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Cryo-electron tomography (cryo-ET) is a key tool for imaging macromolecules in cellular environments. 

Together with subtomogram averaging (STA), cryo-ET can be used for structure determination. Weak 

visibility of many structures in cryo-ET as well as the volume of data required for STA, however, 

motivate the exploration of advanced image processing for cryo-ET. Compressed sensing is a 

mathematically rigorous signal processing approach to sampling with far fewer measurements than 

traditionally required, with significant applications in limited angle, undersampled electron tomography 

in the physical sciences [1,2]. Compressed sensing electron tomography (CS-ET) holds that for sample 

features that can be described as sparse, i.e., those requiring only a few coefficients to represent the 

object in a particular mathematical transform domain, a set of measurements can be devised to directly 

identify the tomographic reconstruction that also adheres to that sparsity, in contrast to post-processing 

approaches. This idea is related to image compression, where an image can be represented by only a 

small number of coefficients to reduce the storage requirements of the fully sampled image. CS-ET 

enables reducing data quantities while recovering high-fidelity reconstructions, or provides improved 

visibility and precision of image features for a given number of samples (measurements) [1–3]. 

 

Identifying suitable and general sparse domains for cryo-ET and determining whether these preserve 

high-resolution structural information is essential.  CS-ET has seen several applications in cryo-ET to 

date [4,5], but high-resolution structures have not been reported. Moreover, advances in CS-ET, 

including the use of higher order total variation and three-dimensional transforms matched to the three-

dimensional object under reconstruction, have not been assessed for cryo-ET. Second-order total 

variation (CS-TV
2
) has recently seen wider application in physical sciences CS-ET [6]. Whereas first-

order total variation reinforces tomographic reconstructions that are piece-wise constant, structures of 

interest in cryo-ET exhibit intensity variations with relatively high image density in high-resolution 

structures, limiting the applicability of sparsity in the image of an object itself. CS-TV
2
 allows for 

variation in intensity while reinforcing the inherent connectivity of structures in three-dimensions. 

 

To evaluate CS-TV
2
, we first evaluated whether the reconstruction algorithm retains information to the 

secondary structure level in hepatitis B (HBV) triangulation number (T) = 4 capsid particles [7]. Fig. 1 

shows a comparison of WBP and CS-TV
2
 reconstructions, confirming CS-TV

2
 enhances visibility of 

structures with small fractions of the full dataset and preserves information at the secondary structure 

level. Application of CS-TV
2
 to C. crescentus cells demonstrated that the approach shows wider utility 

(Fig. 2). In cellular specimens, in particular, the visibility of features is significantly improved in CS-

TV
2
 relative to WBP reconstructions. This presentation will discuss important data pre-processing steps, 

selection of parameters for the evaluated CS-TV
2
 implementation [8], approaches to parallelization, and 

directions for further development [9]. 
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Figure 1. STA results from HBV capsid particles (188 particles at 100%, 12 particles at 6%) shown as 

(a) orthoslices and (b) isosurface renderings at 4σ isosurface contour level along with an atomic model 

(PDB: 6HTX) rigid body fitted into the density. Adapted from Ref. [7] (CC-BY). 

 

 
Figure 2. Orthoslices from reconstructions of a C. crescentus cell. Adapted from Ref. [7] (CC-BY). 
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