CUBIC EDGE-TRANSITIVE GRAPHS OF ORDER $8p^2$

MEHDI ALAEIYAN[™] and MOHSEN GHASEMI

(Received 15 August 2007)

Abstract

A simple undirected graph is said to be semisymmetric if it is regular and edge-transitive but not vertex-transitive. Let p be a prime. It was shown by Folkman [J. Folkman, 'Regular line-symmetric graphs', *J. Combin. Theory* **3** (1967), 215–232] that a regular edge-transitive graph of order 2p or $2p^2$ is necessarily vertex-transitive. In this paper an extension of his result in the case of cubic graphs is given. It is proved that every cubic edge-transitive graph of order $8p^2$ is vertex-transitive.

2000 *Mathematics subject classification*: 05C25, 20B25. *Keywords and phrases*: semisymmetric graphs, symmetric graphs, regular coverings.

1. Introduction

In this paper we consider an undirected finite connected graph without loops or multiple edges. For a graph Γ , we denote by $V(\Gamma)$, $E(\Gamma)$ and Aut(Γ) its vertex set, edge set and automorphism group, respectively. For $u, v \in V(\Gamma)$, denote by uvthe edge incident to u and v in Γ , and by $N_{\Gamma}(u)$ the neighbourhood of u in Γ , that is, the set of vertices adjacent to u in Γ . A graph $\widetilde{\Gamma}$ is called a *covering* of a graph Γ with projection $p: \widetilde{\Gamma} \to \Gamma$ if there is a surjection $p: V(\widetilde{\Gamma}) \to V(\Gamma)$ such that $p|_{N_{\widetilde{\Gamma}}(\widetilde{v})}: N_{\widetilde{\Gamma}}(\widetilde{v}) \to N_{\Gamma}(v)$ is a bijection for any vertex $v \in V(\Gamma)$ and $\widetilde{v} \in p^{-1}(v)$. Let N be a subgroup of Aut(Γ) such that N is intransitive on $V(\Gamma)$. The quotient graph Γ/N induced by N is defined as the graph such that the set Σ of N-orbits in $V(\Gamma)$ is the vertex set of Γ/N and $B, C \in \Sigma$ are adjacent if and only if there exist $u \in B$ and $v \in C$ such that $\{u, v\} \in E(\Gamma)$. A covering $\widetilde{\Gamma}$ of Γ with a projection p is said to be regular (or K-covering) if there is a semiregular subgroup K of the automorphism group Aut($\widetilde{\Gamma}$) such that graph Γ is isomorphic to the quotient graph $\widetilde{\Gamma}/K$, say by h, and the quotient map $\widetilde{\Gamma} \to \widetilde{\Gamma}/K$ is the composition *ph* of *p* and *h* (for the purpose of this paper, all functions are composed from left to right). If K is cyclic or elementary Abelian then $\widetilde{\Gamma}$ is called a *cyclic* or an *elementary Abelian covering* of Γ , and if $\widetilde{\Gamma}$ is connected K becomes the covering transformation group. The *fibre* of an edge or a

^{© 2008} Australian Mathematical Society 0004-9727/08 \$A2.00 + 0.00

vertex is its preimage under p. An automorphism of $\tilde{\Gamma}$ is said to be *fibre-preserving* if it maps a fibre to a fibre, while every covering transformation maps a fibre onto itself. The set of all fibre-preserving automorphisms forms a group called the *fibre-preserving group*.

An *s*-arc in a graph Γ is an ordered (s + 1)-tuple (v_0, v_1, \ldots, v_s) of vertices of Γ such that v_{i-1} is adjacent to v_i for $1 \le i \le s$, and $v_{i-1} \ne v_{i+1}$ for $1 \le i < s$; in other words, a directed walk of length *s* which never includes backtracking. A graph Γ is said to be *s*-arc-transitive if Aut(Γ) is transitive on the set of *s*-arcs in Γ . In particular, 0-arc-transitive means *vertex-transitive*, and 1-arc-transitive means *arc-transitive* or *symmetric*. A graph Γ is said to be *edge-transitive* if Aut(Γ) is transitive on $E(\Gamma)$. A subgroup of the automorphism group of a graph Γ is said to be *s*-regular if it acts regularly on the set of *s*-arcs of Γ . It can be shown that a edge- but not vertex-transitive graph Γ is necessarily bipartite, where the two parts of the bipartition are orbits of $A = Aut(\Gamma)$. Moreover, if Γ is regular these two parts have equal cardinality. A regular edge- but not vertex-transitive graph will be referred to as a *semisymmetric* graph.

Covering techniques have long been known as a powerful tool in topology and graph theory. Regular covering of a graph is currently an active topic in algebraic graph theory. The class of semisymmetric graphs was introduced by Folkman [8]. He constructed several infinite families of such graphs and posed eight open problems. Subsequently, Bouwer [1, 2], Titov [19], Klin [13], Iofinova and Ivanov [11], Ivanov [12], Du and Xu [5] and others did much work on semisymmetric graphs. They gave new constructions of such graphs by combinatorial and group-theoretical methods. The answers to most of Folkman's open problems are now known. By using the covering technique, cubic semisymmetric graphs of order $6p^2$ and $2p^3$ were classified in [14, 17]. Some general methods of elementary Abelian coverings were developed in [4, 16]. The *s*-regular cyclic coverings and elementary Abelian coverings of the three-dimensional hypercube Q_3 were classified in [6, 7]. In this paper, by using the same covering technique and group-theoretical construction, we investigate cubic semisymmetric graphs of order $8p^2$. The following is the main result of this paper.

THEOREM 1.1. Let p be a prime. Then every cubic edge-transitive graph of order $8p^2$ is vertex-transitive.

2. Primary analysis

Let Γ be a graph and K be a finite group. By a^{-1} we mean the reverse arc to an arc a. A voltage assignment (or K-voltage assignment) of Γ is a function $\phi : A(\Gamma) \to K$ with the property that $\phi(a^{-1}) = \phi(a)^{-1}$ for each arc $a \in A(\Gamma)$. The values of ϕ are called voltages, and K is the voltage group. The graph $\Gamma \times_{\phi} K$ derived from a voltage assignment $\phi : A(\Gamma) \to K$ has vertex set $V(\Gamma) \times K$ and edge set $E(\Gamma) \times K$, so that an edge (e, g) of $\Gamma \times K$ joins a vertex (u, g) to $(v, \phi(a)g)$ for $a = (u, v) \in A(\Gamma)$ and $g \in K$, where e = uv.

Clearly, the derived graph $\Gamma \times_{\phi} K$ is a covering of Γ with the first coordinate projection $p: \Gamma \times_{\phi} K \to \Gamma$, which is called the *natural projection*. By defining $(u, g')^g = (u, g'g)$ for any $g \in K$ and $(u, g') \in V(\Gamma \times_{\phi} K)$, K becomes a subgroup of Aut($\Gamma \times_{\phi} K$) which acts semiregularly on $V(\Gamma \times_{\phi} K)$. Therefore, $\Gamma \times_{\phi} K$ can be viewed as a *K*-covering. For each $u \in V(\Gamma)$ and $uv \in E(\Gamma)$, the vertex set $\{(u, g) \mid g \in K\}$ is the fibre of u and the edge set $\{(u, g) (v, \phi(a)g) \mid g \in K\}$ is the fibre of uv, where a = (u, v). Conversely, each regular covering Γ of Γ with a covering transformation group K can be derived from a K-voltage assignment. Given a spanning tree T of the graph Γ , a voltage assignment ϕ is said to be *T*-reduced if the voltages on the tree arcs are the identity. Gross and Tucker [10] showed that every regular covering Γ of a graph Γ can be derived from a T-reduced voltage assignment ϕ with respect to an arbitrary fixed spanning tree T of Γ . It is clear that if ϕ is reduced, the derived graph $\Gamma \times_{\phi} K$ is connected if and only if the voltages on the cotree arcs generate the voltage group K.

Let $\widetilde{\Gamma}$ be a *K*-covering of Γ with a projection *p*. If $\alpha \in \operatorname{Aut}(\Gamma)$ and $\widetilde{\alpha} \in \operatorname{Aut}(\widetilde{\Gamma})$ satisfy $\widetilde{\alpha} p = p\alpha$, we call $\widetilde{\alpha}$ a *lift* of α , and α the *projection* of $\widetilde{\alpha}$. Concepts such as a lift of a subgroup of $\operatorname{Aut}(\Gamma)$ and the projection of a subgroup of $\widetilde{\Gamma}$ are self-explanatory. The lifts and projections of such subgroups are of course subgroups in $\operatorname{Aut}(\widetilde{\Gamma})$ and $\operatorname{Aut}(\Gamma)$, respectively. In particular, if the covering graph $\widetilde{\Gamma}$ is connected, then the covering transformation group *K* is the lift of the trivial group, that is,

$$K = \{ \widetilde{\alpha} \in \operatorname{Aut}(\widetilde{\Gamma}) : p = \widetilde{\alpha} p \}.$$

Clearly, if $\tilde{\alpha}$ is a lift of α , then $K\tilde{\alpha}$ are all the lifts of α .

Let T be a spanning tree of a graph Γ . A closed walk W that contains only one cotree arc is called a fundamental closed walk. Similarly, a cycle W that contains only one cotree arc is called a fundamental cycle.

Let $\Gamma \times_{\phi} K \to \Gamma$ be a connected *K*-covering derived from a *T*-reduced voltage assignment ϕ . The problem of whether an automorphism α of Γ lifts or not can be grasped in terms of voltages as follows. Observe that a voltage assignment on arcs extends to a voltage assignment on walks in a natural way. Given $\alpha \in \text{Aut}(\Gamma)$, we define a function $\overline{\alpha}$ from the set of voltages on fundamental closed walks based at a fixed vertex $v \in V(\Gamma)$ to the voltage group *K* by

$$(\phi(C))^{\overline{\alpha}} = \phi(C^{\alpha}),$$

where *C* ranges over all fundamental closed walks at *v*, and $\phi(C)$ and $\phi(C^{\alpha})$ are the voltages on *C* and C^{α} , respectively. Note that if *K* is Abelian, $\overline{\alpha}$ does not depend on the choice of the base vertex, and the fundamental closed walks at *v* can be substituted by the fundamental cycles generated by the cotree arcs of Γ .

The following proposition is a special case of [15, Theorem 4.2].

PROPOSITION 2.1. Let $\Gamma \times_{\alpha} K \to \Gamma$ be a connected *K*-covering derived from a *T*-reduced voltage assignment ϕ . Then an automorphism α of Γ lifts if and only if $\overline{\alpha}$ extends to an automorphism of *K*.

The next proposition is a special case of [14, Lemma 3.2].

PROPOSITION 2.2. Let Γ be a connected semisymmetric cubic graph with bipartition sets $U(\Gamma)$ and $W(\Gamma)$. Moreover, suppose that N is a normal subgroup of $A := \operatorname{Aut}(\Gamma)$. If N is intransitive on bipartition sets, then N acts semiregularly on both $U(\Gamma)$ and $W(\Gamma)$, and Γ is an N-regular covering of an A/N-semisymmetric graph.

Two coverings $\widetilde{\Gamma}_1$ and $\widetilde{\Gamma}_2$ of Γ with projection p_1 and p_2 , respectively, are said to be equivalent if there exists a graph isomorphism $\widetilde{\alpha}: \widetilde{\Gamma}_1 \to \widetilde{\Gamma}_2$ such that $\widetilde{\alpha} p_2 = p_1$. We quote the following propositions.

PROPOSITION 2.3 [18]. Two connected regular coverings $\Gamma \times_{\phi} K$ and $\Gamma \times_{\psi} K$, where ϕ and ψ are *T*-reduced, are equivalent if and only if there exists an automorphism $\sigma \in \text{Aut}(K)$ such that $\phi(u, v)^{\sigma} = \psi(u, v)$ for any cotree arc (u, v) of Γ .

PROPOSITION 2.4 [17, Proposition 2.4]. The vertex stabilizers of a connected *G*-edge-transitive cubic graph Γ have order $2^r \cdot 3$, $r \ge 0$. Moreover, if *u* and *v* are two adjacent vertices, then $|G: \langle G_u, G_v \rangle| \le 2$, and the edge stabilizer $G_u \cap G_v$ is a common Sylow 2-subgroup of G_u and G_v .

3. Proof of Theorem 1.1

We denote by Q_3 the three-dimensional hypercube which is bipartite with partite sets $\{a, b, c, d\}$ and $\{w, x, y, z\}$. Let *T* be a spanning tree of Q_3 , as shown by dark lines in Figure 1. Let ϕ be such a voltage assignment defined by $\phi = 0$ on *T* and $\phi = z_1, z_2, z_3, z_4$ and z_5 on the cotree arcs (b, y), (c, w), (c, x), (d, w) and (d, x)respectively, where 0 is the identity element of *K* and $z_i \in K$ $(1 \le i \le 5)$. It is well known that Aut $(Q_3) \cong S_4 \times \mathbb{Z}_2$. Let $\alpha = (bcd) (xyz), \beta = (ab) (cd) (wx) (yz)$ and $\gamma = (aw) (bx) (cy) (dz)$. Then α, β and γ are automorphisms of Q_3 .

Note that, by [3], throughout this paper we may assume that $p \ge 11$.

LEMMA 3.1. Suppose that Γ is a connected semisymmetric cubic graph of order $8p^2$. Then Γ is a connected N-regular covering of Q_3 such that the subgroup of Aut (Q_3) generated by α and β lifts, where $N \cong \mathbb{Z}_p \times \mathbb{Z}_p$ or \mathbb{Z}_{p^2} .

PROOF. Let Γ be a cubic graph satisfying the assumptions and let $A = \operatorname{Aut}(\Gamma)$. Therefore Γ is bipartite graph. Denote by $U(\Gamma)$ and $W(\Gamma)$ the bipartition sets of Γ . By Proposition 2.4, $|A| = 2^r \cdot 3 \cdot p^2$, where $r \ge 2$ as A is transitive on a set of size $4p^2$. A is solvable, for if it were not, then by [9] its composition factors would have to be PSL(3, 3) or PSL(2, 17), which is a contradiction. Let $Q = O_p(A)$ be the maximal normal p-subgroup of A. We show that $|Q| = p^2$.

Suppose first that Q = 1. Let N be a minimal normal subgroup of A. So N is solvable. N is not transitive on bipartition sets $U(\Gamma)$ and $W(\Gamma)$, and hence by Proposition 2.2, N acts semiregularly on bipartition sets $U(\Gamma)$ and $W(\Gamma)$. Therefore, N is isomorphic to \mathbb{Z}_2 or $\mathbb{Z}_2 \times \mathbb{Z}_2$. First, assume that $N \cong \mathbb{Z}_2$. By Proposition 2.2, N acts semiregularly on $U(\Gamma)$ and $W(\Gamma)$. Now we consider the quotient graph

FIGURE 1. A spanning tree and a voltage assignment on Q_3 .

 $\Gamma_N = \Gamma/N$ of Γ relative to N, where A/N is semisymmetric on bipartition sets of Γ_N . We claim that $O_p(A/N) \neq 1$.

Suppose to the contrary that $O_p(A/N) = 1$. Now let $O_{p'}(A/N) \neq 1$ and $T/N = O_{p'}(A/N)$. T/N is not transitive on bipartition sets of $\Gamma_N = \Gamma/N$. Therefore, by Proposition 2.2, T/N acts semiregularly on bipartition sets of $\Gamma_N = \Gamma/N$, and $|O_{p'}(A/N)| = 2$. Now consider the quotient graph $\Gamma_T = \Gamma/T$ of Γ relative to T. Let H/T be a minimal normal subgroup of A/T. So H/T is solvable, and |H/T| = p or $|H/T| = p^2$. Therefore H has a normal subgroup of order divisible by p, which is characteristic in H, and hence is normal in A. It contradicts our assumption that $O_p(A) = 1$. Hence $O_{p'}(A/N) = 1$.

Now suppose that T/N is a minimal normal subgroup of A/N. Since $O_p(A/N) = 1$ and $O_{p'}(A/N) = 1$, therefore T/N is nonsolvable. This is a contradiction.

Suppose now that $N \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Let $\Gamma_N = \Gamma/N$ be the quotient graph of Γ relative to *N*. Let T/N be a minimal normal subgroup of A/N. Then T/N is solvable, and by Proposition 2.2, $T/N \cong \mathbb{Z}_p$ or $\mathbb{Z}_p \times \mathbb{Z}_p$. Therefore *T* has a normal subgroup of order divisible by *p*, which is characteristic in *T*, and hence is normal in *A*. It contradicts our assumption that $O_p(A) = 1$. Therefore $|Q| \neq 1$.

Suppose, finally, that |Q| = p; we show that this leads to a contradiction. Let $\Gamma_Q = \Gamma/Q$ be the quotient graph of Γ relative to Q. Let N/Q be a minimal normal subgroup of A/Q. Hence N/Q is solvable, and by Proposition 2.2, $N/Q \cong \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_p . By our assumption, N/Q is not isomorphic to \mathbb{Z}_p . If $N/Q \cong \mathbb{Z}_2$, we consider the quotient graph Γ/N . Now let K/N be a minimal normal

С	$\phi(C)$	C^{lpha}	$\phi(C^{\alpha})$	C^{β}	$\phi(C^\beta)$	C^{γ}	$\phi(C^{\gamma})$
azby	<i>Z</i> 1	axcz	$-z_{3}$	byaz	<i>Z</i> 1	wdxc	$z_2 + z_5 - z_3 - z_4$
bzcw	z_2	cxdw	$z_3 + z_4 - z_2 - z_5$	aydx	Z5	xdya	$-z_{5}$
azcx	Z3	axdy	$-z_{5}$	bydw	$z_1 + z_4$	wdyb	$-z_1 - z_4$
aydwb	z z4	azbwcx	$z_3 - z_2$	bzcxay	$z_3 - z_1$	wczaxd	$z_4 - z_2 - z_5$
aydx	Z5	azby	z_1	bzcw	<i>z</i> ₂	wczb	$-z_{2}$

TABLE 1. Fundamental cycles and their images with corresponding voltages.

subgroup of A/N. Therefore K/N is solvable, and $K/N \cong \mathbb{Z}_2$ or \mathbb{Z}_p . By our assumption K/N cannot be isomorphic to \mathbb{Z}_p , so $K/N \cong \mathbb{Z}_2$. Consider the quotient graph $\Gamma_K = \Gamma/K$, where A/K is semisymmetric on bipartition sets of Γ_K . Let L/K be a minimal normal subgroup of A/K. Thus L/K is solvable, and since $Q = |O_p(A)| = p$, therefore $L/K \cong \mathbb{Z}_2$. Again we consider the quotient Γ_L , and let M/L be a minimal subgroup of A/L. Hence M/L is solvable and $M/L \cong \mathbb{Z}_p$, which contradicts our assumption that $Q = |O_p(A)| = p$. If $N/Q \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, by considering the quotient graph Γ_N with the same reasoning as before, a contradiction can be obtained.

Therefore, $Q = O_p(A)$ is normal in A. The only graph of valency 3 on eight vertices is Q_3 , so by Proposition 2.2, Γ is a connected Q-regular covering of Q_3 , where $|Q| = p^2$. In addition, since Γ is semisymmetric and Q is normal in A, so fibre-preserving automorphism group is edge-transitive, and hence the projection of the fibre-preserving automorphism group is edge-transitive on the base graph Q_3 . Therefore, the subgroup generated by α and β lifts.

Denote by $i_1i_2...i_s$ a directed cycle which has vertices $i_1, i_2, ..., i_s$ in consecutive order. There are five fundamental cycles azby, bzcw, azcx, aydwbz, and aydx in Q_3 , which are generated by the five cotree arcs (b, y), (c, w), (c, x), (d, w), and (d, x), respectively. Each cycle is mapped to a cycle of the same length under the actions of α , β , and γ . We list all these cycles and their voltages in Table 1, in which C denotes a fundamental cycle of Q_3 and $\phi(C)$ denotes the voltage of C.

LEMMA 3.2. Let $N \cong \mathbb{Z}_{p^2}$ and suppose that $\Gamma = Q_3 \times_{\phi} \mathbb{Z}_{p^2}$ is a connected \mathbb{Z}_{p^2} -regular covering of Q_3 . If the subgroup of Aut (Q_3) generated by α and β can be lifted then Γ is symmetric.

PROOF. Since α and β can be lifted, by Proposition 2.1, $\overline{\alpha}$ and $\overline{\beta}$ can be extended to automorphisms of \mathbb{Z}_{p^2} . We denote these automorphisms by α^* and β^* , respectively. Since α^* and β^* always exist, by Table 1, $z_1^{\alpha^*} = -z_3$, $z_5^{\alpha^*} = z_1$, $z_5^{\beta^*} = z_2$ and $z_4^{\alpha^*} = z_3 - z_2$. The first three equations imply that z_1 , z_2 , z_3 and z_5 have the same order and the last equation implies that the order of z_1 is divisible by the order of z_4 . Since $\langle z_1, z_2, z_3, z_4, z_5 \rangle = \mathbb{Z}_{p^2}$, each of z_1, z_2, z_3 and z_5 generates the group \mathbb{Z}_{p^2} . By Proposition 2.3, we may assume that $z_1 = 1$ and $z_2 = k$ such that $(k, p^2) = 1$ and $1 \le k \le p^2 - 1$. Since $z_1^{\beta^*} = z_1$, β^* is the identity automorphism

of \mathbb{Z}_{p^2} . Thus, $z_2^{\beta^*} = z_5$ and $z_3^{\beta^*} = z_1 + z_4$ imply that $z_5 = k$ and $z_3 - z_4 = 1$. As $z_5^{\alpha^*} = z_1, \alpha^*$ is the automorphism of \mathbb{Z}_{p^2} induced by $1 \to k^{-1}$, where k^{-1} is the inverse of k in $\mathbb{Z}_{p^2}^*$. Now, it follows that $z_3 = -k^{-1}$ and $z_4 = -k^{-1} - 1$ because $z_1^{\alpha^*} = -z_3$ and $z_3 - z_4 = 1$. Consequently, we have the equations

$$z_1 = 1, \quad z_2 = k, \quad z_3 = -k^{-1}, \quad z_4 = -k^{-1} - 1, \quad z_5 = k,$$
 (3.1)

321

where $1 \le k \le p^2 - 1$ and $(k, p^2) = 1$.

Using the equations in (3.1) and $1^{\alpha^*} = k^{-1}$, we have $2(k^2 + k + 1) = 0$ and $k^3 = 1$ because $z_2^{\alpha^*} = z_3 + z_4 - z_2 - z_5$ and $z_4^{\alpha^*} = z_3 - z_2$. By Table 1, $\overline{\alpha}$, $\overline{\beta}$ and $\overline{\gamma}$ can be extended to the automorphisms of \mathbb{Z}_{p^2} induced by $1 \to k^{-1}$, $1 \to 1$ and $1 \to -1$, respectively, so by Proposition 2.1, the subgroup $\langle \alpha, \beta, \gamma \rangle$ of Aut(Q_3) lifts. Therefore Γ is symmetric.

LEMMA 3.3. Let $N \cong \mathbb{Z}_p \times \mathbb{Z}_p$ and suppose that $\Gamma = Q_3 \times_{\phi} \mathbb{Z}_p^2$ is a connected *N*-regular covering of Q_3 such that the subgroup of Aut (Q_3) generated by α and β can be lifted. Then Γ is symmetric.

PROOF. Since α^* and β^* always exist, with the same reasoning as in the proof of Lemma 3.2, z_1 , z_2 , z_3 and z_5 have the same order and the order of z_1 is divisible by the order of z_4 . If $z_1 = 0$ then $z_1^{\alpha^*} = 0$. By Table 1, $z_3 = -z_1^{\alpha^*} = 0$. Also, $z_5 = 0$ and $z_2 = 0$ because $z_3^{\alpha^*} = -z_5$ and $z_5^{\beta^*} = z_2$. Thus, $\langle z_1, z_2, z_3, z_4, z_5 \rangle = \langle z_4 \rangle = \mathbb{Z}_p^2$, which is a contradiction. Similarly, if $z_2 = 0$ the same contradiction can be obtained. Consequently, $z_1 \neq 0$ and $z_2 \neq 0$. Now, we claim that z_1 and z_2 are linearly independent. Suppose to the contrary that z_2 is a scalar multiple of z_1 , say $z_2 = kz_1$. Then, $k \neq 0$. Since $z_2^{\beta^*} = kz_1^{\beta^*}$, we have $z_5 = kz_1$. As $z_5^{\alpha^*} = kz_1^{\alpha^*}$, z_3 is a scalar multiple of z_1 , say $z_3 = lz_1$. And, z_4 is also a scalar multiple of z_1 because $z_3^{\beta^*} = lz_1^{\beta^*}$. It follows that $\langle z_1, z_2, z_3, z_4, z_5 \rangle = \langle z_1 \rangle = \mathbb{Z}_p^2$, which is a contradiction. Thus, z_1 and z_2 are linearly independent. Similarly, z_1 and z_3 are also linearly independent.

Since z_1 and z_2 are linearly independent and $\langle z_1, z_2, z_3, z_4, z_5 \rangle = N$, z_3, z_4 and z_5 can be expressed as a combination of z_1 and z_2 .

Let $z_3 = iz_1 + jz_2$, $z_4 = i'z_1 + j'z_2$ and $z_5 = i''z_1 + j''z_2$. By Proposition 2.3, with the linear independence of z_1 and z_2 we may assume that $z_1 = (1, 0)$ and $z_2 = (0, 1)$ are the standard basis of the vector space $\mathbb{Z}_p \times \mathbb{Z}_p$.

By $z_3^{\alpha^*} = iz_1^{\alpha^*} + jz_2^{\alpha^*}$ and $z_3^{\beta^*} = iz_1^{\beta^*} + jz_2^{\beta^*}$, $-z_5 = i(-z_3) + j(z_3 + z_4 - z_2 - z_5)$ and $z_1 + z_4 = iz_1 + jz_5$, so $-i''z_1 - j''z_2 = -i^2z_1 - ijz_2 + ijz_1 + j^2z_2 + i'jz_1 + jj'z_2 - jz_2 - i''jz_1 - jj''z_2$ and $z_1 + i'z_1 + j'z_2 = iz_1 + j(i''z_1 + j''z_2)$. By the linear independence of z_1 and z_2 , we have the following formulae:

(1)
$$i'' - i^2 + ij + i'j - i''j = 0;$$

(2) $j'' - ij + j^2 + jj' - j - jj'' = 0;$

(3) 1 + i' - i - i'' j = 0;(4) j' - jj'' = 0.

Now by considering the image of $z_4 = i'z_1 + j'z_2$ and $z_5 = i''z_1 + j''z_2$, under α^* and β^* , we have:

(5) i + ii' - ij' - i'j' + i''j' = 0;(6) $j - 1 + i'j - jj' - j'^2 + j' + j'j'' = 0;$ (7) 1 + ii'' - ij'' - i'j'' + i''j'' = 0;(8) $i''j - jj'' - j'j'' + j'' + j''^2 = 0;$ (9) i - 1 - i' - i''j' = 0;(10) j - j'j'' = 0;(11) i'' + i''j'' = 0;(12) $j''^2 - 1 = 0.$

By (11), i'' = 0 or j'' + 1 = 0. First assume that i'' = 0, by (4) and (10) (j + j')(1 - j'') = 0. If 1 - j'' = 0, by (7) and (3), i = 1 and i' = 0. Now by (1) and (5), j = 1 and j' = 1. Therefore,

$$z_1 = (1, 0), \quad z_2 = z_4 = z_5 = (0, 1), \quad z_3 = (1, 1),$$

From Table 1, it is easy to check that $\overline{\alpha}$, $\overline{\beta}$ and $\overline{\gamma}$ can be extended to automorphisms of \mathbb{Z}_{p^2} . By Proposition 2.1, α , β and γ lift, so Γ is symmetric.

Now if j' + j = 0, we show that it leads to a contradiction. By (4), j(1 + j'') = 0. If j = 0 then j' = 0. By (2), j'' = 0, so by (7), 1 = 0, which is a contradiction. Hence 1 + j'' = 0. By (7) and (3), i' = -1, so by (9) i = 0. Now by (1) and (2), j'' = 0, which is a contradiction.

Now assume that 1 + j'' = 0; again we show that this leads to a contradiction. By (10), j = -j'. Now by (8), i'' j = 0. So i'' = 0 or j = 0. If j = 0 by (2), -1 = 0, which is a contradiction. If i'' = 0, by (7) and (3) i = 0 and i' = -1, so by (2) -1 = 0, which is a contradiction.

PROOF OF THEOREM 1.1. This follows by Lemmas 3.1, 3.2 and 3.3.

References

- [1] I. Z. Bouwer, 'An edge but not vertex transitive cubic graph', *Bull. Can. Math. Soc.* **11** (1968), 533–535.
- [2] , 'On edge but not vertex transitive regular graphs', J. Combin. Theory, B 12 (1972), 32–40.
- [3] M. Conder, A. Malnic, D. Marusic and P. Potocnik, 'A census of semisymmetric cubic graphs on up to 768 vertices', J. Algebraic Combin. 23 (2006), 255–294.
- [4] S. F. Du, J. H. Kwak and M. Y. Xu, 'Lifting of automorphisms on the elementary abelian regular covering', *Linear Algebra Appl.* 373 (2003), 101–119.
- [5] S. F. Du and M. Y. Xu, 'A classification of semisymmetric graphs of order 2pq', Comm. Algebra 28(6) (2000), 2685–2715.
- [6] Y. Q. Feng, J. H. Kwak and K. Wang, 'Classifying cubic symmetric graphs of order 8p or 8p²', *European J. Combin.* 26 (2005), 1033–1052.

322

323

- Y. Q. Feng and K. Wang, 's-Regular cyclic coverings of the three-dimensional hypercube Q₃', European J. Combin. 24 (2003), 719–731.
- [8] J. Folkman, 'Regular line-symmetric graphs', J. Combin. Theory 3 (1967), 215–232.
- [9] D. Gorenstein, *Finite simple groups* (Plenum Press, New York, 1982).
- [10] J. L. Gross and T. W. Tucker, 'Generating all graph coverings by permutation voltage assignments', *Discrete Math.* 18 (1977), 273–283.
- [11] M. E. Iofinova and A. A. Ivanov, *Biprimitive cubic graphs, an investigation in algebraic theory of combinatorial objects* (Institute for System Studies, Moscow, 1985), pp. 124–134 (in Russian).
- [12] A. V. Ivanov, 'On edge but not vertex transitive regular graphs', *Comb. Annals Discrete Math.* 34 (1987), 273–286.
- [13] M. L. Klin, 'On edge but not vertex transitive regular graphs', in: Algebric methods in graph theory, Colloq-Math. Soc. Janos Bolyai, 25 (North-Holland, Amsterdam, 1981), pp. 399–403.
- [14] Z. Lu, C. Q. Wang and M. Y. Xu, 'On semisymmetric cubic graphs of order 6p²', Sci. China Ser. A Math. 47 (2004), 11–17.
- [15] A. Malnic, 'Group actions, covering and lifts of automorphisms', *Discrete Math.* 182 (1998), 203–218.
- [16] A. Malnic, D. Marusic and P. Potocnik, 'On cubic graphs admitting an edge-transitive solvable group', J. Algebraic Combin. 20 (2004), 99–113.
- [17] A. Malnic, D. Marusic and C. Q. Wang, 'Cubic edge-transitive graphs of order 2p³', Discrete Math. 274 (2004), 187–198.
- [18] M. Skoviera, 'A construction to the theory of voltage groups', *Discrete Math.* **61** (1986), 281–292.
- [19] V. K. Titov, 'On symmetry in graphs', Proc. 2nd All Union Seminar on Combinatorial Mathematics, Vopracy Kibernetiki, 9150, part 2 (Nauka, Moscow, 1975), pp. 76–109 (in Russian).

MEHDI ALAEIYAN, Department of Mathematics,

Iran University of Science and Technology, Narmak, Tehran 16844, Iran e-mail: alaeiyan@iust.ac.ir

MOHSEN GHASEMI, Department of Mathematics,

Iran University of Science and Technology, Narmak, Tehran 16844, Iran e-mail: m.ghasemi@mail.urmia.ac.ir