
Book reviews 219

Overall, this book contains a lot of valuable material, and due to the simplicity of the

Event-B notation it should be a seriously considered for introductory courses on formal

modelling with associated proof. As a basis for advanced study and research, it would be

significantly better if it contained more conceptual clarity and methodological guidance on

refinement, as well as a much more extensive index and bibliographic information. The case

studies, however, still provide a rich source of example material for researchers.

References

Eerke Boiten (2011) Perspicuity and granularity in refinement, Refinement Workshop, EPTCS

55, pp 155–165. DOI: 10.4204/EPTCS.55.10

Stefan Hallerstede (2009) Proving quicksort correct in Event-B, Refinement Workshop, ENTCS

259, pp 47–65, DOI: 10.1016/j.entcs.2009.12.017

Steve Schneider, Helen Treharne & Heike Wehrheim (2011) A CSP account of Event-B

refinement, Refinement Workshop, EPTCS 55, pp 139–154. DOI: 10.4204/EPTCS.55.9

EERKE BOITEN

School of Computing, University of Kent, Canterbury, UK

Drawing Programs:

The Theory and Practice of Schematic Functional Programming, by Tom

Addis and Jan Addis Springer, 2010, ISBN 978-1-84882-617-5, 379pp

doi:10.1017/S095679681200010X

The book presents the notion of schematic functional programming and demonstrates not

only the concept but also how schematic functional programs can be processed, and how this

approach can be used to develop small and even complicated programs.

A reader need not be familiar with the concept of functional programming, but on the other

hand, it is probably expected that a reader is familiar with programming and programming

languages. The development environment connected with schematic programming can be

found on Internet and downloaded (but only for Windows 32bit systems) but it seems not to

have been under active development for several years. Nevertheless, a reader can easily try

the examples and follow the flow of the book.

Sometimes it is necessary to have broader knowledge to understand the examples presented,

as they are built over problems from various areas of computer processing. Even when the

book presents introduction to such areas (e.g. to Bayesian theory), it is not sufficient to fully

understand the solution. Thus, a question comes to one’s mind, whether such an introduction

is necessary, as it is of little use for those who are familiar with the subject, but not adequate

for those who do not know the subject. A reader familiar with these areas can go through the

book quite easily and try to use the constructs and typical patterns of schematic programming,

and, in such a way, learn how to use schematic programming and become familiar with it.

It is quite misleading to say that this is a functional language. It would be very helpful if

the authors could give a clear explanation of how it is (and isn’t) functional, so that a reader

could recognize that it is an imperative language with stateful development and runtime

environment, but that the schematic language itself exploits functions.

This also raises another issue – the theory behind the schematic programming is not

presented at all. This includes no binding to any calculus, no presentation of any formal

system that could be used as a formal basis of the schematic language or the underlying

language. Thus, the ‘theory’ in the book title may be misleading.

https://doi.org/10.1017/S095679681200010X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200010X


220 Book reviews

Reviewing the chapters in more detail, the first chapter presents an introduction to schematic

functional programming and also introduces the development environment, Clarity, used for

schematic program development and evaluation. A reader can easily get to understand the

very first constructs of the language and usage of the Clarity. Nevertheless, understanding is

not completely straightforward as some presented screenshots do not match those that users

can see for themselves; this especially applies to those showing the Clarity environment and

database manipulation, rather than those of the basic schema. Some errors also occur in text

(page 14: reference to page XX – what is XX?), and it is frustrating when the text refers to

colors in a black and white book.

Chapter 2 further extends the presentation of schematic programming possibilities, espe-

cially the modification of programs, when necessary, and basic manipulation of lists as a

built-in structured data type. So far the topic is presented well and can be followed easily.

Drawbacks of the chapter are the pictures and screenshots: some of them are quite large even

if presenting little information (see for instance page 68) on the other hand some are shrunk

and of poor quality (page 69). Chapter 3 discusses ways of defining functions, how to reference

parameters, and so on. Even if logically presented well, the pictures in it substantially mar

the presentation of the chapter.

Chapter 4 goes even deeper into schema possibilities in function definitions before

presenting pattern matching in the schematic programming. To support the way that pattern

matching is implemented in Clarity, the chapter provides some material about it that is quite

difficult to follow, especially presented tables of results – the presented results do not seem

to be consistent among themselves. Moreover, this is the point where the first typos appear

in the text. Last but not least, the quality and presentation level of pictures in the chapter is

again poor.

Chapter 5 introduces some principles of function evaluation in the context of an intro-

duction to functional programming techniques. Part of the chapter is a substantial project;

indeed, projects are part of other previous chapters too, but in this case it is first worth

noting; exercises are also an essential part of every chapter. The logic of the chapter is clear,

but its larger part is the project. Thus, splitting it or presenting more functional programming

techniques would be better.

In Chapter 6, we meet the language Faith, to which the schematic programs of Clarity

are translated and then evaluated. Evaluation in the underlying interpreter of language

Faith is demonstrated here, and some schema constructs are translated to it. Next, higher

order functions are presented in some examples. Then, another large project is presented. A

drawback here is the function makelist (diagram 6.6, page 210), a definition of which was

not presented in the book so far. The curiosity of the function makelist is that it can accept

arbitrary numbers of parameters, while other functions, especially the user defined ones,

cannot. Even if the feature of function makelist is mentioned in the text, it is not explained

why it is so.

Chapter 7 addresses side effects, which gives the language an imperative aspect. The chapter

presents other aspects of Faith: we learn how to define relations, sequential evaluation, and,

at the chapter end, a large project consisting of a “General Problem Solver” is presented

together with necessary background on the subject. Even if exploitation of imperative features

spoils the concept, the chapter and its project are interesting from other viewpoints.

Chapter 8 is mixture of additional features, including: some features of built-in libraries for

GUI programming, manipulation of program schema file operations, importing the Faith code,

and others. A brief introduction to Bayesian theory is presented together with small example

– it is a little extension of what we can found on Wikipedia by these days, aiming at Bayesian

filtering (we know from email clients). The project of this chapter demonstrates inlining of

Faith code in Clarity schema. This chapter probably completes the description of the features

of the Clarity environment; otherwise its importance is low. The crucial fault of this chapter

is the equation (4) on page 284 presenting Bayes’ theorem, which is wrong – conditional

probability is dependent on itself, the two identifiers should be swapped in the equation.

https://doi.org/10.1017/S095679681200010X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200010X


Book reviews 221

Chapter 9 is also a mixture of various topics. It introduces some builtin functions for

low-level manipulation of functions defined by enumeration, etc. Those readers familiar

with Prolog may recognize some names and behavior. Next, interconnection and remote

processing in Clarity is presented. Moreover, possibility of interfacing the Clarity, namely via

Pascal/Delphi is demonstrated. Finally, a quite substantial Sudoku solver is presented as a

project. This project is full of screenshots, but contains little by way of explanation

Finally, Chapter 10 extends the Sudoku solver with an uncertainty model. To present this,

the chapter contains several theoretical parts to present some parts of probability theory,

game theory, and others. At the end of the chapter, a simple learning system based on

Bayesian networks is presented. Examples and usage of Clarity in this chapter are quite rare.

Thus, overall contribution of this chapter (and the previous one) to understand the concept

of schematic programming is low.

The book has three appendices, covering a BNF grammar for Faith, its extension to Clarity

and the structure of .seg file, which is natural for Clarity.

In summary, the book Drawing Programs: The Theory and Practice of Schematic Func-

tional Programming cannot address those who are programmers by nature or by job. Nor

is not for beginners either. Nevertheless, it can address those who can exploit algorithms

and computers in general, but probably not as a first step to professional programming. It

provides a nice introduction to all constructs of the schematic programming and manipulation

of schema. Moreover, a skilled programmer using several programming paradigms can get

through the notion of the book in a short time.

A drawback of the book is its inconsistency – it is built from several articles and the

binding between them is quite sparse, especially in the last chapters. Moreover, text uses

references and description based on colorful pictures, but the book contains only pictures in

shades of gray. Thus, the readability is low in some places. Pictures (quality, size, readability,

etc.) are the poorest part of the book at all. Last, but not least, the last chapters present

“hacks” inside Clarity/Faith to achieve some extra features, nevertheless, such features are

not natural for schematic programming and undermine the initial positive view of the nature

of schematic programming gained from the first few chapters.

DUŠAN KOLÁŘ

Department of Information Systems, Faculty of Information Technology,

Technical University of Brno, Božetěchova 2, 612 66, Brno Czech Republic

https://doi.org/10.1017/S095679681200010X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681200010X



