced by
the assumption that ft is a generalised regular ball.

The main idea in the proof of our theorems is using the gradient estimates for the heat
flow of harmonic maps derived in section 2 which can be seen as the parabolic version of
Cheng's result [3] and Jost's result [17]. The estimates are of interest in their own right.
And as a consequence we can derive a Liouville theorem for harmonic maps which is
similar to a result of Hildebrandt-Jost-Widman [14] and generalise the results of Cheng
[3], Choi [4] and Yu [25] (also see [18]).

In this paper Cm denotes various constants which depends only on m; similarly C
denotes various universal constants.
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2. GRADIENT ESTIMATES

In this section we derive some gradient estimates for the heat flow of harmonic maps,
which are essential in the proof of our main results. At the end of this section, we shall
prove a Liouville theorem for harmonic maps.

THEOREM 2 . 1 . Let M and N be Riemannian manifolds. Let x0 € M and r(x)
be the distance function from x0, and let BR(x0) = Ix € M \ r(x) ^ R\. Suppose
that Q C N satisfies condition (B) and assume that the Ricci curvature of M on BR(XQ)

is bounded from below by —K\ ^ 0. If u(x,t) is a solution of the equation (1.2) on
BR{x0) x [0,Ti), U ( B R ( I O ) x [0,7\)) C fl and BR{xo)r\dM = 0 then

sup
BR/2(x0y

and
(2.2)

sup
BR/IIXO) R R

for all 0< t<Ti.

To prove the theorem we introduce

and estimate

( 2 3 )

and

We therefore have

, l x t )
ipo(x,t)- —7——-y

P[u(x,t))

I A - — li^o- A straightforward computation gives

w<> = —jr~

\2 ,v/vlv«la

/ 3

^
f3

n2 V / v ^

a
dcpo

dt p - 2 -

(2.4)
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Using the Weitzenbock formula we have

= 2\Vdu\2-2^(RN(du(ei),du(ej))du(ei),du(ej))

+2Y,(du(RicM(ei)),du(el))
i

where ei, e2, • • •, en is a local orthonormal frame field. Computing directly [3], one has

Since Q, satisfies condition (B), by substituting (2.3) and the last two identities into (2.4)
we have

A d\,n > OK | V U | +0C IV«|4

(2.5) -2 j3 + 2 jA 2v^-y-

The Holder's inequality implies

u\2 Jy / | 2 | yu | 2
 > JVd«||vu

/ 2 / 4

and

vlv«l2

Substituting the last two inequalities into (2.5), we have

(2.6) I A -•jr-]<Po>2Comi<pZ - 2 V ¥>o • - y - -

Now we prove Theorem 2.1. For this purpose we introduce F(x,t) = t<po(x,t). We
obviously have from (2.6)

F2

Let ^(r) be a Ĉ 2 function on [0, c») such that

f l if re [0,1/2]
V U \ 0 i f r e [ l , o o ) ,

0 ^ t/>(r) < 1. ^ '(r) < 0, ip"(r) > - C and \>P'{r)f/(ip(rj) ^ C where C is an absolute
constant. Let g(x) = ip(r(x)/R).
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Assume that (xi,t\) is the point where gF achieves its maximum in BR(XO) X

[0,T] (0 < T < Ti). By using the argument of Calabi [2], we may assume g(x) to be
smooth at x\. And we may also assume (gF)(xi,ti) > 0. By the maximum principle, at
(xi,ti) we have

(2.8) VbF)
d

A(flF)

= 0,

>o,

^ 0 .
and

Hence

(2.9)

Applying the Laplacian comparison theorem [11] we have

So,
I ygl2 c cm cmKx

g ^ R2' 9 ' R? R '

By (2.9) and the last two inequalities we have

(2.10)

Substituting (2.7) and (2.8) into (2.10) we have

P.")

where we have used
0 ^ g ^ 1, we have

syf(u(x,t)}\ ^ m3 |vu|- Multiplying through (2.11) by g and using

o» *»,ftI(,Fj" - (^ + «$• + « , + i ) ,r-c^I(tf) V
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Using the quadratic formula one obtains

2 Cm3 Cm CmKt
+

R R

/2m\Co

So

and so

Bfi/2(io)

(2.1) follows.
To prove (2.2) we set F(x,t) = <po(x,t). If gF achieves its maximum in

[0,T] for 0 < T < Ti at (i^O), then we have

(2.12) sup | v « ( M ) k — sup |vti(*,0)|.

If gF achieves its maximum at (xi
used in the proof of (2.1) we have

> 0), then by an argument similar to the one

(2.13) sup
BR,2{x0y

,77127713

R

(2.2) follows from (2.12) and (2.13).
If instead of considering the function of gF we consider F directly, we have the

following theorems.

THEOREM 2 . 2 . Let M be a compact Riemannian manifold, let N be a Rieman-
nian manifold, and let Q. C Nsatisfy condition (B). Ifu(x,t) is a solution of the equation
(1.2) on M x [0,Ti) and u(M X [0,7i)) C ft then

(2.14)
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and

(2.15) I V u ( s , t ) | < — sup | V u ( x , 0)| + C
1 ' m

for aii (x, t) e M x (0,Ti), where —K\ < 0 is the lower bound of the Ricci curvature of
M.

For harmonic maps, as corollaries of Theorem 2.1 and Theorem 2.2 we have the
following gradient estimates.

THEOREM 2 . 3 . Suppose that M, N, BR(XQ), Q. satisfy the hypotheses of Theo-
rem 2.1. Ifu(x) is a harmonic map from BR(xo) into f2 then

sup
BR/2(xay )

THEOREM 2 . 4 . Suppose that M, N, fi satisfy the hypotheses of Theorem 2.2.
Ifuix) is a harmonic map from M into 0, then

sup
M

By applying Theorem 2.3 we can obtain a Liouville theorem for harmonic maps.

THEOREM 2 . 5 . Let M be a complete Riemannian manifold with nonnegative
Ricci curvature, and let N be a Riemannian manifold. Suppose that £1 C N satisfies
condition (B). Ifu(x) is a harmonic map from M into fi, then u is constant.

3. HEAT FLOWS

In this section we consider the global existence of the heat flow of harmonic maps
from complete noncompact manifolds into regular balls.

THEOREM 3 . 1 . Let M be a complete noncompact Riemannian manifold. Sup-
pose that fl is a regular ball. Assume UQ € Cl(M, fi). Then (1-2) has a smooth solution
u defined on M x [0,00) satisfying the properties

(a) u(BR{x0) x [0,T)) CCft

(b) sup |v«l < °° ^ o r B.HR> 0 and T > 0.
BR(x0)x[0,T)

Such a solution is unique if there exists a point X\ € M and a positive constant @

such that Vol(BR(x0)) ^ exp(/3(l + R2)) for all R>0.

PROOF: Choose a sequence of compact smooth domains Hj such that f2j C f2j+i for
alH = 1,2... and Bi(x0) C fy for some fixed point x0 G M. By Jost's result [16] we can
get a solution U{(x, t) of the following equation for each i.

dui

-m = T{Ui)

u{(x, 0) = uo(x)
Ui(-,t) =uo{-)\ani for a lH > 0
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satisfying m(fij x [0,T)) CC ft and sup I v K ) ! < oo for all i and T > 0.
V ' fliX[0,T)' '

For any R > 0, there exists an integer i(R) > 0 such that B2R(x0) C fi, for all
i ^ i{R). Theorem 2.1 yields

sup
BR(IO)X[0,T]

^ sup |
H

for all i ^ i(R) and T > 0, where —K\ ^ 0 is the lower bound of the Ricci curvature of

M on B2R(x0).

By standard interior estimates for the equation (1.2) and the diagonal subsequence

argument, there exists a subsequence Uj and u € C2>l\M x [0,oo),u\ such that Uj —> u

in C2'1(BR{X0) x [0,i?],f2)for any R > 0. Clearly u(x,t) is a solution of (1.2) satisfying

(a) and (b), and lim u(x,t) = uo(x) uniformly in BR(x0) for any R > 0.

If v is another solution of (1.2) satisfying (a), then we consider the distance function
d(u, v). We set <j){x,t) = ^(u.v). Clearly [24] (j>{x,t) is smooth on M x [0,oo) and

A - — )<f> ^ -K2(j> where K2 = su.Y>K2(y). By the maximum principle [19]
at) Ben

we know that <j>(x, t) ^ eK2t<j>(x, 0) = 0 if there exists a point xx e M and a positive

constant 0 such that Voif-B/^rE!)) < exp((3(l + R2)) for all R > 0. This establishes the

theorem. D

4. HARMONIC MAPS

In this section we consider the convergence of the heat flow to a harmonic map from
a complete noncompact Riemannian manifold to a generalised regular ball.

THEOREM 4 . 1 . Let M be a complete Riemannian manifold. Let Q be a gener-

alised regular ball. Suppose that uo € Cl(M, Q) and E(uo) < oo. Ifu(x,t) is a solution

of the equation (1.2) satisfying u(BR{x0) X [0,T)) C Q. for all R > 0 and T > 0, then

there exists a subsequence tv —> oo such that u(x,tv) —> u^x) in C2\BR{ZQ),Q\ for

any XQ € M, R > 0, and Uoo(x) is a harmonic map.

PROOF: It is clear that u(x,t) satisfies

E(u(-, t)) + 2 / ' / \ut\
2 dxdt ^ E(u0)v ' Jo JM

which yields that

f°° f u2
tdxdt ^ E(u0).

Jo JM

Therefore there exists a subsequence tv —> oo such that

(4.1) ut(x,tv)—»0
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weakly in L2(M). Theorem 2.1 yields

(4.2) sup \\7u\^C(m,R,M,n,u0).
BR(x0)x[0,oo)

By (4.2), and standard interior estimates for the equation (1.1) we may assume

(4.3) u(x,tv) —S-UQO

in C2{BR{X0),VL) for any x0 € M,R > 0.

(4.1) and (4.3) imply that u^, is a weak harmonic map. Since Uoo € C2(M, Q), Uoo
is a harmonic map. D
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