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Abstract. Let si be a Banach algebra of bounded linear operators such that si
contains every operator with finite dimensional range. Then si contains every nuclear
operator.

1. Introduction. Let X be an infinite dimensional Banach space. We adopt the
following notation for the various spaces of operators involved here:

38(A") = the algebra of all bounded linear operators on X;

= the ideal of finite rank operators in

= the ideal of nuclear operators in

Also, let || • \\op denote the usual operator norm, and let || • ||, denote the usual natural
complete algebra norm on Jf(X). A useful discussion of algebras of operators and of
Jf(X) is given in [2, §1.7].

The main purpose of this note is to prove the following result.

THEOREM 1. Let (si, || • ||^) be a Banach algebra of operators with

Then Jf(X)^si, and furthermore, there exists M>0 such that for all T s M{X),

As a consequence of the theorem, N(X) is the smallest Banach algebra of operators
that contains ^(X). It has long been noted that ^V(X) is the smallest non-zero Banach
ideal of operators in S8(X).

A natural example of an algebra of operators to which Theorem 1 applies occurs in
the theory of linear operators on a real or complex Banach lattice X. A good brief
introduction to the algebras of operators involved can be found in W. Arendt's paper [1].
We use the terminology from this paper. Let W(X) be the algebra of all regular
operators on the Banach lattice X. ^"{X) is a Banach algebra in the r-norm, and it is
known that 9>(X) <=, W(X). The closure of &(X) in the r-norm is the Banach algebra of
all r-compact operators, denoted by 3fT(X). Applying Theorem 1, we have Jf(X)c.
T(X).

2. Results. Before proving Theorem 1, we deal with some preliminary results. For
x e X and a e X' (the dual space of X), let a ® x be the operators in S'iX) given by

a(y)x (y e X);

for a e X'\{0}, let a ©A' denote the space

a®X = {a®x:xeX}.
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Then a ® A" is a minimal left ideal of &{X). The minimal right ideals of 2F(X) have the
form

= {a®x:a eX'},

where x E A"\{0}. An algebra norm on S'iX) is complete on minimal left and right ideals
when the spaces a ® X and X' ®x (as above) are all complete with respect to the norm.

In what follows we use the notation || • || for both the norm on X and the norm
on A".

PROPOSITION 2. Let \ • \ be an algebra norm on 3"{X) that is complete on minimal left
and right ideals. Then there exist constants m>0 and M>0 such that

for all x e X and a e X'.

Proof. By [3, Theorem (2.4.17), p. 69], there exists m > 0 such that for all x e X and
a e X' v/e have

m ||a|| | |*||=m | | a®*| | o p £ |a®*| . (1)

Fix a £ A"\{0}, and consider the minimal left ideal a ® X. By hypothesis, | • | is complete
on a ® X. Also, clearly || • ||op is complete on a ® X and so, by the open mapping theorem
and (1), there exists Ja > 0 such that

Ja\\a\\\\x\\=Ja\\a®x\\op^\a®x\, for all x e X. (2)

The same argument applied to minimal right ideals implies that for each x e X\{Q} there
exists Kx > 0 such that

Kx\\a\\\\x\\=Kx\\a®x\\o>\a®x\, for all a e A". (3)Hop

For any a e X' define <pa : A'-* (S'iX), | • |) by (pa(x) = a ®x. By (2) <pa is continuous
for each a. Let *& be the collection

««{«!>„: a e*", | |a | | = l}.

By (3) this collection of operators is pointwise bounded on X. Thus, by the uniform
boundedness theorem, there exists M > 0 such that ||<pQ||op ̂ M , for all a e X' with
|| a || = 1. Therefore

\ a ® x \ = \<pa(x)\<M \ \ x \ \ \ \ a \ \ , f o r a l l x e X a n d a e A " .

n

Any operator F e MX) can be written in the form F = 5) otk®Xk, where {^}£Ar

and {ak}^X'. The projective tensor norm on 9"{X), denoted by || • ||p, is defined by

see [2, p. 99].

COROLLARY 3. Let \ • | be an algebra norm on 2F(X) that is complete on minimal left
and right ideals. Then there exist m>0 and M > 0 such that for all F e 3*(X), we have

m\\F\\op*\F\<M\\F\\p.
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Proof. Again, the existence of m > 0 for which m \\F\\op < \F\, for all F e SF(X),
follows from [3, Theorem (2.4.17)]. Now let M > 0 be as in the statement of Proposition 2.

If F s &{X) with F = £ ak ®xk, then
*=i

*=i x*=i

It follows that |F |<M \\F\\p.
At this point we remind the reader of the definition of nuclear operator (following

[2, p. 98]). An operator T e 8ft(X) is nuclear if there exist sequences {xk} g X and
\ak}c.X' satisfying

||x*||<oo and T(x) = 2, <**(*)**,
*=i *=i

for all x e X. The natural norm on Jf(X) is

{ o= oo -.

2 lla*ll 11**11 : T 's represented by 2 a ®** (as above) |.
*=i * = i -1

The proof of Theorem 1. Let (j^, || • ||^) be as in the statement of Theorem 1.
Assume that a e X'\{0}. Choose y sX with a(y) = 1. Then £ = a ®y satisfies E2 = E,
and sdE = a®X. Since slE is a closed, and hence complete, subspace of si, we have
|| • ||^ is complete on minimal left ideals of SF(X). A similar argument shows that || • ||rf is
complete on minimal right ideals of &{X). Therefore Proposition 2 applies.

c

Now let T e Jf(X), so that there exist {xk} g * and {a*} c A" with 2 || a* || \\xk || < <»,
* i

oo

*=i
For m> n, we have

n

and T(A:) = 2 ^^(A:)^, for all x s X. Let A/ be as in Proposition 2. Set X, = S a t
*=i *=i

as

It follows that there exists S s si with ||5 - 5n||^->0. Also, by [3, Theorem (2.4.17)], the
.stf-norm dominates the operator norm, and so \\S -5n||op—»0. This implies that
T = S E si. Also,

rf= lim ||5JL<limsup(i

) 2 11**11-

Thus, n r i u < M urn,.
Finally, we present two more applications of Theorem 1. The following result is
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essentially Theorem (2.8.21) in C. Rickart's book [3]. The conclusion of the result has
been strengthened by a direct (and obvious) application of Theorem 1.

COROLLARY 4. Let | • | be an algebra norm on SF{X) and let si be the completion of
&{X) with respect to this norm. Then there exists a representation a^*Ta of si on X whose
kernel is the radical of si and such that each element of 8F(X) maps into itself.
Furthermore, the image {Ta:a £ si} contains Jf(X).

When H is a Hllbert space, two of the most important ideals in 38(//) are %.(H), the
Hilbert-Schmidt operators on H, and %(H), the trace class operators on H\ see R.
Schatten [4]. Of course *<?i(//) = N(H). As is well-known (sometimes by definition), if
7 ,5 6 %(H), then TS e %(H). Theorem 1 has the following amusing corollary in this
context.

COROLLARY 5. Let si be a Banach algebra of operators on H with

9(H)ctfc%(H).
Then si is an ideal in %(H).
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