CORRIGENDUM

MARGARITA OTERO

In the corollary on page 783 of [1] there is a missing 2 in line -9 . The statement of the corollary, as it stands, is not correct.

It should say the following.
Under the conditions of Lemma 3, if M is a normal \mathbf{Z}-ring then $M\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is also normal.

Note. This is a harmless requirement, since the aim of this corollary is to get the remark on page 785. Namely, every normal model of IO can be extended to a normal model of IO satisfying Lagrange's theorem.

This remains true because when we build up a normal model of IO + Lagrange's theorem extending a normal model of IO we can always get a \mathbf{Z}-ring at even stages, say, of the construction (see the proof of Lemma 1).

Also, the remark on page 785 is true because the \mathbf{Z}-ring containing $M\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is normal.

A correct proof of the corollary, under the assumption that M is a \mathbf{Z}-ring, is as follows.

Follow the published proof to get $2 a_{1}(x)$ and $2 a_{2}(x)$ in $M^{\prime}[x]$. Then we have

$$
u=\frac{s_{1}(x, w, z)}{2}+\frac{s_{2}(x, w, z)}{2} \sqrt{f} \in B^{\prime}
$$

with $s_{i}(x, w, z)=2 a_{i}(x, w, z) \in M[x, w, z]$ for $i=1,2$.
We must prove that

$$
\begin{equation*}
\frac{s_{i}(x, w, z)}{2} \in M[x, w, z] \text { for } i=1,2 \tag{1}
\end{equation*}
$$

Suppose this is not the case. Then, using the same reasoning as in the published proof, we get that neither of them is in $M[x, w, z]$. Since M is a \mathbf{Z}-ring, we can express them as follows:

$$
s_{i}(x, w, z)=\sum_{(k) \in I_{i}} x^{k_{1}} w^{k_{2}} z^{k_{3}}+2 h_{i}(x, w, z)
$$

with $I_{i} \neq \varnothing$ for $i=1,2$. Since $u v \in M[x, w, z]$,

$$
s_{1}^{2}(x, w, z)-s_{2}^{2}(x, w, z) f \in 4 M[x, w, z] .
$$

Then $r(x, w, z) \in 4 M[x, w, z]$, with

$$
r(x, w, z)=\left(\sum_{(k) \in I_{1}} x^{k_{1}} w^{k_{2}} z^{k_{3}}\right)^{2}+\left(\sum_{(k) \in I_{2}} x^{k_{1}} w^{k_{2}} z^{k_{3}}\right)^{2}\left(x^{2}+w^{2}+z^{2}-a\right) .
$$

Let $x^{m} w^{n} z^{l}$ be the greatest term in I_{2} for the lexicographic order. Then the greatest term in $r(x, w, z)$ is either $2 x^{2 m+2} w^{2 n} z^{2 l}$ or $x^{2 m+2} w^{2 n} z^{2 l}$, depending on whether $(m+1, n, l) \in I_{1}$ or not. In both cases this largest term is not in $4 M[x, w, z]$. This contradiction proves (1).

REFERENCE

[1] M. Otero, On Diophantine equations solvable in models of open induction, this Journal, vol. 55 (1990), pp. 779-786.

MATHEMATICAL INSTITUTE
OXFORD OX1 3LB, ENGLAND

