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Abstract. It is pointed out that in advanced phases of evolution the cores of clusters ought to evolve 
homologously and reasons are sought as to why this evolution should be at constant core energy. It is 
pointed out that continued evolution after infinite core densities have been achieved is an important area 
for future research. 

The aim of this paper is to re-emphasize certain simplifying features of cluster evo­
lution which have not been used in the most powerful modern methods of tackling 
the problem. Their reintroduction might lead to a simplified theory and a greater-
understanding. Research problems along these lines are re-emphasized. 

At least for large clusters of equal mass stars in advanced stages of evolution the 
cluster cores have most of their mass at energies so well bound that Maxwell's 
distribution is a good approximation (Woolley, 1954; King, 1966; Spitzer et al, 
1972). The evolution proceeds through the changing temperature and density of this 
core. Now isothermal gas spheres have the same structure as one another in the sense 
that a scaling in radius and density suffices to bring their density profiles into the same 
standard shape. It is thus true that the central cores of clusters evolve almost ho­
mologously. This homology may extend even beyond the exactly isothermal ener­
gies, but it cannot extend to the whole cluster for reasons outlined below. Henon's 
beautiful homological model of a whole cluster was only achieved at the cost of as­
suming an energy input at the centre (Henon, 1961). It is important to discover in a 
neat form the homological structure of the evolving core and to predict the rate of 
core evolution. The discussion of the thermodynamics of isothermal spheres and 
their truncations given by Lynden-Bell and Wood (1968) shows that evolution of a 
well concentrated isothermal is not because of escape; rather it is because of the 
intrinsic gravothermal instability of the isothermal sphere. This gives one the hope 
that even the rate of the final dive to very great densities is not dependent on the outer 
parts of the cluster, but that the core evolves homologously and independently of the 
halo once it has developed sufficient central concentration. 

The gravothermal instability occurs for a truncated isothermal sphere of equal 
mass stars when the dimensionless energy as measured from the centre is given by 
u = P(e + ^ 0 ) ~ 8.5 where we have taken the Maxwellian at low energies to be 

/ocexp(-jfe). (1) 

Here e = v2/2 — \l/ is the specific energy in the gravitational potential \//(r). 
We shall find it useful in what follows to think of a star cluster as stratified in slices 

of different energy, rather as in stellar evolution a star is considered as stratified in 
shells of different mass (see Figure 1). For non-isothermal clusters it is useful to define 
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P(e) an inverse temperature or coolness at each energy by j?(e)= — d log/(e)/da. We 
shall denote the least value j?(-iAo) by jS0- A useful dimensionless variable propor­
tional to the excess energy above the lowest value is 

" = M s + <Ao). (2) 

Fig. 1. 

Since u is dimensionless it gives a scale invariant way of defining how far up the core a 
particular energy is. Since the core is evolving homologously the 'edge of the core' in 
energy will be defined by a particular value of u for all time. For definiteness we shall 
take this to be u = 8.5 by analogy with the place at which the gravothermal instability 
occurs. 

Let the central core density be g0, the total mass of the core be Mc all of which mass 
has M<8.5. Further let the internal energy of the core, that is the kinetic energy of 
these masses less their mutual potential energy, be Ec. Notice this definition has no 
contribution from the gravitational potential of the rest of the cluster. A good homo-
logical model would calculate j?0(t), g(t), Mc(t) and Ec(t) from first principles as well as 
the distribution function f(u). Let us first look at the dimensions of these quantities 
and the constant of gravity G. 

G ^ M - ^ T " 2 ] 
/J0=[L-2r2] 
<>o = [ML"3] ( 

Mc = [M] = [)?o3/2G-3^o 1/2] 
£c = [ML2T"2] = [i50-5/2G-3^o1/2] 
u - [ l ] 

By the homology assumption the quantities G3/2Pl/2Qo/2Mc and G3,2PQ/2Q0EC are 
dimensionless and will thus be time independent. Now as Henon has pointed out 
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(Henon, 1969) there is no escape from an isolated cluster if its evolution is governed 
solely by a diffusion equation. Thus if we tried to make our whole cluster homologous 
we would have E and M constant and we could therefore deduce j30 and g0 were 
constant. However there is always evolution in the presence of temperature gradients 
and there is no finite mass isothermal sphere. Hence our homology assumption 
applied to an isolated cluster is wrong. If alternatively we try to build a homologous 
evolution with a tidal mass loss which confines the mean density M^nrl)~l within 
the tidal radius to be constant, then by homology g0 must be constant. Further 
during escape by diffusion 

GM _ . __ , , , / 3 foV / 3 

Thus 

E = Mee= -M = -MGM2/3l — I . (4) 

«,,/3&Y / 3 ^GM2 

£ + |GM5 / 3 — = £ + f = constant = EX. (5) 
\4nJ re 

The constant E{ has the dimensions of energy, so p5/2G3/2g1/2El must be constant by 
homology, which implies that /?0 is also constant unless Ex is zero. If we define r by 
writing E = ( — GM2/2r) the-is x = 0 case gives r=^re which is so for a cluster of uniform 
density and can only be the case for a cluster with a weak central concentration. 
Homology therefore fails for complete clusters. However, let us return to homology 
as applied to the cores alone and consider escape from the core. We can write: 

Ec = Mcee-Q, (6) 

where Q is the heat flux that comes out of the core and Mee is the energy change due to 
mass loss. We may write Q = ocMcse where a is a constant by homology. Using defini­
tions of re and r defined now for the core rather than the cluster we have 

— GM\ . Er 2r / <\l-a) = Me-j—(l-a). (7) 
AT. r0 

Thus If 
EcozM[ where C = — (1-a) . (8) 

Homology alone will not give the value off without further physical reasoning to give 
us the value of a, the ratio of the heat loss to the energy carried away by mass loss. 
There is a weak but not to my mind wholly convincing argument for taking a= 1 and 
£ = 0. This argument demands that as each star leaves the core, the core must supply 
the wherewithal for its removal from core influence. Thus as each star leaves the core 
there must be just sufficient heat given out to ensure that the energy is available to 
free it completely from the gravity of the core. This implies. 

Mcse = Q (9) 
and therefore 

£c = 0. (10) 
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There is some evidence for the constancy of Ec from the detailed calculations of 
several investigators (Henon, 1971, 1973; Spitzer et a/., 1972; Spitzer, 1973; Aarseth 
1974; Larson, 1970) but I am not yet fully persuaded whether £ is rather small as one 
would expect for repr and a ~ f say, or whether £ is really zero. If indeed Ec is accurate­
ly constant, surely there must be simple and fully convincing reason why it must be so. 
The problem of finding such an argument is an important challenge to theory. 

It is perhaps worth recording the consequences of the Ec = constant assumption 
although equivalent results have been given many times before. 

(1) Since Ec and G3/2/?o/2£o/2£c a r e both constant hence PQQ0 is constant. Since 
Po,2Qo,2McG3/2 is constant we have Mcocp0ocQo1/5. 

(2) Following a well-trodden path and introducing a relaxation time T we have by 
homology that 

^=cQA ( i i ) 
At T v ' 

where c is a constant which depends on the precise definition of T. Now in homological 
evolution 

,.3 0 - 3 / 2 
Tec—-z oc—-i , (12) 

G2mg log N G2mQ0 log N v ' 
where m is the stellar mass and N is the number of stars in the cluster. Thus 

1 dM< = - i l ^ ° = -cJ^Qo \ogN= -c2Mr>2 logN (13) 
Mc dt Q0 At 

if we take N to be the constant number of stars in the whole system or ignore the 
variation in log AT (see Appendix) we have 

droc-M c
5 / 2 dM c , x 

to-tocM]12. V ; 

Thus 
Mcoc(t0-r)2/7ocj80 
Q0K(t0-t)-^ (15) 

rcoc(r0-r)4/7 

and of course by assumption Ec = constant. Notice that the temperature and density 
become infinite as t0^t but the mass of the core becomes zero leaving the energy 
constant. 

Similar results can of course be written down for any particular value of £. In all 
cases the calculation of the distribution function and the value of the evolution is a 
harder task, but Henon's vintage paper of 1961 shows us the way. 

Since no mass is involved in the final dense core we should not stop here, but 
should be willing to attack the further evolution of clusters after infinite central 
density is formally achieved. Do they eventually create binaries at the centre and 
evolve into Henon's homologous model with the otherwise mysterious energy source 
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at the singularity, or do they continue with a non-homologous evolution? I should 
point out that Henon's infinite density homologous model has a finite central tempera­
ture in contrast to the constant Ec assumption. At infinite density this can only be 
achieved with po constant and £ = 1 and our formula for £ makes this unreasonable. 

What is certain is that the many body problem eventually gets replaced by the few 
body problem at its very centre. It is likely that in the end Aarseth's heavy central 
binary may form with a significant fraction of the cluster energy. It will be important 
to discuss the scenarios after that, bearing in mind that such heavy stars are short 
lived. 

Appendix 

Although the theory of the cut off in the calculation for the relaxation time in a cluster 
of variable density is not well established, it is probably more realistic not to take N 
constant but instead equal to the number of stars in the core, Nc. It is, I believe, an 
accident that this actually leads to a slow-down in cluster evolution just before 
infinite density is achieved because one gets 

1 dNc 

Nr dt 3 c B c 

and so 

r0-roc 
JVC

5/2 dNc 

logNc 

which may be expressed in terms of the exponential integral; for NC$>1 a rough 
approximation is ccN]l2/\ogNc which is no doubt marginally better then the neglect 
of the log Af variation, but it is a price not worth paying for the ugly formulae that 
result. As the real changes occur when the core is reduced to the few body problem the 
theory is no good at this level anyhow. 
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DISCUSSION 
Miller: It is always surprising that one thinks that thermodynamics might work for self-gravitating sys­
tems. Could you say something about why you think thermodynamics might provide a valid description 
for a star cluster ? 

Lynden-Bell: I would consider the only systems to which thermodynamics are not applicable in equi­
librium are those which have divergences in phase space. Here the frozen equilibrium concept is impor­
tant for eliminating binaries and consideration of the core alone eliminates the divergence at infinity. 

Feix: Validity of thermodynamics for physical systems is not only connected to infinities (divergences) 
for large negative energies (or zero energy) but is a more general question which arises for all systems. 
In fact it is a question of how the 'total information' (67V 'data') can be reduced to a few characteristics 
numbers (how and which are these numbers). Thermodynamics of equilibrium systems tells us that den­
sity and temperature are enough but the question is when can we tell that a system is in equilibrium. 
Plasma and self gravitating gas imply certainly more sophisticated information, probably non local, maybe 
non Markovian (i.e. implying the past history of the system). It is interesting to notice that this question 
is both fundamental in statistical physics and very practical in computational physics where obviously 
the amount of returned information must be finite. 
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