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Abstract

Climate change is a global challenge to ecosystem services, altering crop yields and food
security worldwide. In the context of climate change, Onobrychis viciifolia Scop. (sainfoin)
can offer a multitude of ecosystem services conferred by its multifaceted beneficial properties.
We reviewed the morphological, biochemical and physiological responses to environmental
stressors of O. viciifolia, summarized its ecological, agronomic, nutritional and biological
interests, and we discussed its use under climate change. Onobrychis viciifolia is a hemicryp-
tophyte forage legume adapted to arid and semiarid regions by evolving a diverse array of pro-
tective mechanisms against abiotic stressors at morphological, biochemical and physiological
levels. In the present scenario of climate change, O. viciifolia has desirable forage character-
istics such as high nutritive value, high voluntary intake and palatability to grazing animals,
leading to satisfying animal performance for milk, meat, honey and wool production. Recent
studies suggest that O. viciifolia has several highly beneficial phytochemical properties
including condensed tannins and polyphenol content, which have been demonstrated to
have anthelmintic activities, enhance protein utilization, and prevent bloating. In addition,
O. viciifolia also has the potential to reduce greenhouse gas emissions and sequestrate atmos-
pheric carbon and nitrogen into the soil. Ethnobotanical investigations show that O. viciifolia
possesses antimicrobial, antiseptic and vulnerary activities. This review could be helpful for
understanding of O. viciifolia characteristics, interests and uses, thus promoting its reasonable
cultivation under a changing climate.

Introduction

Global climate change has become a compelling environmental problem as it is hindering the
yield performance of crops due to increasing environmental stresses including pest diseases
and extreme climatic events (Jiang et al., 2016; Zhang et al., 2019a; Bakala et al., 2021;
Skendžić et al., 2021). In addition, climate change may exacerbate soil erosion (Lal, 2012)
and cause disturbances to ecosystem functions (van der Geest et al., 2019). Ecosystems func-
tions are the respective direct and indirect benefits arising from the ecological functioning of
healthy productive ecological systems (Millennium Ecosystem Assessment, 2005; Beaumont
et al., 2007). Crop yields are projected to decline through the 21st century (Zinyengere
et al., 2013; Petersen, 2019) and there is a need to identify and characterized perennial forage
legumes that would be able to stand high environmental stress levels while offering relatively
high agronomic production (Seo and Mendelsohn, 2008; Komainda et al., 2019). Moreover,
ecological restoration of degraded lands is included in the array of adaptation and mitigation
responses to climate change (Harris et al., 2006; O’Mara, 2012; Simonson et al., 2021).

The genus Onobrychis Miller (Fam. Fabaceae) comprises a few agronomically known forage
legume species such as O. transcaucasica Grossh., O. arenaria (Kit.) DC. and O. viciifolia Scop.
(sainfoin), the most commonly cultivated species of the genus (Lock, 2005; Mabberley, 2008;
Amirahmadi et al., 2014). Onobrychis viciifolia has a long history of traditional cultivation in
Europe, Asia and North America in the 19th and 20th centuries (Miller and Hoveland, 1995;
Frame et al., 1998). Indeed, its cultivation decline started in the middle of the 20th century due
to the adoption of more intensive farming methods with the introduction of relatively low-cost
nitrogen (N) fertilizers (Carbonero et al., 2011). Consequently, O. viciifolia cultivation was
gradually displaced by alfalfa (Medicago sativa L.) and clover species (Trifolium spp.) whose

https://doi.org/10.1017/S0021859624000327 Published online by Cambridge University Press

https://www.cambridge.org/ags
https://doi.org/10.1017/S0021859624000327
https://doi.org/10.1017/S0021859624000327
mailto:anisak@alum.us.es
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
http://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0000-0003-0777-3738
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0021859624000327&domain=pdf
https://doi.org/10.1017/S0021859624000327


higher yields and easier establishment made them more desirable
to farmers. Onobrychis viciifolia can be cultivated in multitude
soils and climatic conditions (Tufenkci et al., 2006; Carbonero
et al., 2011; Yin et al., 2020). Agronomically, O. viciifolia have
positive characteristics such as a deep tap root that allows it to
be very tolerant to drought (Irani et al., 2015a, 2015b; Malisch
et al., 2016) and N fixation up to 168 kg N2/ha via symbiosis
with rhizobia (Malisch et al., 2017). Culture trials of O. viciifolia
under harsh climatic conditions of dry areas in the Middle East
and North Africa (MENA) region gave promising results (Le
Houérou, 1969; Jafari et al., 2014; Sayar et al., 2022). In addition,
O. viciifolia is also particularly valued for its content of condensed
tannins, which have been shown to improve animal growth and
health (Waghorn, 2008; Girard et al., 2016).

The Mediterranean Basin has been identified as one of the most
climate-vulnerable regions and a climate change ‘hotspot’ (Salvia
et al., 2021). In addition, the Mediterranean Basin is one of the
areas with the most serious soil degradation and desertification
rates in the world, reaching critical limits for its ability to provide
ecosystem services and land productivity (Ferreira et al., 2022). In
this sense, the large-scale grassland degradation in Mediterranean
Basin aggravates the shortage of forage supply (Ferreira et al.,
2022; Soares et al., 2022). Consequently, restoring degraded grass-
lands and increasing forage grass supply are urgent needs in this
area, but the forage quality ofO. viciifolia has not been deeply stud-
ied in the Mediterranean Basin. Additionally,O. viciifolia has obvi-
ous application advantages in soil and vegetation restoration that
should be also analysed in detail in the Mediterranean Basin.

The study of O. viciifolia has regained interest in recent decades
(Fig. 1) and four studies have reviewed its cultivation and agronomic
potential (Carbonero et al., 2011; Bhattarai et al., 2016; Mora-Ortiz
and Smith, 2018; Sheppard et al., 2019). However, no work has
focussed on the role ofO. viciifolia in the present scenario of climate
change. In this work, we review the geographical distribution, main
functional traits, stress tolerance and beneficial proprieties for
humans of O. viciifolia under the ongoing climate change scenario.
Our review is meant to provide information on the importance of

O. viciifolia for its possible utilization in cropping systems in a chan-
ging environment. Also, it is an attempt to recognize the lesser-
explored aspects and knowledge gaps in the research onO. viciifolia.

Methods

Google Scholar, Web of Science, Springer and PubMed databases
were used to search for published literature on O. viciifolia. The
filtering was based on titles, abstracts and keywords including
the words Hedysarum onobrychis L., Onobrychis sativa Lam.,
Onobrychis viciaefolia Scop. and O. viciifolia Scop. or sainfoin.
Afterwards, the full text of all peer reviewed articles, books,
book chapters and PhD thesis were reviewed. The deadline for
the literature selected was up to July 2024. The Plant List
(http://www.theplantlist.org/tpl1.1/search?q=Onobrychis+viciifolia),
International Plant Name Index (https://www.ipni.org/n/510168-1),
Kew Botanical Garden (https://powo.science.kew.org/taxon/urn:lsid:
ipni.org:names:510168-1) and Global Biodiversity Information
Facility (https://www.gbif.org/fr/species/2972595) were used for val-
idating the scientific name as well as information on cultivars and
the species synonyms.

Origin and distribution

Onobrychis viciifolia is derived from the natural hybridization
between O. arenaria and O. montana (Falistocco, 1991), which
are native to Central-Southern Europe, and temperate Southwest
Asia and North Africa, respectively (Angevain and Prosperi,
1995; Jin et al., 2021). Onobrychis viciifolia is mostly tetraploid,
through there are reports of diploid accessions (Carbonero
et al., 2013). In addition, Abou-El-Enain (2002) reported the
appearance of 2n = 22, 27, 28 and 29 chromosomes that demon-
strated the role of aneuploid alterations in the evolution of this
species.

A few Onobrychis taxa, such as O. viciifolia, have been culti-
vated for hundreds of years as forage and ornamental crops in
warm and temperate regions of Europe, Asia and North

Figure 1. Evolution of annual number of publications on
Onobrychis species and O. viciifolia published from 1963
to 2024 (Sources: Google Scholar, Web of Science,
Springer and PubMed).
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America (Lock and Simpson, 1991; Yakovlev et al., 1996;
Mabberley, 1997; Frame et al., 1998; Frame, 2005; Carbonero
et al., 2011) (Fig. 2). Cultivated Onobrychis species were intro-
duced to Central Europe from the Mediterranean Basin during
the 16th century (Piper, 1924; Burton and Curley, 1968).
Onobrychis cultivation was introduced to North America in
1786 (Bhattarai et al., 2016), but was only grown occasionally
until the 1960s, when improved varieties allowed wider cultiva-
tion. Today, O. viciifolia is cultivated mainly in Eastern Europe,
Iran and around the Mediterranean Basin (Eken et al., 2004;
Avci et al., 2014; Bolat, 2019). The Mediterranean Basin is one
of the most affected regions by climate change (Cammarano
et al., 2019). One of the most relevant consequences of climate
change is certainly water scarcity, as result of a reduction of sur-
face runoff and groundwater levels (Noto et al., 2023). Onobrychis
viciifolia once represented an important forage legume in semi-
arid environments of Italy, but its cultivation area has decreased
from 160 to 9 thousand ha from 1983 to 2013 (ISTAT, 2013). It
is recorded that more than 150 tonnes of seeds were sold every
year in the late 1950s in the UK, enough for cropping 2500 ha
(Hill, 1997). In the late 1970s, only approximately 150 ha were
cropped. Today, O. viciifolia has become rare in the UK, and
this is due, in part, to its poor response to the changing require-
ments and circumstance of British agriculture (Hutchinson,
1966). Onobrychis viciifolia could potentially be grown on 950
thousand ha in England and Wales, where the soil is sufficiently
alkaline (Doyle et al., 1984). On the other hand, Wang et al.
(2018) mentioned O. viciifolia as a major fodder grass species
cultivated in Gansu Province, Northwest China, in 2016.

Responses to environmental stressors

Biotic stressors

Ongoing climate change poses considerable threats to sustainable
food security, including increased number of generations of pests
and plant pathogens resulting from a compressed life cycle due to
a warmer climate combined to elevated CO2 concentrations,
increased risk of invasion by migratory pests and reduced effect-
iveness of biological control (Skendžić et al., 2021). As climate
change exacerbates the pest problem, there is a great need for
future pest management strategies (Wei et al., 2020). Onobrychis
viciifolia is relatively resistant to most common pests and diseases
in Western Canada and Northern Europe compared with other
legumes such as M. sativa (Goplen et al., 1991; Frame et al.,
1998). This has been attributed to the presence of a range of sec-
ondary metabolites, such as tannins and polyphenols, within the
foliage of O. viciifolia (Malisch et al., 2016). Even so, O. viciifolia
can be damaged by fungal diseases related to certain Fusarium,
Stemphyllium and Sclerotinia species (Mathre, 1968). In addition,
an important number of insect and nematode species can damage
O. viciifolia stands (Mathre, 1968; Wallace, 1968; Morrill et al.,
1998). But O. viciifolia is resistant to the alfalfa weevil (Hypera
postica Gyll.), so it can be an alternative forage legume to
M. sativa in areas where this pest causes severe damage (Morrill
et al., 1998; Böttger et al., 2013).

Onobrychis viciifolia is relatively resistant and free from serious
pest and disease problems compared with other legumes such as
M. sativa (Goplen et al., 1991). Medicago sativa suffers from sev-
eral economically important insect pests such as H. postica and

Figure 2. Centenary evolution of worldwide geographical distribution of Onobrychis viciifolia (88.635 occurrences) from 1600 to 2024. The colours from yellow to
orange represent the density of occurrence for a given area.
Source: Global Biodiversity Information Facility, https://www.gbif.org/
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Acyrthosiphon pisum, which do not affect O. viciifolia. This could
encourage farmers to grow O. viciifolia as an alternative solution
to M. sativa (Morrill et al., 1998). Two closely related species to
H. postica (Phytonomus farinosus and Hypera trilineata) are men-
tioned as pests of O. viciifolia in some European countries
(Wallace, 1968). Other pests such as Empoasca fabae, Lygus elisus,
L. hesperus and Adelphocoris lineolatus appeared to have marginal
effects on O. viciifolia and occurs only in localized areas (Morrill
et al., 1998). Furthermore, only one pest (Sitona scissifrons),
which feed on the roots of O. viciifolia, has been observed on
accessions growing in United Kingdom, but there were no
accessions that were severely affected (Carbonero et al., 2011).
Adult S. scissifrons weevils become active in the field in June
and eat the edges of the leaves of O. viciifolia, leaving
characteristic notches along the leaves in Montana (USA). This
damage could be disastrous at the seedling stage in the field
(Wallace, 1968). Other members from this genus, including
S. lineata, S. calloso and S. crinite, have been reported to cause
minor damage in O. viciifolia in Europe (Wallace, 1968).
However, Contarinia onobrychidis and Eurytoma onobrychidis
represent a serious pest for O. viciifolia in some areas of Europe
(Wallace, 1968). Other insects can also damage the seed produc-
tion of O. viciifolia in Europe but marginally; these include
Perrisia onobrychidis, Apion pisi, Odontothrips intermedius,
Otiorhynchus ligustici and Melanotus erythropus. Therefore, the
inclusion of O. viciifolia as a rotation component could affect
the presence of host-specific pests by disturbing their life cycle.

Abiotic stressors

Climate change is increasing the frequency and intensity of
abiotic stress combinations that pose a serious threat to crop
productivity (Zandalinas et al., 2022). Onobrychis viciifolia have
evolved a diverse array of protective mechanisms against abiotic
stressors at biochemical and physiological levels related to hor-
mone homoeostasis, transcriptional factors, photosynthesis, and
the biosynthesis of antioxidants and osmotic adjustment-related
substances (Yin et al., 2021). Consequently, O. viciifolia tolerates
low nutrient conditions (Carbonero et al., 2011), high levels of
active lime in the soil (De Falco et al., 2000a, 2000b), drought
and alkalinity, and saline-alkaline stress (Fig. 3). In addition,
O. viciifolia tolerates high concentrations of lead and copper
(Beladi et al., 2011) and can grow in coal mined areas (Roy
et al., 2021). Moreover, O. viciifolia can grow under seasonally
cold and hot climatic conditions (Sengul, 2003; Tufenkci et al.,
2006), and extreme climatic conditions at high altitudes (Yin
et al., 2020, 2021). Rhizobia have the potential to be used in
improving symbiotic N fixation on O. viciifolia under cold stress
(Prévost et al., 2003). Climate change can affect the intensity and
frequency of precipitation (Feng et al., 2019) and worsen ozone
pollution over many populated regions, with larger impacts at
higher concentrations (East et al., 2024). It has long been observed
that the environmental gamma-ray dose rate increases noticeably
during precipitation intervals (Mercier et al., 2009). Onobrychis
viciifolia tolerates high levels of gamma radiation (Beyaz et al.,
2016), but its growth is reduced after ozone exposure (Bungener
et al., 1999).

Salt tolerance
Salt is one of the main abiotic stresses affecting crop yields around
the world (Zörb et al., 2019). Seed germination is one of the most
sensitive physiological phenomena to stress in the lifecycle of

plants (Al-Turki et al., 2022), and seeds of O. viciifolia withstand
moderate saline environments (up to 400 mM). In this sense,
seeds of O. viciifolia retain germinability under high salinity, dis-
playing tolerance mechanisms such as physiological dormancy till
the occurrence of favourable conditions (Li et al., 2021a, 2021b).
Karamian and Ataei-Barazande (2013) reported decreasing ger-
mination rates in O. viciifolia with increasing salinity levels over
200 mM NaCl and indicated that germination was totally inhib-
ited at 400 mM NaCl which is higher than for Trifolium repens
L. (up to 180 mM) (Chu et al., 2022), Trifolium pratense L. (up
to 240 mM) (Asci, 2011) and M. sativa (up to 257 mM) (Kadri
et al., 2021). The germination of O. viciifolia is considered more
tolerant to salinities c. 170 mM NaCl than other Onobrychis
species (Uzun et al., 2017).

Saline-alkaline conditions resulted in oxidative stress and the
accumulation of proline in seedlings of O. viciifolia (Wu et al.,
2021). Along with organic osmolytes, O. viciifolia under salinity
also increased the production of reactive oxygen species (ROS)
scavengers such as catalase, superoxide dismutase, glutathione
reductase and ascorbate peroxidase (Beyaz, 2019). In fact, O. vicii-
folia can grow without much yield and quality loss in salt-affected
areas (c. 109 mM NaCl), where it can provide enough high-
quality forage production for livestock without altering its
macro-mineral content (Temel et al., 2016a, 2016b) (Fig. 3a).
Nonetheless, Wu et al. (2017a, 2017b) reported reduced growth
and chlorophyll and water contents, diminished root potassium
concentration, and increased malondialdehyde (MDA) concen-
tration and relative membrane permeability in O. viciifolia shoots
under salinity (100 mM NaCl). This study also reported that,
when supplied exogenously, proline and silicon improved salt
stress tolerance in O. viciifolia by mitigating sodium toxicity
(Fig. 3a). Under salinity, O. viciifolia maintain better cellular
function and overall physiological homoeostasis evidenced by
less drastic imbalance in intracellular Na+/K+ ratio than M. sativa
(Li et al., 2010; Beyaz 2019) which is one of the key determinants
of plant salt tolerance under climate change (El Sabagh et al.,
2021).

Drought tolerance
Drought is the largest contributor to world-wide crop losses (Lesk
et al., 2016; Santos-Medellín et al., 2021). In this general context
that is exacerbated by climate change (Cook et al., 2018), O. vicii-
folia produces indehiscent fruits (pods) that break down slowly,
promoting seed survivorship during drought periods (Majidi
and Barati, 2011; Avci and Kaya, 2013). In this sense, organic,
hydrogel and mineral seed coating improved germination speed
of O. viciifolia with and without drought (Mehrabi and Chaichi,
2012). Contradictorily, Kintl et al. (2021) showed that O. viciifolia
did not respond positively to the seed coating under drought.
Uncoated seeds exhibited a greater drought resistance than the
coated seeds which showed a sharp, significant decline of germin-
ation capacity and a great increase in the dead seed percentage
due to the death of a fraction from the hard seeds.

Nasirzadeh et al. (2005) reported that O. viciifolia can be
considered as a semi-resistant species to drought. Adult plants
of O. viciifolia tolerate exposure to the combined effects of
drought and ozone (Bungener et al., 1999). The response mechan-
isms of O. viciifolia to drought include osmotic adjustment
(Dehabadi, 1997; Irani et al., 2015a, 2015b; Beyaz, 2019; Beyaz
and Yildiz, 2021), ROS scavenging, reduced transpiration (Roy
et al., 2021), increasing stomatal resistance and water use effi-
ciency (Dehabadi et al., 1993a, 1993b; Dehabadi, 1997; Huang
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Figure 3. Summary of the main tolerance mechanisms of Onobrychis viciifolia to (a) salinity and (b) drought stress.
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et al., 2020), and increasing carotenoid contents with decreasing
chlorophyll contents (Irani et al., 2015a, 2015b). In addition,
O. viciifolia tolerance to drought involves also morphological
adaptations such as a deep root system (Koch et al., 1972;
Dehabadi, 1997; March-Salas et al., 2021) and reduced leaf area
(Dehabadi et al., 1993b). Besides all its responses to drought,
O. viciifolia shows reduced plant heights which resulted in signifi-
cant yield losses when exposed to severe drought (Irani et al.,
2015a, 2015b). In this sense, Bolger and Matches (1990) found
a higher yield potential for O. viciifolia in spring than in summer,
possibly indicating higher water use efficiency. To tide over peri-
odic drought stress, Malisch et al. (2016) highlighted the import-
ance of harvesting at optimal stages to have good forage
performance for O. viciifolia.

Onobrychis viciifolia have greater ability to resist drought and
adapt to dry habitats compared to several forage species.
Considering the field capacity as the upper limit of soil water
availability, O. viciifolia had the widest range of adaptability to
soil water compared to other crop species such as Astragalus
adsurgens, Elymus nutans and Lolium multiflorum (Huang
et al., 2020). Moreover, O. viciifolia exhibited a lower average
lower limit of relative soil water content compared to A. adsur-
gens, E. nutans, and L. multiflorum. In addition, O. viciifolia
closed stomata more rapidly with the decrease of relative soil
water content, suggesting that the species had better drought
resistance and allowed plants to keep water in plant tissues
(Huang et al., 2020). The intrinsic water use efficiency (WUEi)
represents an important indicator of the adaptability for higher
plants to climate change (Weiwei et al., 2018). WUEi increased
more rapidly in O. viciifolia than the other three forage under
moderate water deficit (Huang et al., 2020).

High temperatures tolerance
Onobrychis viciifolia is an alternative forage for semi-arid regions,
where M. sativa and Trifolium sp. cannot be sown. Although
there is little published data, there is considerable observational
evidence that O. viciifolia is tolerant to relatively high tempera-
tures. Maximum air temperatures of above 32°C did not affect
O. viciifolia in small plots in northern Greece and southern
Spain (Carbonero et al., 2011). However, O. viciifolia exhibits
poor growth following periods of high ambient temperatures
and few plants survived at 35°C due to severe leaf loss causing
plant death because high metabolic rates cannot be supported
by existing leaf area or taproot carbohydrates even under well-
watered conditions (Kallenbach et al., 1996). High temperatures
at the beginning of summer interrupt regrowth under traditional
and intensive cutting regimes in southern Italy (De Falco et al.,
2000a, 2000b). Onobrychis viciifolia had a higher rate of biomass
accumulation compared to M. sativa. However, M. sativa tended
to grow faster during the warmer months (July–September) in
Texas (USA).

Interests and uses

Agronomic characteristics and value

Changing climatic conditions have reduced plant productivity and
generated food security issues. In this context of food security,
legumes exhibit promising benefits making them an exceptional
food to meet nutritional needs (Akram et al., 2018). Onobrychis
viciifolia is considered as an excellent component of a rotation
in cropping systems by enhancing productivity and improving

soil physicochemical properties including soil texture, fertility,
water retention and organic matter content (Decourtye et al.,
2007; Malisch et al., 2017; Sariyildiz and Savaci, 2020).

Agronomic advantages
Global climate change is predicted to impact on soil fertility
through the physical, chemical, and biological properties of soil
due to rise in temperature, alternation in precipitation patterns,
increase in greenhouse gases concentration in the atmosphere,
etc. (Mondal, 2021; Bibi and Rahman, 2023). In addition, climate
change could lead to the loss of soil function for fertility mainten-
ance and greater dependence on mineral fertilizers (Pareek, 2017).
For centuries, O. viciifolia was widely grown across Europe before
commercial fertilizers were used. The species does not need fertile
soil to thrive if its requirements for lime and humidity are satis-
fied. Onobrychis viciifolia can thrive in less fertile soils than
M. sativa and T. repens and can also grow well in more fertile
soils. Medicago sativa and T. repens will, however, produce better
yields in fertile and irrigated lands, but O. viciifolia provides better
outcomes growing in low fertility soils compared with M. sativa
(Benaiges, 1971; Demdoum, 2012).

Mature plants of O. viciifolia have over 2-m-long taproots,
partly responsible for its drought tolerance. The root is quite
branched, especially at the bottom and multiples thin lateral
roots constitute the bulk of the root system (Carbonero et al.,
2011; Mora-Ortiz and Smith, 2018). The O. viciifolia root systems
rivals M. sativa for its ability to access deep subterranean waters
(Mora-Ortiz and Smith, 2018). In the Mediterranean Basin,
O. viciifolia prefers altitudes above 600 m, but it performs well
when cultivated in a range between 100 and 2500 m (García
Salmerón et al., 1966; Demdoum, 2012).

Agronomic disadvantages
Onobrychis viciifolia is a forage legume of renewed interest world-
wide, with equally weighted advantages and disadvantages that
prevent many farmers from considering this crop a viable alterna-
tive to other forage legumes. In this sense, a wide distribution of
O. viciifolia in productive grassland systems is hampered by the
limited availability of high-performing cultivars adapted to differ-
ent environmental conditions (Subedi, 2018; Sheppard et al.,
2019). In fact, O. viciifolia weaknesses are related to its lower
yield when compared to other forage legumes, its poor competi-
tive ability against weeds especially during the establishment year,
a limited persistence, susceptibility to waterlogging and frost
(Sheehy and Popple, 1981; Liu et al., 2010), low tolerance to fre-
quent cutting (Malisch et al., 2017), and susceptibility to diseases
such as powdery mildew or Phytophthora root rot (Sears et al.,
1975; Carbonero et al., 2011). Onobrychis viciifolia prefers well-
drained soils and does not grow well in heavy soils or under
flood irrigation (García Salmerón et al., 1966; Demdoum, 2012;
Anderson, 2016). Onobrychis viciifolia does not perform properly
in acidic soils. Poor O. viciifolia establishment was obtained on
soils at pH lower than 6 (Bland, 1971; Carbonero et al., 2011).
In Spain, O. viciifolia is traditionally cultivated on neutral or
slightly alkaline brown-earth soils.

Onobrychis viciifolia died out primarily during winter due to
aerial interspecific competition, resulting in reduced root reserves
(Liu et al., 2010). Persistence of O. viciifolia appears to be depend-
ent on minimal pressure from competing plants, harvest or graz-
ing, and good growth conditions from midsummer into fall,
allowing for adequate root reserves for survival. It is possible
that judicious use of glyphosate in late season might lessen
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competition in that critical period as O. viciifolia is more
glyphosate-tolerant than M. sativa (Peel et al., 2013).

Crop residue
Due to its deep, extensive and nodulated roots system, O. viciifolia
uses water reserves in deep soil layers, increases carbon sequestra-
tion, reduces moisture and nutrient loss through leaching and
runoff, prevents soil erosion, and improves the physicochemical
and microbiological properties of the soil, including reductions
on nitrification rates (Sergeeva, 1955; Komainda et al., 2019;
Clemensen et al., 2022). The irrigated cultivation of O. viciifolia
accumulate in the soil up to 16.2 t/ha/year of residues, which repre-
sents approximately four times the quantity left by M. sativa (4.2 t/
ha/year) (Sergeeva, 1955). This could be explained by its high root
biomass compared to other cultivated legumes (Bolat, 2019; Rossi
et al., 2020). In fact, O. viciifolia can be used for soil organic matter
improvement (Porqueddu et al., 2000; Wu et al., 2018). In view of
these studies, cultivating O. viciifolia would help increasing the role
of agricultural soils as carbon sinks to mitigate climate change.

In addition to supplies biologically fixed N2, O. viciifolia dis-
plays a range of adaptations for the acquisition and retention of
other important resources. O. viciifolia has excellent resource
use efficiency in low input environments (Carbonero et al.,
2011). By virtue of their large active root systems and mycorrhi-
zation, O. viciifolia can efficiently accelerate the absorption of
water and nutrients (Kong et al., 2014). Onobrychis viciifolia
has the ability to acquire phosphorous via specialized root struc-
tures, through arbuscular mycorrhizal associations under con-
trolled environment (Kong et al., 2014). The large rooting
systems of O. viciifolia function to increase soil organic C by redu-
cing erosion, reducing microbial respiration (via lack of tillage).
As a result, nutrients are retained in the cropping system for
use by subsequent crops (Carbonero et al., 2011).

Fossil fuel burning in the energy sector is a major contributor
to greenhouse gas emissions. Biofuels, considered as a substitute
for fossil fuels, have become top priority due to its eco-friendly
nature (Prasad et al., 2020). In addition to the biodiesel produc-
tion from the legume (Ndukwu and Onyeoziri, 2022), all the bio-
mass of O. viciifolia can serve to produce second-generation
biofuel due to its high N content (Slepetys et al., 2012).
Moreover, the use of O. viciifolia showed potential for methane
production in biogas plants (Hunady et al., 2021).

Onobrychis viciifolia contains phenolic compounds (tannins)
that can influence soil nutrient dynamics by inhibiting microbial
activity, which could slow N mineralization rates and minimize N
losses in field (Clemensen et al., 2020, 2022; Slebodnik et al.,
2019). Tannins, at low concentrations in the soil, may increase
some enzyme activity (Adamczyk et al., 2017), inactivate other
soil enzymes, in part due to their antibiotic properties (Benoit
and Starkey, 1968; Field and Lettinga, 1992; Joanisse et al., 2007;
Triebwasser et al., 2012), and to the formation of tannin–protein
complexes (Adamczyk et al., 2019). Dehydrogenase enzymatic
activity was reported to be higher in O. viciifolia than M. sativa
sown plots (Clemensen et al., 2020, 2022).

Atmospheric di-nitrogen fixation
Crop production is dependent on inorganic N and other
fertilizers inputs to resupply nutrients lost as harvested grain
and forage, via soil erosion/runoff, and by other natural or
anthropogenic causes (Schlautman et al., 2018; Bibi and
Rahman, 2023). Nitrogen-fertilizers are one of the most monetary
and environmentally expensive inputs in agricultural settings,

which are currently more expensive than ever before (Herrera
et al., 2016; Adjesiwor and Islam, 2016). The mobility of applied
inorganic N fertilizers results in less than 50% fertilizer
N-recovery efficiency by the first crop with substantial amounts
of the remaining N leaving the cropping system as N2O and
NO3 (Crews and Peoples, 2004; Ladha et al., 2005). Onobrychis
species are soil enriching via the fixation of atmospheric N. The
symbiosis between legumes and root-nodule bacteria supplies bio-
logically fixed N to natural and agroecosystems around the globe
(Crews, 1993). This form of N is directly incorporated into the
growing plant, overcoming problems of low fertilizer N-recovery
efficiency. Onobrychis viciifolia is able to provide relief from reli-
ance on synthetic N while supplying high forage quality in low-
input agricultural ecosystems (Carbonero et al., 2011). While N2

fixation in legumes is considered to have higher energy and car-
bon requirements than N assimilation by plants using reduction
of NO3 for growth, the energy is supplied via solar radiation
rather than through fossil fuels; thus, the resulting CO2 respired
by the nodules originates though photosynthesis and is not a
net contributor to atmospheric CO2 concentrations (Crews and
Peoples, 2004; Jensen et al., 2012).

Onobrychis species form symbioses with bacteria belonging to
the genera Mesorhizobium, Rhizobium and Bradyrhizobium
(Baimiev et al., 2007). In field conditions, Nitrogen deficiency
symptoms were reported in O. viciifolia despite plants being
abundantly nodulated, which indicates that the strain of
N-fixing bacteria present was inefficient or short lived (Burton
and Curley, 1968; Schneiter et al., 1969), but these symptoms dis-
appeared with time in plants nodulated by effective strains
(Prévost et al., 1987a). Small young nodules are generally the
most effective in O. viciifolia and are scarce in early stages of
growth in the field (Burton and Curley, 1968). In this sense, it
seems likely that O. viciifolia is dependent on some mineral N
at early growth stages and later growth stages benefit significantly
from an effective symbiosis (Carbonero et al., 2011). However, the
N-fixing system of O. viciifolia is very sensitive to low levels of
nitrate under glasshouse conditions (Hume and Withers, 1985).
Onobrychis viciifolia can be cross inoculated by Rhizobium species
isolated from different leguminous species (Burton and Curley,
1968; Prévost et al., 1987a). Furthermore, inoculating O. viciifolia
with rhizobia isolated from three arctic legume species improved
biological nitrogen fixation during cold phases of the growing sea-
son (Prévost et al., 1987a, 1987b). Based on acetylene reduction
rates, the general effect of adding strains of Rhizobium to other
strains of Rhizobium in symbiosis with O. viciifolia was additive
(Hill, 1980). Kong et al. (2014) demonstrated that the inoculation
of arbuscular mycorrhizal fungi can improve mycorrhizal infec-
tion rate and plant growth, accelerating the absorption of water
and nutrients by the roots compared with uninoculated plants.
Kon (1980) established that O. viciifolia, when infected with the
appropriate Rhizobium spp. and arbuscular fungi, produced
more and larger nodules and, consequently, a greater nodule
dry weight and exhibited greater N2 fixation than plants infected
with only the rhizobia in a glasshouse conditions. Over two-year
experiments, O. viciifolia fixed 106 kg N ha/year in rain-fed
Mediterranean conditions, which was below the usual range of
130–160 kg N ha/year and quite far from the potential value of
270 kg N ha/year from non-Mediterranean areas (Provorov and
Tikhonovich, 2003; Re et al., 2014) (Table 1). Issah et al. (2020)
quantified biological N2 fixation using 15N isotope dilution and
estimated resource partitioning in O. viciifolia under controlled
conditions. The percentage of N derived from atmosphere was
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81% corresponding to estimated N contributions of
65 kg N ha/year. In view of previous works, cultivating O. viciifolia
would help mitigating climate change through the reduction of N
fertilizers and related greenhouse gasses emissions. As well, the cul-
tivationofO. viciifoliawould support farmers on theirefforts to cope
with climate change and to face increasing costs of N fertilizers.

Weed and pest control
Climate change is opening new geographic windows for disease
outbreaks, insect herbivory and weed infestations in crops world-
wide (Bajwa et al., 2020; Gullino et al., 2022). The inclusion of
O. viciifolia can reduce number and cover of weeds in cereal fields
(Cirujeda et al., 2019). Mummey and Ramsey (2017) concluded
that O. viciifolia may be a useful bridge species for improving
soil conditions while allowing for weed control during restoration
of invasive crested wheatgrass (Agropyron cristatum (L.)
Gaertmn.) stands, improving conditions for native species
establishment in dry rangeland in North America. In addition,
O. viciifolia can offer a multitude of ecosystem services by support-
ing biodiversity and hosting important enemies of crop pests in
agricultural landscapes. For example, González et al. (2022)
found almost 147 morphospecies of hymenopteran parasitoids in
O. viciifolia patches providing a low-cost strategy for biological
pest control in Brassica napus L. fields. According to these studies,
cultivating O. viciifolia would improve biological control of pests
just when their impacts are growing due to climate change.

Honey production
The change in climatic conditions is bound to have an impact on
the physiology, distribution and survival of bees (Le Conte and
Navajas, 2008; Smoliński et al., 2021). Under this scenario, conser-
vation of honeybees remains a challenging task (Wood et al., 2020).
As O. viciifolia is self-sterile, it relies on flower visitors for cross-
pollination and requires multiple visits to maximize pollination
(Bogoyavlenskii, 1955, 1974; Kropacova and Haslbachova, 1969).
Bee pollination of O. viciifolia gave an increase of seed productivity
by more than 30% (Pankov, 2013). Consequently, its flowers are a
rich source of pollen and nectar, attracting ten times more bees
than Trifolium repens L. and M. sativa (Rosov, 1952; McGregor,
1976; Kells, 2001; Deveci and Kuvanci, 2012). Onobrychis viciifolia

is visited by managed and indigenous pollinator insect species,
including Apis, Bombus and Osmia in southern Alberta
(Canada), Eastern Washington (USA), the British Isles (UK),
Europe and Japan (Richards and Edwards, 1988; Horne, 1995;
Clement et al., 2006; Howes, 2007; USDA SARE, 2007; Westphal
et al., 2008; Taki et al., 2009). Rozen et al. (2010) noted that
O. viciifolia is the only pollen source for Osmia avosetta Warncke
bees in Turkey. In addition, different studies have described a
very diverse pollinator community, dominated by Bombus and dif-
ferent bee species, foraging on O. viciifolia in Italy, Canada, USA,
Europe and Turkey (Ricciardelli d’Albore and Roscioni, 1990;
Kells, 2001; Clement et al., 2006; Decourtye et al., 2010; Manino
et al., 2010; Özbek, 2011; Pearce et al., 2012; Richards, 2019).
Richards and Edwards (1988) found that bumblebees visited
O. viciifolia flowers at a much greater rate than western honeybees
in Canada. As previously stated, O. viciifolia is a good nectar and
pollen source for many pollinator species and, additionally, it
shows a long-lasting flowering period to offer bee pasture for west-
ern honeybees (Apies mellifera L.). and wild bees (Szalai, 2001). In
addition, weeds in O. viciifolia crops are mainly represented by
melliferous species in Russia (Pankov, 2014). When grown as a
forage crop, O. viciifolia is mown late so flowering has normally
finished, maximizing its value as a bee forage crop (Ayers, 1993).
With a reduced number of flowers per plant under drought,
O. viciifolia maintained similar per-flower nectar production
(Phillips et al., 2018). Onobrychis viciifolia can yield up to
400 kg/ha of honey (Howes, 2007) with a distinctive taste, smell,
texture and colour (Vereshchagin et al., 2015), which constitute
an additional revenue (Pankov, 2012). Recently, it has been demon-
strated that the caffeine present in the nectar of O. viciifolia reduces
the infection of bumblebees (Bombus terrestris) by the microspor-
idian parasite Nosema bombi Fantham and Porter (Folly et al.,
2021). Growing O. viciifolia may promote a diversification of
agronomic production with honeybee related products, which is
key to stand the impacts of climate change (Zhang et al., 2022).

Erosion control

Global warming is expected to lead to a more vigorous
hydrological cycle, including more total rainfall and more

Table 1. Effective bacterial and mycorrhiza strains for Onobrychis viciifolia inoculation

Origin Variety References

Bacteria

Arctic N31 Astragalus alpinus Melrose Prévost et al. (1987b)

Arctic N11, N28 Oxytropis maydelliana

Temperate SM-2 Onobrychis viciifolia cv Melrose

Temperate 116M15 Commercial inoculant (Nitragin Co., Milwaukee, WI)

116A27, 116A14, 116A8, 124Z1, 124B1 Commercial inoculant (Nitragin Co., Milwaukee, WI) Remont Hill (1980)

NZP 5301 Onobrychis viciifolia cv Fakir Fakir Kon (1980)

Rhizobium ciceri Onobrychis spinacrisbi – Yousef and Abdul-Karim (2012)

Arbuscular mycorrhiza

Gigaspora magarita – – Kon (1980)

Glomus fasciculata

Glomus tenuis
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frequent torrential rainfall events, which may lead to higher soil
erosion in many locations worldwide (Eekhout and de Vente,
2022; Dash and Maity, 2023). Cover of O. viciifolia and Rosa
canina L. provided year-round soil protection, improving the
soil structure, increasing its water holding capacity and its nutri-
ent retention in Northwest Turkey (Sariyildiz and Savaci, 2020).
O. viciifolia enhanced soil productivity by increasing soil organic
carbon, soil total N and soil organic carbon stock capacity
(Sariyildiz and Savaci, 2020). Yu et al. (2015) highlighted the
superiority of O. viciifolia in water retention compared to differ-
ent tree and herbaceous species in China. The structural stability
of the soil under O. viciifolia continued for a long period and the
infiltration rate was high, preventing an increase of runoff with
time. Reduced-tillage systems coupled with O. viciifolia cropping
should be considered as an efficient management practice and
should be improved to withstand extreme rainfall conditions.
When used as ridge-furrow rainwater harvesting with mulch,
O. viciifolia offers farmers means to address drought, water loss
and soil erosion in arable lands in arid and semiarid regions
(Zhang et al., 2019b). Yüksek and Yüksek (2015) reported that
plant cover of O. viciifolia was the main factor reducing surface
runoff. Hairy leaves of O. viciifolia accumulate high sediment
loads per leaf area, presumably, because hairs create a buffer
zone of reduced water flow velocity enhancing sedimentation
(Kretz et al., 2020). O. viciifolia is used for erosion control in
northwest China and Turkey (Turk and Celik, 2006; Xu et al.,
2006). Yakupoglu et al. (2021) showed that O. viciifolia cultivation
exhibited the lowest soil losses when compared to fallow and wheat
(Triticum aestivum L.) in Southern Turkey. O. viciifolia is an effi-
cient cover crop in the conservation of soil and water, for example,
in Mediterranean vineyards (Ben-Salem et al., 2018). According to
these studies, cultivating O. viciifolia would reduce carbon emis-
sions from soils since lowering erosion also reduces soil carbon
dioxide emissions (Mandal et al., 2020; Ran et al., 2021).

Ecological restoration

Ecological restoration is a major nature-based solution towards
meeting a wide range of global development goals by improving
food and water security, protecting biodiversity and promoting
adaptation and mitigation of climate change (Liu et al., 2020;
Simonson et al., 2021). The improvement of semi-arid and arid
degraded lands is one of the most important uses of O. viciifolia,
since leguminous crops naturally increase soil productivity due to
their association with N fixing microbes (Singh et al., 2019). In
this sense, Roy et al. (2021) suggested that O. viciifolia is suitable
when designing an appropriate strategy for achieving a successful
revegetation of coal mined areas. Moreover, Ibragimov et al.
(2019) highlighted the importance of the cultivation of multi-
component mixtures, including O. viciifolia, to face desertification
in Southeast Russia.

Recently, there has been growing concern over the potential
impacts of global climate change on the sensitivity of weeds to
herbicides. Reduced glyphosate sensitivity is projected in response
to climate change (Matzrafi et al., 2019). Crop tolerance to gly-
phosate can reduce competition from weeds, leading to poten-
tially higher yields and increased efficiency in weed control
(Raza et al., 2023). Onobrychis viciifolia is relatively tolerant to
glyphosate application. Based on the dose estimated to cause
50% mortality (LD50), O. viciifolia seedlings are over six times,
and mature plants are over 20 times, more tolerant to glyphosate
than M. sativa. Based on the dose required to produce a 50%

reduction in biomass yield (GR50), glyphosate has a 10-fold
greater negative impact on M. sativa biomass yield than it does
on O. viciifolia. In addition, the GR50 in O. viciifolia seedling
was over two-fold and six-fold higher than M. sativa at the first
and second harvests, respectively (Peel et al., 2013). However,
no study has addressed the impact of glyphosate application on
seed production. Hard seed levels vary considerably in O. viciifo-
lia (up to 90%), and it appears to vary considerably with the cul-
tivars (Bhattarai and Biligetu, 2018). Hard seed pod character may
increase weediness of glyphosate tolerant O. viciifolia as reported
for M. sativa (USDA, 2005) suggesting that O. viciifolia might
pose weediness in ecological sensitive areas where it is not native
and/or disperse into wild populations and persist in seed banks.

Glyphosate-resistant crops have become a significant part of
cropping systems in North America while it remains used exten-
sively in the mediterranean basin probably due to lawsuits and
concerns about gene flow and impacts on organic agriculture
(Putnam and Orloff, 2013). Medicago sativa is a relatively
recent crop to have glyphosate-resistant technology introduced.
While weed control in sainfoin still a complex issue, O. viciifolia
has not yet benefited from this technology. Given the low
vigour of sainfoin, glyphosate resistant O. viciifolia offers new
weed control options for sainfoin establishment for an improved
long-term crop vigour and yield (McCordick et al., 2008).
Adopted this technology could encourage many growers to
adopt sainfoin as an alternative forage for apparent improvements
in crop safety, quality, profitability and herbicide application
simplicity.

Nutritional interest and animal performance

Livestock production is a major and highly diverse component of
agriculture that is being exposed to changes in climate impacting
on forage and feed crop production (Moore and Ghahramani,
2013; Rojas-Downing et al., 2017; Godde et al., 2021). O. viciifolia
has aroused renewed interest in its use in livestock diets, as it has
important nutritional properties such as high palatability and
great nutritional value leading to very satisfactory animal per-
formance (Gayrard et al., 2021). Scharenberg et al. (2007a)
found that the palatability of dried and ensiled O. viciifolia was
20–24% higher than that of grasses and 10–29% higher than for
Trifolium pratense L. and M. sativa (Waghorn et al., 1990).
O. viciifolia hay was preferred to L. corniculatus hay by sheep
(Scharenberg et al., 2007b) and nonlactating cows (Scharenberg
et al., 2009; Lagrange et al., 2020). Contrary to forages like alfalfa,
sainfoin is a non-bloating legume due to the presence of con-
densed tannins that attenuate the formation of biofilms in the
rumen (Wang et al., 2006). In addition, condensed tannins
attenuate the excessive accumulation of ammonia in the rumen
through reductions in proteolysis (Lagrange et al., 2020).
Finally, sainfoin has been shown to contain high concentrations
of non-structural carbohydrates that provide carbon skeletons
for an efficient synthesis of microbial protein (Lagrange et al.,
2021; Villalba et al., 2021). Collectively, these nutritional benefits
contribute to explain the high preference for this forage displayed
by ruminants. Mammalian herbivores base their dietary prefer-
ences on the association between the orosensorial properties of
forages and their post-ingestive consequences (Provenza, 1995)
and animals form strong preferences for forages that supply car-
bohydrates and nitrogen in amounts and proportions that satisfy
their daily requirements (Villalba and Provenza, 2000). In con-
trast, herbivores avoid feeds that enhance rumen distension
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such as those that induce bloat (Villalba et al., 2009), as well as
those forages that yield high concentrations of rumen ammonia
(Villalba and Provenza, 1997).

Onobrychis viciifolia can be grown as a monoculture or in mix-
tures with perennial grasses and M. sativa (Moyer, 1985; Goplen
et al., 1991; Frame et al., 1998; Carbonero et al., 2011). In recent
years, the grazing of O. viciifolia as a monoculture, mixed with
perennial grasses (Festuca pratensis Hudds. and P. pratense) or
mixed with M. sativa has become a widespread practice in several
regions of the world (Frame et al., 1998; Carbonero et al., 2011;
Biligetu et al., 2021). Onobrychis viciifolia-grasses mixtures gener-
ally have higher yields and quality than grasses and O. viciifolia in
monoculture. Liu et al. (2006) reported a forage yield of 9.1 t/ha of
dry matter for a mixture of O. viciifolia-F. pratensis seeded in a
ratio of 2:1 compared to the monoculture of O. viciifolia which
gave 7.5 t/ha of dry matter. Onobrychis viciifolia can be used pri-
marily as hay or grazed directly, but it can also be cut for silage
(Bland, 1971; Sheldrick et al., 1987; Waghorn et al., 1998).

The daily gain reported in heifers was 0.96 and 0.91 kg with
O. viciifolia and M. sativa-grass hay, respectively (Parker and
Moss, 1981), and 0.80 and 0.67 kg for heifers on O. viciifolia
and M. sativa pastures, respectively (Marten et al., 1987). Thus,
O. viciifolia has been reported as an excellent pasture plant
(Bonciarelli and Coravelli, 1963; Ferret, 1975; Bencivenga and
Negri, 1983). When O. viciifolia was grazed as a sole diet, cows,
and lambs liveweight gain was similar to T. repens and about
20% greater than for M. sativa (Waghorn, 2008). Weight gains
in beef cattle would be equivalent for O. viciifolia hay and that
of M. sativa (Jensen et al., 1968), and in the case of pasture, the
weight gains were higher for O. viciifolia compared to M. sativa
(Hanna and Smoliak, 1968), explained by the lower incidence
of bloat and higher efficiency of nitrogen retention due to the
presence of tannins in the former (Lagrange et al., 2020).
Despite lower concentrate supplementation for grazing rabbits,
O. viciifolia grassland yielded the highest daily mean growth
rates (29 g/day) when compared to natural (26 g/day) and to a
pure stand of Festuca arundinacea Schreber. (19.2 g/day). Thus,
it seems possible to reduce complete feed supplementation with-
out reducing animal performance (Martin et al., 2016; Legendre
et al., 2019). To achieve daily mean growth rates of 20 g/day, a
grazing area of 0.4 m2/rabbit is sufficient when O. viciifolia is
grazed while it should be increased to 0.65 m2/rabbit when
grass and forbs are grazed (Legendre et al., 2019).

Reducing greenhouse gas emissions from livestock
The livestock sector plays an important role in climate change as
it accounts for 15% of human-induced greenhouse gases emis-
sions (Hur et al., 2024). Methane represents the second largest
anthropogenic greenhouse-effect gas after carbon dioxide (CO2)
(IPCC, 2021). Livestock, enteric fermentations or effluents, con-
tributes about 1/3 of the global methane emissions (Saunois
et al., 2020). From an environmental point of view, feeding rumi-
nants with forage containing condensed tannins may offer poten-
tial benefits. Nitrogen balance studies performed on sheep fed
with conserved O. viciifolia have shown a reduction in excretion
of urinary N, whereas the opposite pattern was observed with
M. sativa (Aufrere et al., 2008; Theodoridou et al., 2010).
Urinary N can pollute water resources through excessive nitrate
levels (Hoste and Niderkorn, 2019) and is quickly converted to
nitrogen oxide, a greenhouse gas 298 times more potent than car-
bon dioxide (Vallero, 2019). Moreover, sheep fed O. viciifolia
increased faecal N excretion, which contributes to organic matter

accumulation more than urinary N (Aufrere et al., 2008;
Theodoridou et al., 2010), reducing N loses to the atmosphere.
Condensed tannins contribute to shift the proportion of excreted
N from urine to faeces (Stewart et al., 2019; Lagrange et al., 2020),
given the capacity of tannins to bind proteins in the acidic rumen
environment and release proteins at greater pH in the intestines
for digestion and absorption (Mueller-Harvey et al., 2019).
Enteric methane emissions, another greenhouse gas, were reduced
in ruminants consuming O. viciifolia (Hatew et al., 2015, 2016;
Petrič et al., 2022). This reduction depends on the phenological
stage and the chemical composition of the biomass. In vitro,
methane production in O. viciifolia hays showed a tendency to
increase with the advancement of phenological stage. The best
period to cut O. viciifolia for hay making was between early
and late flowering, when the forage offers high organic matter
digestibility, low methane production and more efficient micro-
bial fermentation (Guglielmelli et al., 2011). At flowering stage,
in vitro gas and methane productions were cultivar dependant
(Kaplan, 2011; Ülger and Kaplan, 2016). Hatew et al. (2015) sug-
gested that conserved O. viciifolia accessions collected worldwide
exhibited substantial variation in terms of their effects on rumen
in vitromethane production, revealing some promising accessions
for future investigations. Additionally, the methane yield
depended on the chemical composition of the biomass
(Amaleviciute-Volunge et al., 2020). The results obtained in
metabolic cages indicated that the inclusion of O. viciifolia in sil-
age reduces the digestibility of organic matter in vivo on castrated
male sheep compared to pure timothy (Phleum pratense L.), and
methane emissions were proportionately lower (Niderkorn et al.,
2016). A trial on dairy cows, including 50% O. viciifolia silage in a
ration of grass silage, resulted in a reduction of 6.0% methane
emissions per kg of dry matter ingested. Silage of O. viciifolia
allowed improved milk in quantity and quality (Huyen et al.,
2016a, 2016b). The consumption of O. viciifolia pellets by gastro-
intestinal nematode-infected lambs decreased methane emission
by affecting ruminal methanogens without undesirable changes
in the ruminal microbiome or animals’ health (Petrič et al.,
2022). Adding O. viciifolia into M. sativa prior to ensiling sup-
pressed silage proteolysis and mitigated rumen CH4 in a
proportion-dependent manner, with a minor negative effect on
dry matter digestibility (Rufino-Moya et al., 2019). Therefore,
co-ensiling ofM. sativa with O. viciifolia could be used as a prom-
ising strategy not only to produce high-quality legume silage but
also to reduce N excretion and mitigate rumen CH4 (Wang et al.,
2022). Lower values of CH4 per kg intake were recorded with
O. viciifolia silage compared to pure Phleum pratense L. silage
(Niderkorn et al., 2019). Similar effects were observed in vitro
when O. viciifolia was mixed with Lolium perenne L. or Dactylis
glomerata L. (Niderkorn et al., 2011, 2012) and in vivo when
O. viciifolia was included in diets of dairy cows (Huyen et al.,
2016a). The significant reduction of total digestive tract neutral
detergent fibre digestibility in the presence of O. viciifolia
compared to pure P. pratense was likely the main driver for the
reduction of CH4 emissions. In addition, the acetate:propionate
ratio in the rumen, which is strongly related to the availability
of hydrogen as a substrate for methanogenic archaea to form
CH4, was lower for P. pratense-O. viciifolia and Trifolium
pratense-O. viciifolia than for pure P. pratense, highlighting the
potential of O. viciifolia silage to decrease CH4 emissions via a
modification of the fermentative microbial ecosystem in the
rumen (Warner et al., 2017). In addition, the reduction of NH3

emissions and urea in milk were more pronounced than the
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reduction in methane emissions (McMahon et al., 1999;
Guglielmelli et al., 2011; Niderkorn et al., 2011; Williams et al.,
2011; Theodoridou et al., 2011; Chung et al., 2013; Copani
et al., 2015).

Nutritive value of sainfoin
The nutritional value ofO. viciifolia is determined by variety, growth
stage and growing environment. Several studies have quantified the
nutritionalvalues,mainly theconcentrationsofcrudeprotein,neutral
detergent fibre and acidic detergent fibre, of O. viciifolia at different
stages of growth. After 42 days of regrowth, the nutritive value of O.
viciifolia was comparable to the first growth vegetative stage, with
crude protein ranging between 148–186 g/kg, and neutral detergent
fibre and acid detergent fibre concentration ranging 365–454 g/kg
and 337–397 g/kg, respectively (Table 2).

Freshly harvested forage, silage and hay of O. viciifolia have
similar quality and nutritive value (Table 3). The tannins in
O. viciifolia silage can reduce the proteolysis that takes place in
the silo (Wilkins and Jones, 2000). Incorporation of O. viciifolia
into M. sativa forage improves fermentation in laboratory silos.
Optimal ruminal fermentation with silage was obtained with a
proportion of 60/40 for M. sativa and O. viciifolia, respectively
(Wang et al., 2007). The inclusion of O. viciifolia in grass silage
has been shown to improve forage quality, fermentation as well
as protein protection against microbial and enzymatic degrad-
ation (Lee et al., 2008; Lorenz et al., 2010; Copani et al., 2014).
Onobrychis viciifolia can be offered as dehydrated granules
(Gaudin, 2017), but the necessary technological treatments, high
temperature and high pressure, can cause a possible destruction
of the tannins and a conversion of the tannins from the free
majority form to the bound form attached to proteins (Terrill
et al., 1992, 2007; Minnee et al., 2002; Lorenz, 2011).

Onobrychis viciifolia was found to increase by 17% the propor-
tion of omega-3 polyunsaturated fatty acid and unsaturated fatty

acids in milk and cheese fat from lactating cattle (Girard et al.,
2015, 2016), due to condensed tannins modulating the activity
of bacteria involved in the processes of biohydrogenation (Vasta
et al., 2010; Buccioni et al., 2015). In addition, it has been
reported that condensed tannins of O. viciifolia reduced protein
degradation in the rumen leading to reductions in rumen ammo-
nia concentrations and N losses in urine (Scharenberg et al.,
2007b). Condensed tannins also increased the plasma concentra-
tion of essential amino acids, indicating that the protein escaped
from the rumen is digested in the intestine leading to faster ani-
mal growth rates and increased milk production (Waghorn et al.,
1990; Waghorn, 2008; Girard et al., 2016).

Nutritional benefits
Onobrychis viciifolia is particularly valued for its content of con-
densed tannins, which have been shown to improve animal health
by reducing bloat (McMahon et al., 1999; Sottie, 2014; Wang
et al., 2015), and by diminishing gastro-intestinal parasites
(Hoste et al., 2015; Desrues et al., 2017). In fact, the intake of
O. viciifolia fresh leaves (10–20% of the dry matter of M. sativa)
reduces bloat in cattle by 27% (McMahon et al., 1999) compared
to those consuming 100% M. sativa. Consequently, O. viciifolia
could be grazed, offered in as hay or silage ad libitum. When
O. viciifolia is grown in a mixture with M. sativa, it has been
shown to reduce bloat incidence in beef cattle relative to the graz-
ing of pure M. sativa (Sottie, 2014; Malisch et al., 2015).
Condensed tannins of O. viciifolia hay has shown reduced egg
per gram of faeces, and female fertility of parasitic nematodes
when fed to livestock (Azuhnwi et al., 2013; Arroyo-Lopez
et al., 2014). Anti-parasitic properties of O. viciifolia tannins
have been demonstrated by both in vitro (Barrau et al., 2005)
and in vivo studies (Molan et al., 2000a, 2000b, 2002; Hoste
et al., 2015). Moreover, sheep increase their intake of O. viciifolia
through time when parasitized (Gaudin et al., 2019) and show

Table 2. Nutritional value of Onobrychis viciifolia at different stages of growth

Growth stage Variety
Crude protein
(g/kg DM)

Neutral detergent fibre
(g/kg DM)

Acid detergent fibre
(g/kg DM) References

Vegetative Anatolian 195–198 378–461 286–334 Bal et al. (2006)

nd Turk et al. (2011)

Flowering Eski 116–143 372 457 368–392 Parker and Moss (1981)

nd 121 478 433 Khalilvandi-Behroozyar et al.
(2010)

nd 114–177 433–476 343–433 Kaplan (2011)

Anatolian 145 493 372 Bal et al. (2006)

Nova 125–161 – 313–371 McMahon et al. (1999)

38
accessions

134–175 356–458 351–416 Bhattarai and Biligetu (2018)

Grain filling Anatolian 130 557 402 Bal et al. (2006)

nd 171 446 338 Turk et al. (2011)

Regrowth (42
Days)

Moiry 148–186 365–454 337–397 Azuhnwi et al. (2012)

Sarzens

Premier

Visnovsky

Perly
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high preferences for the legume despite the high availability of
alternative legumes without tannins like cicer milkvetch
(Villalba et al., 2013).

Onobrychis viciifolia has an antiparasitic effect on the most
important sheep nematodes (Ríos-De Álvarez et al., 2008;
Komáromyová et al., 2021; Petrič et al., 2022). Similar results
were obtained with goats (Paolini et al., 2005). While goats are
more willing than sheep to consume tanniferous feeds, the poten-
tial for self-medication has been demonstrated in both species
concerning H. contortus (Gaudin et al., 2019). Regular feeding
on O. viciifolia pastures by small ruminants could therefore be
used to improve host resilience and thus reduce pasture contam-
ination. The anthelmintic bioactivity of O. viciifolia is maintained
in hay or silage (Ojeda-Robertos et al., 2010). Berard et al. (2009)
proved that O. viciifolia silage and hay reduced the excretion of
Escherichia coli by cattle. The consumption of O. viciifolia by
small ruminants has also been associated with effects on coccidia
(Saratsis et al., 2012) and on infestations by gastrointestinal nema-
todes (Hoste et al., 2015). These findings contribute to the further
development of sustainable grass–legume systems, as evidence for
the successful cultivation of O. viciifolia as an alternative legume
species (Malisch et al., 2017).

Medicinal and pharmacological properties

Global environmental degradation and climate change threaten
the foundation of human health and well-being (Pathak and
McKinney, 2021; Rocha et al., 2022). Several diseases are all likely
to become more common (Faergeman, 2007). Ethnobotanical evi-
dence supports the use of O. viciifolia in traditional medicine
(Martini, 1981; Mbaveng et al., 2014) (Table 4). Cornara et al.
(2016) recently reviewed temperate forage legumes as a resource
for nutraceuticals and pharmaceuticals. The nutraceutical activity

of O. viciifolia is due to the presence of a large phenolic complex,
dominated by arbutin, rutin, catechin, kaempferol, quercetin,
afzelin and condensed tannins (Marais et al., 2000; Regos et al.,
2009). These phenolic metabolites are reported as antioxidants,
detoxifying agents, reducing blood pressure and anti-cancer
agents (Dai and Mumper, 2010).

Establishment characteristics

Climate change is predicted to causes significant changes in com-
position, establishment, growth and development of pastures and
fodder crops (Sunil et al., 2020; Martins-Noguerol et al., 2023).
Ease of stand establishment is considered an important trait in
perennial forage utilization under climate change. Onobrychis

Table 3. Characteristics and nutritive value of Onobrychis viciifolia feeding forms

Variety

Dry
matter
(g/kg)

Organic
matter

Crude protein
(g/kg DM)

Neutral
detergent

fibre
(g/kg DM)

Acid
detergent

fibre
(g/kg DM)

Condensed
tannins

(g/kg DM)
Metabolizable
energy (%) References

Fresh nd 298 927 198 231 202 43.7 9.8 Scharenberg
et al. (2007a)

Hay 968 897 220 239 210 46.2 9.7

Silage 315 921 211 229 228 28.8 9.1

Fresh Perly – – 143 415 314 6.2 – Theodoridou
et al. (2010)

Frais – – 187 355 279 13.6 –

Hay nd – 923 219 391 256 – – Guglielmelli
et al. (2011)

Hay – 933 207 433 346 – –

Hay – 935 175 441 296 – –

Hay – 942 122 514 409 – –

Hay Zeus – 924 157 346 249 9.8 – Niderkorn
et al. (2012)

Fresh Reznos – – 194 392 258 – – Rufino-Moya
et al. (2022)

Hay – – 169 470 340 – –

Silage – – 169 456 332 – –

Pellets nd 918 – 121 460 357 – – Petrič et al.
(2022)

Table 4. Biological activity of Onobrychis viciifolia

Plant part
Biological
activity Target/ Reference

Stems and
leaves

Anthelmintic
properties
Antimicrobial
activity

Teladorsagia
circumcincta,
Haemonchus
contortus and
Trichostrongylus
colubriformis

Paolini
et al.
(2004)

Escherichia coli
O157:H7

Barrau
et al.
(2005)

Escherichia coli Liu et al.
(2013)

Dried and
pulverized
roots

Antiseptic and
vulnerary

Placed directly on
the wounds

Martini
(1981)

12 Anis Sakhraoui et al.

https://doi.org/10.1017/S0021859624000327 Published online by Cambridge University Press

https://doi.org/10.1017/S0021859624000327


viciifolia establishment depends on soil characteristics, seeding
(size, colour of tegument, milled vs unmilled) and weed competi-
tion. Onobrychis viciifolia seeds germinate rapidly and are easy to
establish in the Brown, Dark Brown and Black soil zones of west-
ern Canada, as well as stony clay loam soils in UK (Goplen et al.,
1991; Carbonero et al., 2011).

The areal expansion of semiarid and subhumid zones under
climate change will increase at the expense of the contraction of
arid and humid zones (Li et al., 2021a, 2021b). Onobrychis vicii-
folia performs well over multitude of climatic areas. In the warm
Mediterranean Basin, O. viciifolia is normally drilled either in
early autumn or at the beginning of spring. Conversely, in colder
areas like the UK, it is recommended to drill O. viciifolia between
April and July (Jensen et al., 1968; Goplen et al., 1991). Early
sowing can improve the development of the plants due to the
early development of roots (Nikola, 1998). Global warming due
to climate change will expose plants and their seeds to novel cli-
matic conditions and likely affect seed germination responses
(Gremer et al., 2020; Mondoni et al., 2022). Species with a wide
range of temperature for germination could have a better adapt-
ability to climate change (Bandara et al., 2019). Although there
is limited information available on its seed germination, O. vicii-
folia has a wide range of optimum temperature for germination,
but it is normally advised to drill it between 10–27°C and never
below 5°C (Carleton et al., 1968; Jensen et al., 1968; Smoliak
et al., 1972). There are conflicting views on the relative germin-
ation of milled and unmilled O. viciifolia seeds. Wiesner et al.
(1968) reported a higher germination percentage for milled
seeds, but no significant difference in germination among the
two types was observed by Chen (1992). Noorbakhshian et al.
(2011) found improved germination and seedling vigour for O.
viciifolia after removing the seed pods. Use of de-hulled seeds
could provide staggered germination and thus cushion potential
weather disturbances (Wiesner et al., 1968; Chen, 1992;
Demdoum, 2012). To enhance O. viciifolia germination and
early establishment, several studies report the need for seed pod
removal rather than seed scarification (Bhattarai and Biligetu,
2018). In addition, seedlings emerging from seeds with intact
pod may have a high probability of fungal infestation
(Alternaria and Fusarium spp.). Slow and non-uniform seedling
growth and high weed infestations may be other limiting factors
for sowing seeds with pods (Noorbakhshian et al., 2011).

Variation among O. viciifolia germplasm for seed size, seed
weight and seed coat colour would enhance the species adoption
by farmers under climate change. The germination percentage
was higher for brown than green seeds as the former are physio-
logically mature (Thomson, 1938; Noorbakhshian et al., 2011).
Brown seeds colouration has important functions in plants
including a role in camouflage and thermoregulation, and protec-
tion against UV-radiation and pathogens (Roulin, 2014).
Germination is also affected by seed size, which varies among
O. viciifolia cultivars. Bhattarai and Biligetu (2018) found that
final germination was increased by seed pod removal but not
with seed size. In O. viciifolia, the medium seed size class
(1000-seed weight of 21 g) and the large seed size class
(1000-seed weight of 28 g) had a final germination of 90%–93%
at temperature of 25°C, but the small seed class (1000-seed weight
of 12 g) had a final germination lower than 10% due to high
degree of physical dormancy (Bhattarai and Biligetu, 2018).
Cash and Ditterline (1996) reported that O. viciifolia seedlings
emerged more rapidly from large seeds. The use of large fully
mature seeds increases establishment success giving stronger

plants, with more nodules and high rates of N2 fixation (Cash
and Ditterline, 1996). The seeding density of O. viciifolia
depends upon seed size, soil type, soil moisture, purpose and
method of seeding. There is almost no data available to confirm
the effect of O. viciifolia seeding density on stand establishment,
forage yield and other agronomic performance. To establish a
population of 70–150 adult plants/m2 in the first year, authors
recommend seed densities of 40–50 kg/ha of de-hulled seeds
(or 80–120 kg/ha hulled seeds) (Sheldrick et al., 1987; Frame
et al., 1998) at a depth of 1–2 cm in Canada (Hill, 1997).
Conversely, in China, a depth of 4–5 cm was recommended
(Chen, 1992). The recommended row spacing is between
50–60 cm for a better stand establishment (Goplen et al.,
1991; Stevovic et al., 2010).

It is recognized that weed pressure associated with climate
change is a significant threat to crop production, either through
increased temperatures, rainfall shift and elevated CO2 levels,
but the current knowledge of these effects is very sparse
(Ramesh et al., 2017; Munda et al., 2024). Onobrychis viciifolia
is a non-aggressive crop during seedling establishment. Thus,
weed control in the first year is important for good establishment
and high forage production in subsequent years. In the first year
of establishment, Moyer (1985) found weeds made up 98% of dry
matter yield in O. viciifolia fields without any weed control mea-
sures Lethbridge (Canada). Koivisto and Lane (2001) suggested
using a non-competitive grass as a companion crop to aid in
weed control in the establishment year. Chemical weed control
in pure stands of O. viciifolia resulted in higher seed yield than
stands with H. vulgare as a companion crop in Europe
(Dimitrova, 2010).

Recent advances

Climate change has a substantial bearing on crop productivity and
food security, and hence there is a need to develop resilience to
mitigate climate change induced impacts in crop plants
(Acevedo et al., 2020; FAO, 2020; Raj et al., 2022). The challenge
is to try to preserve the resilience of our ecosystems in the years to
come, and to maintain food security by protecting important crop
species and finding ways to increase their productivity. Despite
O. viciifolia potential to tackle climate change adverse effects, the
species is relatively understudied, and several aspects need to be
addressed. In recent years, ‘HealthyHay’ (http://legumeplus.eu/
healthyhay-project) and ‘LegumePlus’ (http://legumeplus.eu) pro-
jects conducted genetic analyses, agronomic, biological and chem-
ical evaluations, nutritional analyses, environmental assessments
and developed methodologies for screening for genetic improve-
ment of 362 different O. viciifolia accessions across Europe.
Nevertheless, there is no report of registration of new improved
O. viciifolia cultivars from these large-scale research projects
(Poudel et al., 2023). In 2000, a new breeding initiative of
O. viciifolia focusing on improvement of the compatibility of
O. viciifolia in M. sativa stands to reduce M. sativa bloat led to
the creation of two new Canadian cultivars, namely
AAC-Mountainview and AAC-Glenview released in 2015 and
2018, respectively (Poudel et al., 2023). AAC-Mountainview was
derived from single-cycle selection under competition with
M. sativa, whereas AAC-Glenview was selected for persistence in
M. sativa stands, followed by improved grazing tolerance in a graz-
ing trial. The variation in dry matter yield in both cultivars is low
compared to the Romanian cultivar Splendid, but higher than the
Kazakhstan cultivar Nova based on recent tests in Lethbridge
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(South Ouest Canada) in monocultures. Nevertheless, AAC-
Mountainview and AAC-Glenview showed significant advantages
over parents when seeded with M. sativa. These cultivars are suc-
cessful, and demand for their seeds is increasing considerably
(Poudel et al., 2023).

Overall, climate change has exemplified the need for continued
research into crop environmental stress tolerance (Jing et al.,
2024). Current updates and recent advances in the physiological,
molecular and genetic perspectives of plant responses to environ-
mental stresses may offer insights underlying these responses and
how this pool of knowledge can be explored to develop plants for
future climates (Kumar et al., 2023). In recent years, there has
been a growing focus on research endeavours aimed at enhancing
the resilience of O. viciifolia to both abiotic and biotic stresses
providing opportunity for climate change adaptation and mitiga-
tion. To address the challenge of establishing O. viciifolia in
drought conditions, Irani et al. (2015a) identified O. viciifolia
plants that exhibited resilience to drought and displayed high
yields. These plants were characterized by elevated foliar proline
contents, presenting a potential physiological marker for screen-
ing drought tolerance for climate change adaptation and mitiga-
tion. Moreover, enhancing the activity of two crucial
antioxidant enzymes, glutathione reductase (GR) and ascorbate
peroxidase (APX), can lead to successful breeding of O. viciifolia
with improved drought tolerance (Beyaz, 2019). On the other
hand, the growth of O. viciifolia is constrained by powdery mil-
dew (Erysiphe polygoni), with several tolerant accessions having
been previously identified (Jafari et al., 2014; Alizadeh et al.,
2021). Li et al. (2021a, 2021b) investigated O. viciifolia seed
response under saline conditions and offered valuable insights
for advancing the establishment and cultivation of salt-tolerant
O. viciifolia in saline lands in China. The challenges posed by
environmental stresses may be influential in the reduced persist-
ence of O. viciifolia. Therefore, forthcoming O. viciifolia breeding
endeavours ought to prioritize the creation of cultivars resilient to
both biotic and abiotic stressors.

Progress in enhancing the molecular characteristics of O. vicii-
folia has significantly trailed behind that of other forage legume
species, primarily because of the limited genomic resources.
While several genetic markers have been established for O. vicii-
folia (Kempf, 2016; Mora-Ortiz et al., 2016; Shen et al., 2019),
and a complete chloroplast genome sequence has been recently
disclosed (Jin et al., 2021), there is currently no existing reference
nuclear genome sequence for this species. Progress in molecular
improvement has been advancing in recent years, with the accu-
mulation of transcriptomic data from various tissues across a lim-
ited number of genotypes (Kempf, 2016; Mora-Ortiz et al., 2016;
Shen et al., 2019; Yin et al., 2020; Jin et al., 2021; Qiao et al.,
2021). Additionally, there has been an evaluation of microRNAs
(miRNAs) in O. viciifolia cultivated at different altitudes (Yin
et al., 2020). Considering the growing interest in O. viciifolia, fur-
ther advancements should continue to unfold in this sphere in the
years ahead, contributing to the facilitation of breeding activities.
Alongside the existing limited supply of genetic data for tetraploid
O. viciifolia, there exists a notable lack of accessible biotechno-
logical tools. This shortfall has impeded both functional genetic
investigations and progress in advanced molecular breeding
initiatives. There has been some advancement in this domain
with the introduction of a transient virus-induced gene silencing
method in O. viciifolia. This method has proven successful in
downregulating the expression of the phytoene desaturase gene,
signifying recent progress in the field.

Future perspectives

In the present review, O. viciifolia appears as a plant with high
application potential with agronomic, ecological and economic
interest in the present scenario of climate change. Advances in
recent years have provided more opportunities for O. viciifolia
to be considered as an alternative for farmers, particularly those
interested in producing locally sourced protein and sustainable
agricultural practices (Sheppard et al., 2019). Although the agro-
nomical and ecological potential of O. viciifolia have recently
received due attention, its general biological and physiological
attributes have not been well-investigated. Evaluating these basic
facets may extend its cultivation and pave the way for novel appli-
cations in the present context of climate change (Sakhraoui et al.,
2023). In this sense, research efforts on the ecology, stress toler-
ance and uses of O. viciifolia should be increased. Thus, use of
both genetic manipulation and traditional breeding approaches
will be required to develop salt-tolerant cultivars better able to
cope with high salinities in marginal agriculture areas affected
by salinization in the present climate change scenario.

In view of our review, there are mainly five deficiencies in the
research on O. viciifolia and its relationship with climate change:
(1) Most of the studies on O. viciifolia ecophysiology have been
focused on seedlings, while research concerning adult plants is
scarce. Plant physiological characteristics often show differences
in different growth stages, so the seedling stage may not represent
the physiological characteristics of the whole plant life cycle
(Mganga et al., 2019). Therefore, the research on physiological
responses to environmental stressors related to climate change
should be carried out for different growth stages of O. viciifolia,
especially adult plants. (2) The studies on stress tolerance of
O. viciifolia have been mainly focused on salt and drought toler-
ance, while the research on the responses to other environmental
stressors, such as extremes of air temperatures, are scarce or
non-existent. Therefore, more research is needed on the responses
of O. viciifolia to different environmental stressors related to
climate change, besides salinity and drought, and on the inter-
active effects of the combination of different environmental stres-
ses. (3) The study of stress tolerance mechanism has been mainly
focused on the observation of physiological changes, while the
research on anatomical, morphological and genetic adaptation
mechanisms is scarce. To further clarify the stress resistance of
O. viciifolia to stressors related to climate change, anatomical,
morphological and genetic studies should be conducted.
Covering these knowledge gaps and their incorporation in
hybridization and breeding programs can be useful in creating
new cultivars of O. viciifolia better adapted to climate change.
(4) Onobrychis viciifolia is relatively resistant to biotic stresses
compared to other forage legume species and appears to rely on
cultivar choices and thus represent a potential source for breeding
(Carbonero et al., 2011). This resistance will need to be confirmed
by further rigorous field pathology studies to determine the sus-
ceptibility of selected lines, and the potential resistance mechan-
ism should be studied to see if it is possible to transfer this into
new cultivars. (5) The evaluations of ecological and economic
benefits and impact of O. viciifolia production are mostly qualita-
tive, lacking quantitative evaluations. This may limit farmers and
the decision-making departments of public administrations to pay
attention to its application values. Therefore, quantitative analysis
should be carried out in the evaluation of ecological and eco-
nomic benefits of O. viciifolia. (6) There is a lack of long-term
observation experiments after sowing pastures with O. viciifolia
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or using this legume in ecological restoration projects. This sort of
long-term studies would be a great opportunity to improve our
knowledge on the benefits of O. viciifolia as a biological tool to
mitigate and adapt to climate change. (7) The genomes of O. vicii-
folia have not yet been fully sequenced, and a limited number of
genetic markers are present, except for some transcriptomics data
to apply in crop improvement studies and functional genomics
(Kempf, 2016; Mora-Ortiz et al., 2016; He et al., 2024). In fact,
recent breeding studies on O. viciifolia have led to improvements
in this crop as bloat-free forage legume by enhancing its yield,
biomass productivity, grazing tolerance and fatty acid compos-
ition (Subedi, 2018; Wijekoon et al., 2021). However, only a few
O. viciifolia cultivars are available and new cultivars with high
dry matter yield and persistence under regional growing condi-
tions are required (Bhattarai et al., 2016; Sheppard et al., 2019).
Further breeding studies are necessary on the improvements in
weed control, establishment, seed dormancy and genetic charac-
terisation to enable effective pre-breeding programmes in differ-
ent environments.

Conclusions

Onobrychis viciifolia is a forage legume of renewed interest world-
wide, with equally weighted advantages and disadvantages that
prevent many farmers from considering this crop a viable alterna-
tive to other forage legumes. However, advances in recent years
have provided more opportunities for sainfoin to be considered
as an alternative choice for farmers, particularly for its agronomi-
cal and ecological interests, nutritional benefits and nutraceutical
proprieties. However, some knowledge gaps and application
should be studied deeply to promote O. viciifolia use for climate
change adaptation and mitigation. In this sense, research is
required to select and breed potentially useful varieties combining
nutritional, agronomic and environmental potential.
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