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Abstract. Based on previous work of the authors, to any S-adic development of a subshift
X a ‘directive sequence’ of commutative diagrams is associated, which consists at every
level n ≥ 0 of the measure cone and the letter frequency cone of the level subshift Xn

associated canonically to the given S-adic development. The issuing rich picture enables
one to deduce results about X with unexpected directness. For instance, we exhibit a
large class of minimal subshifts with entropy zero that all have infinitely many ergodic
probability measures. As a side result, we also exhibit, for any integer d ≥ 2, an S-adic
development of a minimal, aperiodic, uniquely ergodic subshift X, where all level alphabets
An have cardinality d , while none of the d − 2 bottom level morphisms is recognizable in
its level subshift Xn ⊆ AZ

n .
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1. Introduction
A subshift over a finite alphabet A is a non-empty, closed, and shift-invariant subset
X ⊆ AZ. A very efficient tool to investigate such a subshift X is given by an S-adic
development of X: the latter is obtained by a directive sequence←−σ of monoid morphisms
σn : A∗n+1 → A∗n for all integers n ≥ 0, where each An is again a finite alphabet, and
A∗n denotes the free monoid over An. The morphisms σn here are all assumed to be
non-erasing, that is, none of the letters of An+1 is mapped to the empty word. The directive
sequence←−σ generates the given subshift X if for some identification A = A0, any finite
factor xk · · · x� of any biinfinite word x = · · · x−1x0x1 · · · ∈ X is also a factor of some
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σ0 ◦ · · · ◦ σn−1(ai) with ai ∈ An, and conversely, any such x belongs to X. One usually
also assumes that ←−σ is everywhere growing, which means that lim infn→∞(min{|σ0 ◦
· · · ◦ σn−1(ai)| | ai ∈ An}) = ∞. It is well known that any subshift X ⊆ AZ is generated
by some everywhere growing directive sequence←−σ .

A directive sequence ←−σ as above determines at every level n ≥ 0 a level subshift
Xn ⊆ AZ

n , which is the subshift generated by the truncated sequence←−σ †n, obtained from←−σ through forgetting all levels k < n and the corresponding level morphisms. It is a
straight forward observation that every level morphism σn induces a map Xn+1 → Xn

which is surjective on shift-orbits.
More generally, any non-erasing morphism σ : A∗ → B∗ between free monoids over

finite alphabets A and B, defines for any subshift X ⊆ AZ an image subshift σ(X), and
it is natural to ask which properties of X are inherited (under suitable hypotheses) by the
image subshift σ(X). In our cousin paper [5], we have formally introduced and studied, for
any such morphism σ , a measure transfer map σM

X : M(X)→M(σ (X)), where M(X)

denotes the measure cone on X, that is, the set of all shift-invariant Borel measures on
the subshift X. The map σM

X is the restriction/co-restriction of a map σM : M(AZ)→
M(BZ) which is R≥0-linear, functorial, and commutes with the support map on subshifts
(see §3.1).

We thus obtain canonically, for any everywhere growing directive sequence ←−σ =
(σn : A∗n+1 → A∗n)n≥0 as above, an induced sequence M(←−σ ) = (σM

n : M(Xn+1)→
M(Xn))n≥0 of R≥0-linear maps σM

n := σM
Xn+1

on the measure cones M(Xn+1).
Furthermore, any invariant measure μ on a subshift X ⊆ AZ defines canonically a letter

frequency vector 
v(μ) in the non-negative cone RA≥0 of the vector space RA, where for each
letter ai ∈ A, the coordinate of 
v(μ) is given by the measure μ([ai]) of the cylinder [ai].
The latter consists of all biinfinite words x ∈ AZ as above for which the letter with index 1
satisfies x1 = ai . The cone of all such letter frequency vectors is denoted by C(X) ⊆ R

A≥0;
it gives rise to a canonical R≥0-linear evaluation map ζX : M(X)→ C(X) which by
definition is surjective.

It has been shown in [5] that the linear map R
A→ R

B, defined by the incidence
matrix M(σ) of any non-erasing free monoid morphism σ : A∗ → B∗, commutes via the
evaluation maps ζAZ and ζBZ with the measure transfer map σM. We thus obtain, for any
directive sequence←−σ as above, a rather useful commutative diagram:

· · · σM
n+1−→ M(Xn+1)

σM
n−→ M(Xn)

σM
n−1−→ · · · σM

2−→ M(X1)
σM

1−→M(X)

↓ ζXn+1 ↓ ζXn ↓ ζX1 ↓ ζX

· · · M(σn+1)−→ C(Xn+1)
M(σn)−→ C(Xn)

M(σn−1)−→ · · · M(σ2)−→ C(X1)
M(σ1)−→ C(X)

A measure tower ←−μ = (μn)n≥0 on a directive sequence ←−σ as above, defined by
postulating μn ∈M(Xn) and σM

n (μn+1) = μn, defines a tower of letter frequency vectors

v(←−μ ) = (
v(μn))n≥0 which satisfy M(σn+1) · 
v(μn+1) = 
v(μn). This last equality had
been used in [3] as defining equality for what was called there a vector tower over the
directive sequence ←−σ . A R≥0-linear evaluation map m : V(←−σ )→M(X), from the set
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V(←−σ ) of all such vector towers to the measure cone M(X) of the subshift X generated
by←−σ , has been established in [3], and the map m is shown in [3] to be always surjective,
as long as←−σ is everywhere growing (but no other hypotheses are needed). We obtain the
following propositon (see Proposition 5.3).

PROPOSITION 1.1. For any everywhere growing directive sequence←−σ , there is a canoni-
cal R≥0-linear bijection between the cone V(←−σ ) of vector towers and the cone M(←−σ ) of
measure towers on←−σ , given by the letter frequency map

←−μ = (μn)n≥0 �→ ←−v = (
vn)n≥0,

with 
vn = 
v(μn) = (μn([ak]))ak∈An
for all levels n ≥ 0.

From this set-up, we derive (see Proposition 4.4) the following result. A crucial
ingredient in its proof is the main result of our previous paper [3], quoted below as
Theorem 2.10.

THEOREM 1.2. For any non-erasing monoid morphism σ : A∗ → B∗ and any subshift
X ⊆ AZ, the induced measure transfer map σM maps the measure cone M(X) of X
surjectively to the measure cone M(σ (X)) of the image subshift σ(X):

σM(M(X)) =M(σ (X)).

This general surjectivity result for the measure transfer map σM is mirrored in the
special case where σ is recognizable in X (see Definition 3.5) by the the following fact,
proved below in Corollary 3.9.

PROPOSITION 1.3. If a non-erasing morphism σ : A∗ → B∗ is recognizable in a subshift
X ⊆ AZ, then the measure transfer map σM

X : M(X)→M(σ (X)) is injective.

We apply this injectivity result to any directive sequence ←−σ = (σn)n≥0, where each
level map σn is assumed to be recognizable in the corresponding level subshift Xn+1. Such
totally recognizable directive sequences (or slight variations of it) have recently received
a lot of attention (see for instance [1, 9, 13, 17]) and they are shown to play a central
role in the S-adic approach to symbolic dynamics. We obtain the following theorem (see
Theorem 5.6).

THEOREM 1.4. For any totally recognizable everywhere growing directive sequence←−σ ,
with generated subshift X = X←−σ , the R≥0-linear surjective map of cones

m : V(←−σ )→M(X)

is a bijection.

We combine this result with a construction from our earlier paper [4], where for any
integer d ≥ 2, a subshift X with d distinct invariant ergodic probability measures has been
shown to exist, while X is defined by an everywhere growing directive sequence with level
alphabets An that all have cardinality card(An) = d . This construction is used in §7 below
to define a large ‘diagonal’ family X of directive sequences←−σ and to give a quick proof
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(see Theorem 7.4) that they all generate subshifts X←−σ which have a remarkable property,
exhibited first by a quite different and more elaborate method for very particular subshifts
in a recent paper by Cyr and Kra (see [11]).

COROLLARY 1.5. For any directive sequence ←−σ ∈ X, the subshift X←−σ is minimal, has
topological entropy hX←−σ = 0, and admits infinitely many distinct ergodic probability
measures in M(X←−σ ).

The directive sequences considered in the last corollary are all totally recognizable and
they are ‘large’, in that their alphabet rank, that is, the limit inferior of the cardinality
of the level alphabets, is infinite. For finite alphabet rank, however, the condition ‘totally
recognizable’ can be replaced by a distinctly weaker condition: in this case, the linear map
defined by the incidence matrix M(σn) is for any sufficiently high level n ≥ 0, a forteriori
(from the surjectivity result in Theorem 1.2) injective on the subspace spanned by the
cone M(Xn). In the special—but rather frequent—case that this injectivity property of
the M(σn) is also true for all low levels, the bijectivity of the map m as in Theorem 1.4
above is a direct consequence of our set-up. We thus obtain the following corollary (see
Corollary 6.5).

COROLLARY 1.6. Let X ⊆ AZ be a subshift generated by an everywhere growing
directive sequence←−σ = (σn)n≥0 of finite alphabet rank. Assume that for any n ≥ 0, the
incidence matrix M(σn) is invertible over R. Then any invariant measure μ on the subshift
X is determined by the letter frequency vector associated to μ, that is, by the values μ([ak])
for all ak ∈ A.

This generalizes a result of [6], obtained under additional hypotheses by very different
methods.

A slightly more general situation than considered in Theorem 1.4, which deserves some
particular interest, occurs if the given directive sequence is only eventually recognizable,
that is, only for sufficiently high levels, one assumes that the level morphisms are
recognizable in the corresponding level subshift. In §8, we investigate non-recognizable
morphisms and, in particular, we show in Corollary 8.5 the following result, which is
somewhat surprising in view of the claims in [13, 17] (see Remark 8.7).

PROPOSITION 1.7. For any integer n0 ≥ 0, there exists an everywhere growing directive
sequence←−σ = (σn)n≥0 with the following properties.
(1) For any n ≥ n0, the level alphabets satisfy An = An0 and the level morphisms are

stationary: σn = σn0 . Furthermore, each level morphisms σn is recognizable in the
level subshift Xn+1.

(2) For any level n with 0 ≤ n ≤ n0 − 1, we have card(An) = n+ 2 = card(An+1)− 1,
and none of the level morphisms σn is recognizable in the level subshift Xn+1.

(3) All level subshifts Xn are minimal, uniquely ergodic, and aperiodic.
(In fact, each level subshift Xn is actually an interval exchange subshift, obtained from the
stable lamination of a pseudo-Anosov homeomorphism on a suitably punctured surface.)
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2. Terminology, notation, conventions, and some quotes
In this section, we first recall some standard terminology from symbolic dynamics (see
§2.1), then summarize the notation introduced in [5] and some of its results (see §3.1), and
in §2.2, we recall some classical S-adic terminology and quote the main result from [3],
which plays a key role later in this paper.

2.1. Standard terminology from symbolic dynamics. Throughout this paper, we denote
by A, B, or C non-empty finite sets, called alphabets, and by A∗, B∗, or C∗ the free monoid
over those alphabets. Every element w ∈ A∗ is a word in the letters a1, a2, . . . , ad of A,
that is,

w = x1x2 . . . xn with xi ∈ {a1, a2, . . . , ad} = A
for any i = 1, . . . , n, and the empty word is denoted by ε. Here, n is the length
of w, denoted by |w|, and one sets |ε| = 0. We immediately verify the formula
|w| =∑

aj∈A|w|aj
, where |w|aj

denotes the number of occurrences of the letter aj

in w. More generally, for any second word u ∈ A∗, we denote by |w|u the number of
(possibly overlapping) occurrences of u as subword xk . . . x� (also called a factor) of w.

Any monoid morphism σ : A∗ → B∗ is determined by the family of letter images
σ(ai) ∈ B∗ for all ai ∈ A, and this family can be chosen freely. Such a morphism σ

is non-erasing if |σ(ai)| ≥ 1 for all ai ∈ A. Note that any composition of non-erasing
morphisms is non-erasing. Morphisms which are ‘erasing’ (by which we mean ‘not
non-erasing’) can occasionally create unexpected and undesired phenomena (see [2, §5]),
which is why we decided to exclude them. It turns out (see Remark 2.5) that in the context
considered here, this assumption is almost immaterial.

Assumption 2.1. All morphisms considered in this paper are assumed to be non-erasing.

Every monoid morphism σ : A∗ → B∗ induces canonically a R≥0-linear map R
A≥0 →

R
B≥0, given by the incidence matrix

M(σ) = (|σ(aj )|bi
)bi∈B, aj∈A. (2.1)

To any alphabet A, there is also associated the full shift AZ; its elements are written as
biinfinite words

x = · · · xi−1xixi+1 · · · (2.2)

with xi ∈ A for any index i ∈ Z. The set AZ is naturally equipped with the product
topology (with respect to the discrete topology on A), and AZ is a Cantor set unless
card(A) = 1. Furthermore, the space AZ comes naturally with a shift-operator T, defined
for any x as in equation (2.2) by T (x) = · · · yi−1yiyi+1 · · · with yi = xi+1 for any i ∈ Z.
The shift-operator acts as homeomorphism on the space AZ ; for convenience, it will
always be denoted by the symbol T, independently of the choice of the given alphabet A.

For any integers k ≤ l, we denote by x[k,�] the subword (again also called factor)
xk · · · x� of the biinfinite word x as in equation (2.2). We also consider the one-sided
infinite positive half-word x[1,∞) = x1x2 · · · of x.
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To any word w ∈ A∗, there is associated the cylinder [w] ⊆ AZ, which consists of all
words x ∈ AZ which satisfy x[1,|w|] = w. If w is the empty word, then [w] = AZ. The set
of all cylinders [w] together with their shift translates T m([w]) for any m ∈ Z constitute a
basis for the above specified topology of the space AZ.

A non-empty subset X ⊆ AZ is a subshift if X is closed and if T (X) = X. A subshift
X is minimal if none of its subsets is a subshift except X itself. This is equivalent to the
statement that for any x ∈ X, the shift-orbit O(x) = {T m(x) | m ∈ Z} is dense in X. A
minimal subshift X is either uncountably infinite or else it is finite: in this case, X consists
of the single shift-orbit X = O(w±∞) of some periodic word w±∞ = · · · www · · · ,
which is well defined for any non-empty w ∈ A∗ by the convention w±∞[1,∞) = www . . .

(that is, the letter with index 1 in w±∞ is the first letter of w). It follows that any infinite
minimal subshift is in particular aperiodic, which means that X does not contain any
periodic word w±∞.

Any subshift X ⊆ AZ defines a language L(X) which consists of all words w ∈ A∗
that occur as a factor in some x ∈ X. Conversely, every infinite subset L ⊆ A∗ generates
a subshift X(L) ⊆ AZ, defined by the property that any word from L(X) must occur as a
factor in some w′ ∈ L.

For any subshift X ⊆ AZ and any n ∈ N, one denotes by pX(n) the number of words in
L(X) of length n. The following limit is well defined and is known as topological entropy
hX of the subshift X:

hX = lim
n→∞

log pX(n)

n
. (2.3)

Any non-erasing monoid morphism σ : A∗ → B∗ defines canonically a map

σZ : AZ→ BZ (2.4)

where for any x ∈ AZ, the image y = σZ(x) ∈ BZ is defined by extending σ first to the
positive half-word x[1,∞) to define y[1,∞), and subsequently extending σ to all of x.

For almost all subshifts X ⊆ AZ , the image set σZ(X) will not be shift-invariant and
hence not be a subshift. However, there is a canonical image subshift σ(X) of X, which
admits several naturally equivalent definitions.

Remark 2.2. The following three definitions of the image subshift Y := σ(X) are
equivalent for any non-erasing monoid morphism σ : A∗ → B∗.
(1) Y is the intersection of all subshifts that contain the set σZ(X).
(2) Y is the the union of all shift-orbits O(σ (x)), for any x ∈ X. (Note here (see [5,

Lemma 2.4]) that this union is always closed, a fact that a priori can not be taken for
granted.)

(3) Y is the subshift generated by the language σ(L(X)). Thus, Y consists of all biinfinite
words y ∈ BZ with the property that every factor of y is also a factor of some word
in σ(L(X)).

We observe directly the following consequence which will be used later (see
Remark 4.2).
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LEMMA 2.3. Let σ : A∗ → B∗ be a non-erasing monoid morphism and let X ⊆ AZ be
any subshift. If L ⊆ A∗ is a language that generates X, then σ(L) generates σ(X).

An invariant measure on AZ is a finite Borel measure μ on AZ which is invariant under
the homeomorphism T (= the shift operator). The set of all such invariant measures is
denoted by M(AZ). For any subshift X ⊆ AZ, we denote by M(X) ⊆M(AZ) the set of
those invariant measures μ for which their support satisfies Supp(μ) ⊆ X. For notational
convenience, we identify any such μ with its restriction to X.

Any invariant measure μ ∈M(AZ) defines a function

A∗ → R≥0, w �→ μ([w])

which, for convenience, is also denoted by μ, yielding μ(w) = μ([w]) for any w ∈ A∗.
This function is a weight function in that it satisfies the Kirchhoff equalities:

μ(w) =
∑
ai∈A

μ(aiw) =
∑
ai∈A

μ(wai) (2.5)

for any w ∈ A∗. Conversely, it is well known that any weight function μ : A∗ → R≥0

defines an invariant measure μ ∈M(AZ) which satisfies μ([w]) = μ(w). The set
M(AZ) can hence be understood as a subset of the infinite dimensional non-negative cone
R
A∗≥0 = {

∑
w∈A∗xw
ew | xw ≥ 0}, where 
ew denotes the unit vector of RA∗ in the direction

defined by w ∈ A∗. From this embedding, the set M(AZ) inherits the product topology;
the latter coincides with the more generally known weak∗-topology on the measure cone
M(AZ).

A measure μ ∈M(AZ) is a probability measure if its total mass satisfies μ(AZ) = 1.
A measure μ ∈M(AZ) is ergodic if μ cannot be written as a linear combination with
positive coefficients of two distinct probability measures. For any subshift X ⊆ AZ, the
number e(X) of ergodic probability measures in M(X) can be finite or infinite; it is equal
to the dimension of the linear convex cone M(X) ⊆ R

A∗≥0 . For any subshift X ⊆ AZ, we
have e(X) ≥ 1; if e(X) = 1, the subshift X is called uniquely ergodic.

The support Supp(μ) of any μ ∈ AZ is always a subshift X ⊆ AZ; if μ is ergodic,
then X = Supp(μ) is a minimal subshift. The converse conclusion does not hold (see §7
below).

A word w ∈ A∗ \ {ε} is called a proper power if

w = um for some u ∈ A∗ and some integer m ≥ 2. (2.6)

(Elements in A∗ which are not a proper power are sometimes called ‘primitive’. However,
since A∗ is canonically embedded into the free group F(A), where the notion of ‘primitive
elements’ is classical, but has a different meaning, we believe it is better not to use this
terminology for a different purpose.)

Any non-empty word w ∈ A∗ defines a characteristic measure μw ∈M(AZ): if w is
not a proper power, then μw is given by

μw(B) := card(B ∩O(w±∞)) (2.7)
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for any measurable set B ⊆ AZ. If however w = um for some u ∈ A∗ and some integer
m ≥ 2, where u is assumed not to be a proper power, then one has

μw := m · μu.

In either case, it follows that (1/|w|)μw is a probability measure. The set of weighted
characteristic measures λ μw (for any λ > 0) is known to be dense in M(AZ). The
support of any characteristic measure is given by

Supp(μw) = O(w±∞). (2.8)

To any alphabet A, one associates canonically the non-negative alphabet cone
R
A≥0 = {

∑
ak∈Axk
eak

| xk ∈ R, xk ≥ 0}. For any invariant measure μ on AZ, the
evaluation on the letter cylinders [ak] for all ak ∈ A defines a letter frequency vector


v(μ) :=
∑
ak∈A

μ([ak]) 
eak
, (2.9)

so that one has a canonical R≥0-linear map of cones, denoted by

ζAZ : M(AZ)→ R
A≥0, μ �→ 
v(μ). (2.10)

For any subshift X ⊆ AZ, the restriction of this map to M(X) will be denoted by ζX. The
image of this map is a cone, denoted by

C(X) := ζX(M(X)) ⊆ R
A≥0, (2.11)

and called the letter frequency cone of the subshift X. For simplicity, we will below, for
any subshift X ⊆ AZ and any morphism σ : A∗ → B∗, use the symbol M(σ) to denote
all three linear maps

R
A→ R

B, RA≥0 → R
B≥0 and C(X)→ C(σ (X)) (2.12)

defined by the incidence matrix of the morphism σ .
More details about these basic facts and some references can be found in [5, §2].

2.2. Measures on subshifts via vector towers on directive sequences. To state Theorem
2.10 below, which is the main purpose of this subsection, we first recall some standard
notation that is also used later.

A directive sequence←−σ = (σn)n≥0 consists of level morphisms

σn : A∗n+1 → A∗n (2.13)

for any level n ≥ 0, where each An is a finite non-empty set, called the level n alphabet.
We sometimes use the less formal but more suggestive notation

←−σ = σ0 ◦ σ1 ◦ σ2 ◦ · · ·
to denote a directive sequence.
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For any integers m > n ≥ 0, we define the telescoped level morphism

σ[n,m) := σn ◦ σn+1 ◦ · · · ◦ σm−1

as well as the level n truncated directive sequence
←−σ †n = (σk)k≥n. (2.14)

Any directive sequence ←−σ as in equation (2.13) above generates a subshift X = X←−σ
over the base alphabet A0, defined by the convention that x ∈ AZ

0 belongs to X if and only
if for any finite factor w of x, there exists some level n ≥ 1 and some letter aj ∈ An such
that w is also a factor of σ[0,n−1)(aj ).

For any level n ≥ 0, a directive sequence ←−σ as above defines an intermediate level
subshift Xn ⊆ AZ

n which is generated by the truncated sequence←−σ †n:

Xn := X←−σ †n . (2.15)

The subshift Xn is the image subshift of the analogously defined level n+ 1 intermediate
subshift Xn+1 under the morphism σn, that is:

Xn = σn(Xn+1) for any level n ≥ 0. (2.16)

In this paper, we will almost exclusively consider directive sequences that are every-
where growing, by which we mean that the sequence of minimal level letter image lengths

β−(n) := min { |σ[0,n−1)(aj )| | aj ∈ An} (2.17)

tends to∞ for n→∞. We have the following fact (see for instance [3, Proposition 5.10]).

Fact 2.4. For every subshift X ⊆ AZ, there exists an everywhere growing directive
sequence ←−σ that generates X. More precisely, using the notation from equation (2.13),
one has

A0 = A and X←−σ = X. (2.18)

Remark 2.5. Going back to Assumption 2.1, we would like to note that the above evoked
directive sequence←−σ from [3, Proposition 5.10] has indeed the property that every level
morphism is non-erasing.

In this context, we observe that, a priori, if a directive sequence ←−σ = (σn)n≥0 is
everywhere growing, it could well be that some of the level maps σn : A∗n+1 → A∗n map
a generator ai ∈ An+1 to the empty word in A∗n. However, it follows directly from the
assumption ‘everywhere growing’ that this can only occur for a finite number of level
maps σn, so that one could easily bypass these levels by suitable telescoping and thus
obtain an everywhere growing directive sequence which generates the same subshift and
has only level maps which are all non-erasing.

Remark 2.6.
(1) A directive sequence ←−σ that generates a subshift X is also called an S-adic

development (or an S-adic expansion) of X, where S stands sometimes for an (often
assumed to be finite) set of substitutions that contains all level morphisms. This
concept and in particular the terminology ‘S-adic’ has been introduced by Ferenczi in
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[19]. In this context, one often assumes that the sequence←−σ has finite alphabet rank.
By this, we mean that there is a uniform upper bound to the cardinality of any level
alphabet, so that we can identify all level alphabets with a single finite alphabet A.

(2) If the set S consists of a single endomorphism σ : A∗ → A∗, then the S-adic
subshift X, which is generated by the stationary directive sequence ←−σ = (σn)n≥0

with σn = σ for all n ≥ 0, is called substitutive. It is important to note that we
require here the substitution σ (or rather, the above stationary directive sequence←−σ )
to be everywhere growing. The term ‘substitution’ itself is often used synonymous
to ‘endomorphism of a free monoid’, but sometimes (varying) additional conditions
are imposed (see for instance [16]).

Definition 2.7. A directive sequence←−σ = (σn)n≥0 is called weakly primitive if for every
level n ≥ 0, there exists a level m > n such that the telescoped incidence matrix M(σ[n,m))

is positive (that is, it has all coefficients > 0).

Remark 2.8.
(1) One verifies easily that any directive sequence ←−σ which is weakly primitive is in

particular everywhere growing, unless all level alphabets have cardinality 1.
(2) Weakly primitive directive sequences ←−σ have another important property, namely

that the subshift X←−σ generated by←−σ is minimal. For this conclusion, we cite [7],
proved originally in [14].

In [3], to any directive sequence ←−σ as in equation (2.13), there has been associated
the set V(←−σ ) of vector towers ←−v = (
vn)n≥0 over ←−σ . (The terminological specification←−σ -compatible vector tower used in [4] has been dropped here, as all ‘vector towers’
occurring in the present paper satisfy the compatibility condition in equation (2.20) for
any n ≥ 0.) Such a vector tower consists of non-negative vectors


vn =
∑
aj∈A

vn(aj ) 
eaj

∈ R
An

≥0 (2.19)

that are subject to the compatibility condition


vn = M(σn) · 
vn+1 (2.20)

for all n ≥ 0. It has been shown (see [3, Remark 9.5]) that for any word w ∈ A∗0 and any
such vector tower←−v , the sequence of sums∑

aj ∈An


vn(aj ) |σ[0,n)(aj )|w

is bounded above and increasing, as long as ←−σ is everywhere growing (but no other
condition is needed). This shows that the value

μ
←−v (w) := lim

n→∞
∑

aj ∈An


vn(aj ) |σ[0,n)(aj )|w (2.21)
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is well defined for any w ∈ A∗0. Furthermore, it is shown in [3, Propositions 7.4 and 9.4]
that the issuing function μ

←−v : A∗0 → R≥0 satisfies the Kirchhoff equalities in equation
(2.5), so that we can summarize to get the following proposition.

PROPOSITION 2.9. [3] Any vector tower←−v on an everywhere growing directive sequence←−σ defines via equation (2.21) an invariant measure on the subshift X generated by ←−σ ,
denoted by μ

←−v ∈M(X).

In terms of S-adic language, the main result of [3] translates directly into the following
theorem (see also [4, §3]).

THEOREM 2.10. [3] Let ←−σ = (σn)n≥0 be an everywhere growing directive sequence
which generates the subshift X := X←−σ . Then the map

m←−σ : V(←−σ )→M(X), ←−v �→ μ
←−v

is R≥0-linear and surjective.

For any of the level alphabets An of a directive sequence ←−σ as above, we consider
the projection map of the set of vector towers to the corresponding non-negative alphabet
cone:

prn : V(←−σ )→ R
An

≥0 , ←−v = (
vn)n≥0 �→ 
vn.

(The map prn was denoted in [3, 4] by mn, but we decided to reserve this notation here
for the more telling maps introduced below in §5.) On the base level n = 0, this projection
splits over the evaluation map ζAZ

0
from equation (2.10) via the map m←−σ from the last

theorem. More precisely, this gives (see [3, Proposition 10.2(1) and (2)]).

PROPOSITION 2.11. For any subshift X ⊆ AZ generated by an everywhere growing
directive sequence←−σ as in equations (2.13) and (2.18), one has the following items.
(1) The map ζX : M(X)→ R

A≥0, μ �→ (μ([ak])ak∈A satisfies

pr0 = ζX ◦m←−σ .

(2) In particular, for the letter frequency cone C(X) = im(ζX) (see equation (2.11)), this
gives

C(X) = ζX(m←−σ (V(←−σ ))).

(3) Alternatively, the letter frequency cone is obtained as a nested intersection as

C(X) :=
⋂
n≥1

M(σ[0,n))(R
An

≥0 ).

(4) In particular, dim C(X) is a lower bound to the number e(X) of distinct ergodic
probability measures on X.

The following statement is the translation of [3, Remark 9.2(3)] into the terminology
used here.
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LEMMA 2.12. For any vector tower←−v = (
vn)n≥0 over an everywhere growing directive
sequence←−σ as in equation (2.13), one has

lim
n→∞

∑
aj∈An


vn(aj ) = 0,

where the coefficient 
vn(aj ) ∈ R≥0 is defined in equation (2.19).

3. The measure transfer and its injectivity for recognizable morphisms
In this section, we will first recall the definition of the measure transfer map and quote
some basic properties derived in [5] (see §3.1 below), then recall the definition and some
related properties of recognizable morphisms (see §3.2 below). In §3.3, we will derive the
injectivity result from the title of this section.

3.1. The measure transfer and some results from [5]. For any non-erasing monoid
morphism σ : A∗ → B∗, we define the subdivision alphabet Aσ = {ai(k) | ai ∈ A and
1 ≤ k ≤ |σ(ai)|}. The morphism σ now defines a subdivision morphism πσ : A∗ → A∗σ
and a letter-to-letter morphism ασ : A∗σ → B∗, given for any ai ∈ A and any
ai(k) ∈ Aσ by

πσ (ai) = ai(1) ai(2) . . . ai(|σ(ai)|) and ασ (ai(k)) = [σ(ai)]k .

Here, by [σ(ai)]k , we mean the kth letter of the word σ(ai) ∈ B∗. We obtain directly the
following fact.

Fact 3.1. For any non-erasing monoid morphism σ : A∗ → B∗, one has

σ = ασ ◦ πσ .

For any word w ∈ A∗σ , we denote by ŵ ∈ A∗ the shortest word such that πσ (ŵ) contains
w as a factor. If such ŵ exists, it is unique; otherwise (for notational convenience only), we
treat ŵ as formal symbol for which we set

μ(ŵ) = 0 (3.1)

for any μ ∈M(AZ).
For any measure μ ∈M(AZ), a measure μπσ ∈M(AZ

σ ) is defined in [5, §3.1] by
setting μπσ ([w]) := μ([ŵ]), where [ŵ] is the cylinder associated to the word ŵ (see §2.1).
However, for any measure μ′ ∈M(AZ

σ ), the classical push-forward measure (ασ )∗(μ′)
is an invariant measure on BZ, since ασ is letter-to-letter. We thus obtain the following
theorem (see [5, §3]).

THEOREM 3.2. Let σ : A∗ → B∗ be a non-erasing morphism of free monoids.
(1) For any invariant measure μ on AZ, an invariant measure μσ on BZ is given by

μσ = (ασ )∗(μπσ ).

(2) For any word w′ ∈ B∗, the ‘transferred measure’ μσ takes on the cylinder [w′] the
value
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μσ ([w′]) =
∑

wi∈α−1
σ (w′)

μ([ŵi]).

(3) The issuing measure transfer map

σM : M(AZ)→M(BZ), μ �→ μσ

induced by the morphism σ has the following properties.
(3a) The map σM is linear (over R≥0) and continuous (with respect to the

weak∗-topology).
(3b) The map σM is functorial.
(3c) If X is the support of μ, then σ(X) is the support of μσ . Hence, σM induces in

particular on any subshift X ⊆ AZ a restriction/co-restriction map

σM
X : M(X)→M(σ (X)).

We also list the following more technical properties derived in [5].

PROPOSITION 3.3. Let σ : A∗ → B∗ be a non-erasing free monoid morphism and let
σM be the induced transfer map on the measure cones. Let μ ∈M(AZ) be an invariant
measure on the full shift AZ, and denote as before by μσ = σM(μ) the transferred
measure on BZ. Then one has the following properties.
(a) The total mass of the transferred measure μσ is given by the formula

μσ (BZ) =
∑
ak∈A

∑
bj∈B
|σ(ak)|bj

· μ(ak).

In particular, if μ is a probability measure, then, in general, μσ will not be
probability.

(b) For any generator bj ∈ B, we have

μσ ([bj ]) =
∑
ak∈A
|σ(ak)|bj

· μ(ak).

In particular, for the letter frequency vectors from equation (2.9), we obtain


v(μσ ) = M(σ) · 
v(μ). (3.2)

In other words (see [5, Proposition 4.5]), the measure transfer map σM commutes
via the evaluation maps ζAZ and ζBZ from equation (2.10) with the linear map
induced by σ on the non-negative cone R

A≥0 :

ζBZ ◦ σM = M(σ) ◦ ζAZ .

(c) For any w ∈ A∗, the cylinder measures satisfy

μσ ([σ(w)]) ≥ μ([w]).

(d) For any word w ∈ A∗, the characteristic measure μw satisfies

σM(μw) = μσ(w).

https://doi.org/10.1017/etds.2024.19 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.19


Measures transfer and S-adic development 3133

It remains to quote a useful evaluation technique for the transferred measure, derived in
[5, §4] from what is stated above as part (2) of Theorem 3.2. For this purpose, we define for
any non-erasing morphism σ : A∗ → B∗ and any w ∈ A∗, u ∈ B∗, the number �σ(w)�u
of essential occurrences of u in σ(w), by which we mean that the first letter of u occurs in
the σ -image of the first letter of w, and the last letter of u occurs in the σ -image of the last
letter of w. By 〈σ 〉, we denote the smallest length of any of the letter images σ(ai).

PROPOSITION 3.4. [5, Proposition 4.2] Let σ : A∗ → B∗ be any non-erasing monoid
morphism and let μ ∈M(AZ). Then for any w′ ∈ B∗ with |w′| ≥ 2, the transferred
measure μσ = σM(μ) takes on the cylinder [w′] the value

μσ ([w′]) =
∑

{wj∈A∗ | |wj |≤(|w′|−2)/〈σ 〉+2}
�σ(wj )�w′ · μ([wj ]).

3.2. Recognizable morphisms and some related properties. The following notion has
become more and more central to symbolic dynamics (see for instance [9, 13, 15] or [16]).

Definition 3.5. Let σ : A∗ → B∗ be a non-erasing morphism and let X ⊆ AZ be a
subshift over A. Then σ is said to be recognizable in X if the following conclusion is
true.

Consider biinfinite words x, x′ ∈ X ⊆ AZ, and y ∈ BZ which satisfy:
(*) y = T k(σZ(x)) and y = T �(σZ(x′)) for some integers k, � which satisfy 0 ≤ k ≤

|σ(x1)| − 1 and 0 ≤ � ≤ |σ(x′1)| − 1, where x1 and x′1 are the first letters of the
positive half-words x[1,∞) = x1x2 . . . of x and x′[1,∞) = x′1x′2 . . . of x′, respectively.

Then one has x = x′ and k = �.

As we will see in the next subsection, recognizability in a subshift is much related to
the following.

Definition 3.6. [5, §5] For any non-erasing monoid morphism σ : A∗ → B∗ and any
subshift X ⊆ AZ, we define the following two properties.
(1) σ is shift-orbit injective in X: any x and y in X have images σ(x) and σ(y) in the

same shift-orbit if and only x and y lie in a common shift-orbit.
(2) σ is shift-period preserving in X: for any periodic biinfinite word

w±∞ = · · · www · · · ∈ X, the word w can be written as a proper power (see
equation (2.6)) if and only if σ(w) can be written as a proper power.

The following useful property is a direct consequence of the previous definition
(see [5]).

LEMMA 3.7. Let σ1 : A∗ → B∗ and σ2 : B∗ → C∗ be two non-erasing morphisms, and
consider a subshift X ⊆ AZ as well as its image subshift Y = σ1(X) ⊆ BZ. Then we have
the following properties.
(1) The composed morphism σ2 ◦ σ1 : A∗ → C∗ is shift-orbit injective in X if and only

if σ1 is shift-orbit injective in X and σ2 is shift-orbit injective in Y.
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(2) The composed morphism σ2 ◦ σ1 : A∗ → C∗ is shift-period preserving in X if and
only if σ1 is shift-period preserving in X and σ2 is shift-period preserving in Y.

3.3. Injectivity of the measure transfer for recognizable morphisms. Let σ : A∗ → B∗
be a non-erasing morphism of free monoids, and let πσ : A∗ → A∗σ and ασ : A∗σ → B∗ be
the canonical subdivision morphism and the induced letter-to-letter morphism associated
to σ which satisfy σ = ασ ◦ πσ (see Fact 3.1). For any subshift X ⊆ AZ, we consider the
image subshift πσ (X) ⊆ AZ

σ and the induced restriction/co-restriction

αX
σ : πσ (X)→ σ(X)

of the map αZ
σ : AZ

σ → BZ to πσ (X) and σ(X), respectively.

PROPOSITION 3.8. For any non-erasing morphism σ : A∗ → B∗ and any subshift
X ⊆ AZ, the following statements are equivalent:
(1) σ is recognizable in X;
(2) αX

σ is an isomorphism of subshifts;
(3) ασ is shift-orbit injective and shift-period preserving in πσ (X);
(4) σ is shift-orbit injective and shift-period preserving in X.

Proof. We first note that by definition, αX
σ is continuous and surjective, so that claim (2)

is equivalent to stating that αX
σ is injective.

Next we observe that claim (1) is equivalent to stating that αX
σ is recognizable in πσ (X).

This is a direct consequence of the product decomposition σ = ασ ◦ πσ from Fact 3.1 and
[9, Lemma 3.5], since every subdivision morphism πσ is recognizable in the full shift, as
follows directly from the definition of πσ .

To show the equivalence (1) ⇐⇒ (2), we apply Definition 3.5 to the morphism ασ

and the subshift πσ (X) : we observe that, since |ασ (x)| = 1 for any letter x ∈ Aσ , in the
hypothesis (*) of Definition 3.5, the integers k � are necessarily equal to 0. However, in
this case, the conclusion x = x′ stated there amounts precisely to assuring that the map αZ

σ

is injective on πσ (X), or in other words, that αX
σ is injective.

The equivalence (2)⇐⇒ (3) is immediate, since any subshift-isomorphism preserves
orbits and shift-periods, while conversely, any shift-orbit injective letter-to-letter morphism
could only fail to be injective if on some periodic orbit, the shift-period is not preserved.

Finally, the equivalence (3)⇐⇒ (4) is a direct consequence of Lemma 3.7, since every
subdivision morphism πσ is shift-orbit injective and shift-period preserving in the full
shift (see [5, Lemma 5.3]).

Note that the equivalence of the statements (1) and (2) from Proposition 3.8 has already
been observed in [16, Proposition 2.4.24]. Indeed, Fabien Durand has suggested to us to
use this equivalence to derive the following corollary. In the meantime, we have obtained a
result which is actually a bit stronger: it turns out (see [5, Theorem 5.5]) that the hypothesis
‘shift-orbit injective’ suffices to obtain the same conclusion as stated in Corollary 3.9
below, but the proof is much less direct.

We can now derive Proposition 1.3 from §1, restated here for the convenience of the
reader.
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COROLLARY 3.9. For any non-erasing morphism σ : A∗ → B∗ and any subshift
X ⊆ AZ, the measure transfer map σM

X : μ→ μσ is injective if σ is recognizable in X.

Proof. We decompose σ = ασ ◦ πσ as in Fact 3.1, so that from the functoriality of
the measure transfer (see property (3b) of Theorem 3.2), we have σM

X = (αX
σ )M ◦

πM
σ . The injectivity of πM

σ is immediate from the definition of a subdivision mor-
phism (see [5, Lemma 5.4]), and the injectivity of (αX

σ )M is a direct consequence of
Proposition 3.8(2).

Remark 3.10. Consider any non-erasing morphism σ : A∗ → B∗ and any subshift
X ⊆ AZ with image subshift Y = σ(X) ⊆ BZ.
(1) Assume that the subshift Y contains a periodic word w±∞ for some w ∈ B∗ \ {ε},

and that the morphism σ is shift-orbit injective. Then, for σ to be shift-period
preserving in X, a necessary condition is that at least one of the letters ai ∈ A satisfies
|σ(ai)| ≤ |w|.

As a consequence, unless a given subshift Y is aperiodic, in any everywhere
growing S-adic development of Y, there will always be infinitely many level
morphisms which are not recognizable in their corresponding level subshift.

(2) This has sparked the following weakening of the notion of ‘recognizability’ which
has become recently very popular (see for instance [2]).

The morphism σ is said to be recognizable for aperiodic points in X if the
conclusion in Definition 3.5 holds under the strengthened assumption that y is not a
periodic word.

(3) From the above proof of Proposition 3.8, we observe that the property ‘shift-orbit
injective in X’ implies the property ‘recognizable for aperiodic points in X’.

Indeed, since the subdivision morphism πσ is always shift-orbit injective and
shift-periodic preserving (and thus recognizable) in the full shift, the property ‘σ is
recognizable for aperiodic points in X’ is equivalent to ‘αX

σ is recognizable for aperiodic
points in πσ (X)’. This in turn is equivalent to stating that every non-periodic word in σ(X)

has precisely one preimage under the letter-to-letter map ασ . However, since we assume
that σ and hence αX

σ is shift-orbit injective, two distinct such preimages must lie in the
same shift-orbit, which implies that their image in σ(X) must be periodic.

4. The measure transfer via vector towers
In this section, we will consider a subshift X given by means of a directive sequence, an
invariant measure μ on X given by means of a vector tower on this directive sequence,
and a morphism τ : X→ Y = τ(X) which we use to build a new directive sequence for
Y by simply adding τ at the bottom to the given sequence. Then the given vector tower is
naturally transferred to a new vector tower on the new directive sequence, and, as do all
vector towers, it defines an invariant measure μ′ on the subshift Y generated by this new
sequence. The main goal of this section is to show that the new measure μ′ is precisely
the image of given measure μ under the transfer map τM induced by the morphism τ (see
Theorem 3.2(1)).

For convenience, we summarize the running hypotheses for this section as follows.
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Assumption 4.1. Let τ : A∗ → B∗ be a non-erasing morphism of free monoids over finite
alphabets A and B, and let ←−σ = (σn)n≥0 be an everywhere growing directive sequence
with base level alphabet A0 = A. Let X := X←−σ ⊆ AZ be the subshift generated by←−σ and
denote by Y := τ(X) the image subshift of X given by the morphism τ (see Remark 2.2).

Remark 4.2.
(1) For any morphism τ and any directive sequence ←−σ = (σn)n≥0 as in Assumption

4.1, with subshifts X and Y as defined there, there is a second ‘prolonged’ directive
sequence ←−σ τ = (σ ′n)n≥0, given by setting σ ′n := σn−1 for any level n ≥ 1 and
σ ′0 := τ . We observe from Lemma 2.3 that the subshift X←−σ τ generated by←−σ τ agrees
precisely with the τ -image subshift Y = τ(X) ∈ BZ.

(2) Consider now any vector tower ←−v = (
vn)n≥0 over ←−σ , and let μ = m←−σ (←−v ) be
the invariant measure on X associated to ←−v via Theorem 2.10. There is a second
‘prolonged’ vector tower←−v τ = (
v ′n)n≥0 over←−σ τ , given by setting 
v ′n = 
vn−1 for
any level n ≥ 1 and by setting 
v ′0 := M(τ) · 
v0. We denote by μ′ be the measure on
Y associated to←−v τ = (
v ′n)n≥0, that is,

μ′ = m←−σ τ (←−v τ ). (4.1)

We can now link up the measure transfer map defined and studied in [5] with the
technology of vector towers from our previous papers [3, 4]. The following will be the
basis for all results presented in this paper.

PROPOSITION 4.3. Let τ ,←−σ , and X be as in Assumption 4.1, and let ←−v = (
vn)n≥0

be a vector tower over ←−σ , with associated invariant measure μ = m←−σ (←−v ) on X. Let←−σ τ = (σ ′n)n≥0,←−v τ = (
v ′n)n≥0, and μ′ = m←−σ τ (←−v τ ) be as in Remark 4.2.
Then the measure transfer map τM : M(AZ)→M(BZ) induced by the morphism τ

satisfies

μ′ = τM(μ) [= μτ ].

Proof. In this proof, we will freely use the terminology from [5] as recalled in §3.1.
For any word w′ ∈ B∗, we consider in the subdivision monoid A∗τ the subset W(w′)

of preimages wi of w′ under the induced letter-to-letter morphism ατ : A∗τ → B∗. For
each wi ∈ W(w′), consider (as in the paragraph subsequent to Fact 3.1) the word ŵi ∈ A∗
defined by the conditions that (a) its canonically subdivided image πτ (ŵi) contains wi , and
that (b) the word ŵi is shortest among all words in A∗ which satisfy condition (a). Recall
from equation (3.1) that either ŵi exists and is unique, or else we formally set μ(ŵi) = 0
for any μ ∈M(AZ). From Theorem 3.2(2), we know that μτ (w′) =∑

wi∈W(w′)μ(ŵi)

(with μτ = τM(μ) as before).
For the purpose of using equation (2.21), we consider now the value of the approxi-

mating sum on the right-hand side of this formula for any (large) level n− 1, for each of
the words ŵi and the given vector tower←−v , that is, the term (see equation (2.19) for the
notation) ∑

a ∈An−1


vn−1(a) |σ[0,n−1)(a)|ŵi
. (4.2)
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We sum up the results of equation (4.2) over all wi ∈ W(w′) to get∑
wi∈W(w′)

∑
a ∈An−1


vn−1(a) |σ[0,n−1)(a)|ŵi
, (4.3)

and compare the obtained sum to the limit on the right-hand side of equation (2.21), when
this formula is applied to w′ and to the vector tower ←−v τ over the prolonged directive
sequence←−σ τ . The nth term of this limit gives the sum∑

a ∈An−1


v ′n(a) |σ ′[0,n)(a)|w′ . (4.4)

When comparing the two sums in equations (4.3) and (4.4), we keep in mind that
according to the set-up from Remark 4.2 for any n ≥ 1, we have 
v ′n(a) = 
vn−1(a) for
any a ∈ An−1, as well as σ ′[0,n) = τ ◦ σ[0,n−1).

We now notice that each occurrence of any of the ŵi in any of the image words
σ[0,n−1)(a) with a ∈ An−1 defines precisely an occurrence of wi in πτ (σ[0,n−1)(a)), and
thus an occurrence of w′ in ατ (πτ (σ[0,n−1)(a))) = τ(σ[0,n−1)(a)) = σ ′[0,n)(a). Further-
more, two distinct occurrences of ŵi in some σ[0,n−1)(a) define distinct occurrences of
wi in πτ (σ[0,n−1)(a)), and thus distinct occurrences of w′ in σ ′[0,n)(a). The same is true
for occurrences of distinct ŵi in σ[0,n−1)(a). It follows (using the above recalled equality

v ′n = 
vn−1) that∑

wi∈W(w′)

∑
a ∈An−1


vn−1(a) |σ[0,n−1)(a)|ŵi
≤

∑
a ∈An−1


v ′n(a) |σ ′[0,n)(a)|w′ . (4.5)

However, the opposite inequality is also true, up to a constant Kn which only depends
on←−σ and not on←−v :∑

a ∈An−1


v ′n(a) |σ ′[0,n)(a)|w′ ≤
∑

wi∈W(w′)

∑
a ∈An−1


vn−1(a) |σ[0,n−1)(a)|ŵi
+Kn. (4.6)

Indeed, any occurrence of w′ in σ ′[0,n)(a) defines, in a unique manner, an occurrence of
some wi in πτ (σ[0,n−1)(a)). The latter defines (again uniquely) an occurrence of ŵi in
σ[0,n−1)(a), unless the corresponding occurrence of wi in πτ (σ[0,n−1)(a)) takes place in
a suffix or prefix of length bounded by the maximum m(w′) ≥ 0 of all |ŵi |. We hence
deduce:

Kn ≤ 2m(w′)
∑

a ∈An−1


vn−1(a).

It follows now from Lemma 2.12 that the right-hand side of the last inequality tends to 0
for n→∞, so that we obtain from equations (4.5) and (4.6) through the above definitions
μ = m←−σ (←−v ) = μ

←−v and μ′ = m←−σ τ (←−v τ ) = μ
←−v τ

the desired result

μτ (w′) =
∑

wi∈W(w′)

(
lim

n→∞
∑

a ∈An−1


vn−1(a) |σ[0,n−1)(a)|ŵi

)

= lim
n→∞

∑
a ∈An−1


v ′n(a) |σ ′[0,n)(a)|w′ = μ′(w′)

for any w′ ∈ B∗.
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As a first application of the above shown ‘basic’ Proposition 4.3, we derive the following
proposition.

PROPOSITION 4.4. For any non-erasing morphism σ : A∗ → B∗ and any subshift
X ⊆ AZ with image subshift σ(X), the induced measure transfer map

σM : M(AZ)→M(BZ), μ �→ μσ

maps the measure cone M(X) surjectively to the measure cone M(σ (X)).

Proof. We consider any everywhere growing directive sequence ←−σ which generates X;
from Fact 2.4, we know that such←−σ exists for any subshift X. By prolonging←−σ through
the morphism σ , as explained above in Remark 4.2, we obtain any everywhere growing
directive sequence ←−σ ′ :=←−σ σ which generates σ(X). We then apply Theorem 2.10 to
obtain for any measure μ′ ∈M(σ (X)), a vector tower ←−v ′ on ←−σ ′ with m←−σ ′(

←−v ′) = μ.
Truncating now the last term of ←−v ′ gives a vector tower ←−v on ←−σ , which by Remark
2.9(2) defines a measure μ := m←−σ (←−v ) on X. We can now apply Proposition 4.3 to obtain
μ′ = μσ [= σM(μ)].

Remark 4.5. We would like to note that as a result of the material presented in this section,
we have now derived an alternative way of how to understand the transferred measure
μσ = σM(μ) ∈M(BZ), for any non-erasing morphism σ : A∗ → B∗ and any invariant
measure μ ∈M(AZ).

It turns out that in many circumstances, the use of vector towers as presented here
is more convenient when dealing with μσ in practice, compared with the definition as
studied in [5, §§3 and 4], and also compared with the approximation method via weighted
characteristic measures indicated in [5, Remark 3.9].

5. Measure towers and vector towers
Throughout this section, we will assume that

←−σ = (σn : A∗n+1 → A∗n)n≥0

is an everywhere growing directive sequence which generates a subshift X = X0 ⊆ AZ

0
(and where all level maps σn are non-erasing, see Remark 2.5). As in equation (2.15), we
denote, for any level k ≥ 0, by Xk ⊆ AZ

k the intermediate subshift of level k, which is
generated by the truncated sequence←−σ †k = (σn : A∗n+1 → A∗n)n≥k from equation (2.14).

Definition 5.1. A measure tower on←−σ , denoted by←−μ = (μn)n≥0, is given by a sequence
of measures μn ∈M(AZ

n ) which satisfy

μn = σM
n (μn+1).

The set of measure towers on←−σ will be denoted by M(←−σ ).

We will now construct a particular type of measure towers on a given directive sequence←−σ as above, starting from a vector tower←−v = (
vn)n≥0 on←−σ . We first observe that for any
intermediate level k ≥ 0, we obtain from←−σ via the truncated directive sequence←−σ †k a
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‘truncated evaluation map’ mk := m←−σ †k : V(←−σ †k)→M(Xk). From the vector tower←−v ,
we obtain similarly a ‘truncated’ vector tower←−v †k = (
vn)n≥k on←−σ †k , which defines the
corresponding shift-invariant ‘level k measure’

μk := mk(
←−v †k) (5.1)

on the subshift Xk ⊆ AZ

k .

LEMMA 5.2.
(1) For any vector tower←−v on an everywhere growing directive sequence←−σ , the family

of level k measures μk as in equation (5.1), for all k ≥ 0, defines a measure tower←−m (←−v ) := (μk)k≥0 on←−σ .
(2) Conversely, every measure tower←−μ = (μn)n≥0 on a directive sequence←−σ as above

determines a vector tower
←−
ζ (←−μ ) = (
vn)n≥0 on ←−σ , given by the letter frequency

vectors 
vn := 
v(μn) = ζXn(μn) from equations (2.9) and (2.10).

Proof. (1) It suffices to observe that Proposition 4.3 gives directly σM
k (μk+1) = μk for

all k ≥ 0.
(2) We only need to verify that

←−
ζ (←−μ ) is indeed a vector tower, that is, that compatibility

conditions in equation (2.20) are satisfied. This is a direct application of of [5, Proposition
4.5], stated above as equation (3.2).

The above set-up of measure towers and vector towers over a given directive sequence is
very natural and, indeed, it turns out that the two are essentially equivalent. More precisely,
we obtain the following result, which has been quoted in a notationally adapted version in
§1 as Proposition 1.1.

PROPOSITION 5.3. For any everywhere growing directive sequence ←−σ , there is a
canonical R≥0-linear bijection

←−
ζ : M(←−σ )→ V(←−σ )

between the cone of measure towers on one hand and the cone of vector towers on the
other, given by the map

←−μ �→ ←−ζ (←−μ ) and its inverse ←−v �→ ←−m (←−v ).

Proof. The fact that the composition
←−
ζ ◦←−m gives the identity on V(←−σ ) follows directly

from Proposition 2.11(1), when applied to all truncated sequences ←−σ †k with k ≥ 0. We
obtain in particular that the map←−m is injective.

However, we can apply Theorem 2.10 to each of the truncated sequences ←−σ †k to
obtain the surjectivity of the map mk : V(←−σ †k)→M(Xk) for any level k ≥ 0. It
follows then directly from the definition set up in Lemma 5.2 (1) above that the map←−m : V(←−σ ) �→M(←−σ ) must be surjective.

Hence, ←−m is a bijective map, which implies that
←−
ζ must also be bijective, and that←−m ◦←−ζ is the identity on M(←−σ ).
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The linearity of the maps
←−
ζ and←−m is a direct consequence of the linearity (see §2.2)

of the maps mk and ζXn used in the above definitions of the measure or vector towers
←−m (←−v ) = (mk(

←−v †k))k≥0 and
←−
ζ (←−μ ) = (ζXn(μn))n≥0, respectively.

Although slightly similar in notation, the two cones M(←−σ ) and M(X←−σ ) should not
be confused. Indeed, without further assumptions on the given set-up, the structure of the
cone M(←−σ ) of measure towers will not only depend on the given subshift X = X←−σ but
can vary quite a bit depending on the choice of the S-adic development ←−σ of X. More
precisely, we have the following remark.

Remark 5.4. For any everywhere growing directive sequence ←−σ which generates a
subshift X = X←−σ , the composition

m←−σ ◦←−ζ : M(←−σ )→M(X) (5.2)

is R≥0-linear and surjective since
←−
ζ is R≥0-linear and bijective by Proposition 5.3, and

m←−σ is R≥0-linear and surjective by Theorem 2.10. However, in general, the map m←−σ ◦←−ζ
will be far from being injective.

We thus consider the following strengthening on the hypotheses of the given directive
sequence, which has been considered already by several other authors in a related context
(compare [9, Definition 4.1] or [13, §3.3]).

Definition 5.5. A directive sequence (or an S-adic development)←−σ = (σn)n≥0 is called
totally recognizable if every level map σn is recognizable in the corresponding subshift
Xn+1 (see Definition 3.5 and Proposition 3.6). If all but finitely many of the level maps σn

are recognizable in Xn+1, we call←−σ eventually recognizable.

The following result is quoted in a slightly shortened version in §1 as Theorem 1.4.

THEOREM 5.6. For any everywhere growing totally recognizable S-adic development←−σ
of a subshift X and its associated cone V(←−σ ) of vector towers, the canonical R≥0-linear
map

m←−σ : V(←−σ )→M(X)

is a bijection.
In particular, for any level n ≥ 0, the map σM

[0,n) : M(Xn)→M(X) is a linear

bijection of cones. Similarly, the same conclusion follows for the map m←−σ ◦←−ζ from
equation (5.2).

Proof. From the assumption that ←−σ is totally recognizable, it follows (using statement
(3d) of Theorem 3.2) that the induced R≥0-linear map

(σn)
M
Xn+1

: M(Xn+1)→M(Xn)

is bijective for any level n ≥ 0. It follows that the composed map m←−σ ◦←−ζ : M(←−σ )→
V(←−σ )→M(X) from equation (5.2) is bijective. Since we know from Proposition 5.3
that the map

←−
ζ is a bijection, we deduce that m←−σ must be bijective.
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6. Directive sequences with ‘small’ intermediate letter frequency cones
In this section, we will give a first application of the machinery set up in the previous
two sections. However, before doing so, we want to summarize, for the convenience of the
reader, the various ingredients that the rich picture issuing from this set-up offers, and to
list some basic facts to avoid potential misunderstandings. As an illustration, we give at the
end of this section a detailed example, where all the data listed now can be seen in practice.

We use the same terminology as previously, that is, X ∈ AZ is a subshift over the finite
alphabet A = A0, and ←−σ = (σn : A∗n+1 → A∗n)n≥0 is an everywhere growing directive
sequence which generates X. For the subsequent discussion, the following notion will be
helpful.

Definition 6.1.
(1) For any integer n ≥ 0, the intermediate letter frequency cone Cn = Cn(

←−σ ) ⊆ R
An

≥0
of the directive sequence←−σ is given, through the level subshifts Xn (see equation
(2.15)) and their measure cones M(Xn), via equation (2.11) by

Cn := C(Xn) = ζXn(M(Xn)).

As set up in §2, here ζXn : M(Xn)→ R
An

≥0 is given for An = {an,1, . . . , an,d(n)} by
μ �→ ([μ(an,1)], . . . , [μ(an,d(n))]) for any μ ∈M(Xn).

(2) We denote the dimension of the cone Cn by cn, that is,

cn := dim Cn ≤ card(An).

Remark 6.2. From Proposition 2.11, applied to the truncated directive sequence←−σ †n, we
observe directly that the cone Cn is the image of the set V(←−σ ) of vector towers under
the level n projection map prn, which amounts to stating that Cn is the intersection of the
nested images of the non-negative alphabet cones of level m ≥ n under the telescoped level
maps:

Cn =
⋂
{RAn

≥0 ⊇ · · · ⊇ M(σ[n,m))(R
Am+1
≥0 ) ⊇ · · · }.

In particular, one always has

Cn = M(σn)(Cn+1) (6.1)

and thus

cn ≤ cn+1

for all n ≥ 0.

Our main focus here is to explain how this set-up and in particular the value of the cn

can be used to find out information about the number e(X) ∈ N ∪ {∞} of invariant ergodic
probability measures on X.

Remark 6.3. Under the above stated conditions, the following conclusions are immediate.
(1) It is quite possible that e(X) > cn for some ‘low’ level n ≥ 0, even if←−σ is totally

recognizable.
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(2) The converse inequality, e(X) < cn, is also possible, but in this case, the directive
sequence←−σ is not totally recognizable. More precisely, in this case, the telescoped
morphism σ[0,n) is not recognizable.

(3) In any case, we always have

e(X) ≤ lim cn ≤ lim inf(card An),

but in general, both inequalities may well be strict.
(4) However, if←−σ is totally recognizable, then we have

e(X) = lim cn.

In particular, we recover the well-known upper bound e(X) ≤ lim inf(card An), as
well as the lower bounds cn ≤ e(X) for all n ≥ 0.

From Remark 6.3(3), we observe directly that for any directive sequence←−σ with finite
alphabet rank (that is, lim inf(card An) <∞), there is a critical level n0 ≥ 0 such that one
has

cn = cn0 for all n ≥ n0 and cn < cn0 for all n < n0. (6.2)

More generally, any everywhere growing directive sequence ←−σ (possibly with infinite
alphabet rank) which possesses such a critical level has been termed in [3] thinning, and in
the particular case where the critical level agrees with the base level n0 = 0, the sequence←−σ has been called thin. Of course, any thinning sequence can be made thin by simply
truncating it at its critical level (or any level higher up); furthermore, we can telescope all
levels below the critical level into a single ‘thinning’ morphism. Subshifts that are ‘thin’ in
that they are generated by a thin (and in particular everywhere growing) directive sequence
have the following useful property.

PROPOSITION 6.4. [3] Let X ⊆ AZ be a subshift generated by a thin directive sequence←−σ . Then the letter frequency map ζX : M(X)→ R
A≥0 co-restricts to a R≥0-linear

bijection

M(X)→ C(X), μ �→ (μ(ak))ak∈A.

In particular, any two invariant measures μ1 and μ2 on X are equal if and only if one has
μ1([ak]) = μ2([ak]) for the finitely many cylinders [ak] given by all letters ak ∈ A.

This statement can be derived directly from [3, Proposition 10.2(1) and Corollary
10.4]. For convenience of the reader, we give here a proof in the terminology introduced
above.

Proof of Proposition 6.4. For any two measure μ, μ′ ∈M(X), there exist, by Theorem
2.10, vector towers ←−v = (
vn)n≥0 and ←−v ′ = (
v ′n)n≥0 on ←−σ with m←−σ (←−v ) = μ and
m←−σ (←−v ′) = μ′. Thus, μ �= μ′ implies ←−v �= ←−v ′ and hence 
vn �= 
v ′n for some n ≥ 0.
However, then we deduce from equation (6.1) and the hypothesis that dim C(Xn) = cn =
c0 = dim C(X) that 
v0 = M(σ[0,n))(
vn) �= M(σ[0,n))(
v ′n) = 
v ′0. From Proposition 2.11(1),
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we know that 
v0 = pr0(
←−v ) = ζX(μ) and 
v ′0 = pr0(

←−v ′) = ζX(μ′), which shows that the
map ζX is injective. For the linearity of ζX and the equality ζX(M(X)) = C(X), see
equations (2.10) and (2.11).

Directive sequences of finite alphabet rank occur naturally in many important contexts
in the symbolic dynamics literature (e.g. substitutive subshifts, IETs, etc). Furthermore, the
extra invertibility condition from the following Corollary 6.5 is rather frequently satisfied.
This corollary has been quoted as Corollary 1.6 in §1; it is stated here again for the
convenience of the reader.

COROLLARY 6.5. Let X ⊆ AZ be a subshift generated by an everywhere growing
directive sequence←−σ = (σn)n≥0 of finite alphabet rank. Assume that for every n ≥ 0, the
incidence matrix M(σn) is invertible over R. Then any invariant measure μ on the subshift
X is determined by the evaluation of μ on the letter cylinders, that is, by the values μ([ak])
for all ak ∈ A.

Proof. From equation (6.1) and the hypothesis that M(σn) is invertible, it follows directly
that cn+1 = cn for all n ≥ 0, so that the directive sequence ←−σ is thin. Hence, the
hypotheses of Proposition 6.4 are satisfied, which gives directly the claimed statement.

Note that the conclusion of Corollary 6.5 has recently been proved by Berthé et al under
somewhat more restrictive hypotheses (see [6, Corollary 4.2]); in particular, it is required
there that every M(σn) has determinant equal to 1 or to −1, and that X is minimal.

Remark 6.6.
(1) If in Proposition 6.4 the hypothesis ‘thin’ is replaced by ‘thinning’, with critical level

n0 ≥ 1, then the conclusion that any two distinct measures μ �= μ′ ∈M(X) can be
distinguished by the evaluation on the letter cylinders [ak] for all ak ∈ A, may in
some cases still hold, despite the fact that from the definition of the critical level, we
have

dim C0 = c0 < cn0 = dim Cn0 = dim M(Xn0).

Here the last equality follows from Proposition 6.4, applied to the directive sequence
truncated at the critical level n0. The reason why the above strict inequality does
not contradict the presumed equality c0 = dim C0 = dim M(X) is that the measure
transfer map σM

[0,n0)
: M(Xn0)→M(X) may well not be injective, in the case that

the telescoped level map σ[0,n0) is not recognizable in the level subshift Xn0 .
However, if←−σ is totally recognizable, or if at least σ[0,n0) is recognizable in Xn0 ,

and if furthermore←−σ is thinning but not thin, then the conclusion of Proposition 6.4
necessarily fails: this case is treated in Example 6.7 below.

(2) In view of the fact that the measure transfer map σM induced by a non-recognizable
monoid morphism σ is in general far from being injective, it seems noteworthy
that in Proposition 6.4 and Corollary 6.5, no recognizability condition on the level
maps σn is imposed. One should recall in this context that in [9, Theorem 5.2], it
has been proved that directive sequences of bounded alphabet rank, with aperiodic
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level subshifts, are ‘eventually recognizable’, that is, all level maps above some
‘other critical level’ must be recognizable in their level subshift. However, this
‘other critical level’ may well be a lot bigger than the above critical level n0 and,
indeed, we give in Corollary 8.5(2) examples of thin directive sequences where this
‘other critical level’ can be chosen to be arbitrarily high up, while none of the level
morphisms below it is recognizable in its corresponding level subshift (which is
aperiodic for any level).

We now present the promised ‘detailed example with all above data made visible’.

Example 6.7. The subshift X in this example consists of two periodic words and is hence
all by itself not so interesting. We chose it to give a transparent presentation of a simple
subshift via some not so obvious everywhere growing directive sequence, which we now
describe in detail. We first describe the level n = 1, then pass to the base level n = 0,
and finally build the higher levels n ≥ 2 on top of the two lowest levels. We also include
for each level n a description of the measure cone M(Xn) and of the associated letter
frequency cone Cn.

Set A1 = {a, b} and let X1 ⊆ AZ

1 be the union of the two periodic subshifts O(w±∞)

and O(w′±∞), defined by the words w = a2b and w′ = b2a. We consider the two
characteristic measures μ := μw and μ′ := μw′ , and observe that M(X1) consists of
all non-negative linear combinations of these two measures. The letter frequency map
ζX1 : M(X1)→ C(X1) ⊆ R

{a,b}
≥0 is injective, in that ζX1(μ) = 2
ea + 
eb and ζX1(μ

′) =

ea + 2
eb. This results in c1 = dim(C1) = 2.

For A0 = {c, d}, consider now the ‘Thue–Morse’ morphism σ0 : AZ

1 → AZ

0 , a �→
cd , b �→ dc, and recall (see Proposition 3.3(d)) that σM

0 (μ) = μσ0(w) and σM
0 (μ′) =

μσ0(w′), with σ0(w) = cdcddc and σ0(w
′) = dcdccd. Since cdcddc and dcdccd cannot

be obtained from each other by a cyclic permutation, we have O((cdcddc)±∞) �=
O((dcdccd)±∞), so that from equation (2.8), it follows that Supp(μcdcddc) �=
Supp(μdcdccd). We thus deduce for the image subshift X0 = σ0(X1) that the measure
cone M(X0), which is spanned by μcdcddc and μdcdccd , is of dimension 2.

However, using Proposition 3.4 (or more directly, equation (2.7)), we readily compute
μcdcddc([cd]) = μcdcddc([dc]) = 2 as well as μdcdccd([cd]) = μdcdccd([dc]) = 2. It fol-
lows that the frequency map ζ = ζX0 is not injective and that C0 has dimension c0 = 1.

We now define the higher up levels of the directive sequence by setting An = {x, y} for
any n ≥ 2, and by defining all level morphisms σn : An+1 → An for n ≥ 2 to be equal to
the substitution defined by x �→ x2, y �→ y2. It follows that for n ≥ 2, all level subshifts
Xn consist of the two biinfinite periodic words x±∞ and y±∞. Moreover, we easily see
that the incidence matrix of σn is equal to two times the two-by-two identity matrix I2, that
is, M(σn) = 2 · I2, so that we have M(Xn) = Cn = R

{x,y}
≥0 .

It remains now to define σ1 : A2 → A1 via x �→ w, y �→ w′, which ensures σ1(X2) =
X1, to obtain a directive sequence←−σ = (σn)n≥0 over alphabets that all have cardinality 2.
We have shown above that the critical level of this directive sequence is n0 = 1, while
the evaluation on the cylinders [σ0(a)] = [cd] and [σ0(b)] = [dc] does not suffice to
distinguish the two measures μcdcddc �= μdcdccd that span M(X0).
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7. Minimal subshifts with zero entropy and infinitely many ergodic probability measures
A subshift X, which is ‘small’ in that it has topological entropy hX = 0 (see equation (2.3)),
and simultaneously ‘large’ in that the number e(X) of ergodic probability measures carried
by X is infinite, is a bit of a contradiction in itself (if one restricts to non-atomic measures).
However, such subshifts are known to exist, but they are not easy to come by. One of the
first such subshift known to us is the Pascal-adic subshift, treated in [22]; more recent
such examples (with additional strong properties, in particular minimality) are exhibited in
[11]. Not surprisingly, there is always a certain amount of work involved to simultaneously
achieve the above two opposite properties.

In this section, we will present an alternative way to construct minimal subshifts
X which satisfy both, hX = 0 and e(X) = ∞. The main purpose of this section is to
underline how directly such examples can be exhibited by means of the technology
established in the previous sections.

We first recall two known results. The first appears as [7, Theorem 4.3] and is attributed
there to Thierry Monteil; alternatively, it can be found in [8] as Lemma 6.7.1 of Ch. 6,
written by Fabien Durand, who told us that the result can actually be traced back to the
paper [10] by Boyle and Handelman.

PROPOSITION 7.1. Let X be a subshift which is generated by a directive sequence←−σ = (σn)n≥0 with level alphabets An. Then, for the minimal level letter image length
β−(n) from equation (2.17), one has

hX ≤ inf
n≥0

log(card An)

β−(n)
.

PROPOSITION 7.2. [4, §4.1] For any integer d ≥ 2, let X be a subshift which is generated
by a directive sequence ←−σ = (σn,d)n≥0 with level alphabets that are all of uniform
cardinality d (and are thus identified with A(d) = {a1, . . . , ad}). Assume that for any level
n ≥ 0, the incidence matrix of the level map σn,d is given by

M(σn,d) = M�(n),d := �(n)Id + 1d×d , (7.1)

where Id is the identity matrix of size d × d , 1d×d is the d × d matrix with all entries equal
to 1, and �(n) is a positive integer depending on n.

Then X is minimal, and for any sufficiently fast growing sequence (�(n))n∈N, the subshift
X admits precisely d distinct invariant ergodic probability measures.

The use of Proposition 7.1 will be an ingredient below in our proof of Theorem 7.4.
Proposition 7.2, however, will not be formally used in the following, but it may pay anyway
for the reader to look it up. We use below the very same basic idea as in this earlier result,
but do not carry out all calculations as had been done in [4, §4] (where, in particular,
precise lower bounds for the integers �(n) are computed which guarantee the ‘sufficiently
fast growing’ in the above statement).

For the proof below, we first need to define for any integer d ≥ 2 and alphabet
A(d) = {a1, . . . , ad}, the morphism τd : A∗(d+1)→ A∗(d), given by ai �→ a2

i for any ai

with 1 ≤ i ≤ d and ad+1 �→ a1a2 . . . ad .
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Remark 7.3.
(1) For the morphism τd as given above, it is easy to see that any biinfinite word

y ∈ AZ

(d)
\ {a±∞1 , a±∞2 , . . . , a±∞d } can be ‘desubstituted’ in at most one way (com-

pare [5, Remark 6.2(2)]) to give a biinfinite word x ∈ AZ

(d+1) with τd(O(x)) = O(y).
Since for any i = 1, . . . , n, the periodic word a±∞i is the only element x ∈ AZ

(d+1)

with τd(O(x)) = O(a±∞i ), it follows that τd is recognizable in every subshift which
does not contain any of the periodic words a±∞i .

(2) Again by elementary desubstitution arguments, one verifies quickly that any mor-
phism σn,d with incidence matrix given by equation (7.1), with �(n) ≥ 2, is recog-
nizable in the full shift AZ

(d).

(Indeed, it suffices to check in any biinfinite word y ∈ σn,d(AZ

(d)) for a factor
w ∈ A∗(d) which is ‘distinguished’ in that some letter ai ∈ A(d) occurs precisely three
times in w, while all other letters aj ∈ A(d) occur at most twice. Such a distinguished
word w occurs in σn,d(ai), and any such occurrence is contained in the image of
some word from A∗(d) of length at most 3. In either case, one verifies quickly that the
middle occurrence of ai in w must belong to σn,d(ai). For this middle occurrence
ys in the factor w = yr . . . yt of y = · · · yn−1ynyn+1 · · · , one considers the factors
w+ = ys . . . yt ′ and w− = yr ′ . . . ys of y, with ys = ys+1 = · · · = yt ′−1 = ai and
yt ′ �= ai , and similarly ys = ys−1 = · · · = yr ′+1 = ai and yr ′ �= ai . From the fact
that σn,d(ai) contains each letter aj �= ai precisely once, one deduces directly that
the words w+ and w− determine which occurrence of ai in σn,d(ai) is given by the
letter ys . It follows that, starting from ys , the biininite word y can be desubstituted in
precisely one way.)

(3) From the conditions on the incidence matrix M(σn) in equation (7.1), it follows
directly that every word in σn,d(A∗(d)) must contain each of the letters of A(d). Hence,
we observe that σn,d(AZ

(d)) cannot contain any of the periodic words a±∞i .
(4) As a consequence of the above observations (1)–(3), we deduce for the following

‘alternating’ directive sequence

←−σ = σ2 ◦ τ2 ◦ σ3 ◦ τ3 ◦ · · · , (7.2)

where we set σd := σd,d , that each level map is recognizable in its corresponding
level subshift, so that the sequence←−σ is fully recognizable.

THEOREM 7.4. For any integer d ≥ 2, let A(d) = {a1, . . . , ad} and let σd : A∗(d)→ A∗(d)

be a morphism with incidence matrix M(σd) = M�(d),d from equation (7.1), for some
integer �(d) ≥ 2 depending on d. Let X be the subshift generated by the alternating
directive sequence←−σ given in equation (7.2).

If the exponent sequence (�(n))n∈N is sufficiently fast growing, then the subshift X
is minimal, has entropy hX = 0, and admits infinitely many distinct invariant ergodic
probability measures.

(We denote by X the class of all subshifts X ⊆ AZ

(d) which satisfy all of the above
conditions.)
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Proof. For each integer d ≥ 2, we identify the finite alphabet A(d) = {a1, a2, . . . , ad}
with the corresponding subset of an infinite alphabet, via A(2) ⊆ A(3) ⊆ · · · ⊆ A(∞) =
{a1, a2, . . .}. For the issuing infinite non-negative cone R

A(∞)

≥0 , we abbreviate for notational
convenience the base unit vectors to 
ei := 
eai

.

For any level n = 2d − 2 or n = 2d − 1, we consider the subcone Cn := R
A(d)

≥0 ⊆
R
A(∞)

≥0 and, in particular, the ‘center vector’ 
cn =∑ 
ei of Cn. We observe that both
families, the morphisms σd as well as the morphisms τd , induce maps M(σd) : Cn→ Cn

and M(τd) : Cn+1 → Cn, respectively, which each maps the center vector 
cn (for σn) or

cn+1 (for τn) to a scalar multiple of the center vector 
cn. Furthermore, any unit vector 
ei

with 1 ≤ i ≤ d is mapped by both M(σd) and M(τd) to a non-negative linear combination
λ1
ei + λ2
cd . Note here that (again for both σd and τd ,)

the quotient
λ2

λ1
can be made arbitrarily small (7.3)

by choosing �(d) sufficiently large.
We now fix some level n0 = 2d − 2 ≥ 0, and for any index i with 1 ≤ i ≤ d , we look

for a vector tower←−v i = (
v i
n )n≥n0 on the truncated directed sequence←−σ †n0 = σn0 ◦ τn0 ◦

σn0+1 ◦ τn0+1 ◦ · · · with the property that ←−v i has for any level n ≥ n0, a level vector

v i
n = λ1,n
ei + λ2,n
cn, with coefficients

λ1,n > 0 and λ2,n > 0 (7.4)

(which must both tend to 0 for n→∞). From equation (7.3), we deduce that a sufficiently
large choice of the exponents �(d) effects indeed that there exist families of such
coefficients where both of the inequalities in equation (7.4) are satisfied, while the
compatibility condition in equation (2.20) is maintained, for any n ≥ n0. It follows that
on the lowest level n = n0 (and thus similarly also on all levels n ≥ n0), the level vectors

v 1
n0

, 
v 2
n0

, . . . , 
v d
n0

are linearly independent.
For the level subshift Xn0 ⊆ AZ

(d), generated by the truncated sequence ←−σ †n0 , the

truncated evaluation map mn0 := m←−σ †n0
:
←−V (←−σ †n0)→M(Xn0) from equation (5.1) defines

d invariant measures μ1, . . . , μd on the level subshift Xn0 as images of the d vector towers←−v 1, . . . ,←−v d , respectively:

μi = mn0(
←−v i).

It follows from Proposition 2.11(1) that the subcone

Mn0 := R≥0 〈μ1, . . . , μd〉 ⊆M(Xn0)

spanned by the μi has dimension d. Since we verified in Remark 7.3(4) above that each
of the maps σj and τj is recognizable in its corresponding level subshift, it follows from
Theorem 3.2 (3d) that Mn0 is mapped by σM

2 ◦ τM2 ◦ · · · ◦ σM
n0−1 ◦ τMn0−1 to a subcone of

M(X) that also has dimension d.
We have thus proved that M(X) contains subcones of arbitrary large dimension, and

hence must be infinite dimensional, that is, e(X) = ∞. The desired equality hX = 0 is
immediate from Proposition 7.1 for large �(d), and the minimality of X follows directly
from the positivity of the matrices M(σd), see Remark 2.8(2).
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8. Non-recognizable directive sequences
The purpose of this section is to show how non-recognizable morphisms appear naturally
in a well-known context (IETs and pseudo-Anosov surface homeomorphisms), and how
this phenomenon can be exploited to construct interesting directive sequences that are not
totally recognizable or even not eventually recognizable.

Our construction will be presented in four steps, organized below as follows. In §8.1,
we present our basic quotient construction in geometric language. In §8.2, we show how
the canonical ‘inverse quotient construction’ is obtained in a natural geometric context
to define a non-recognizable monoid morphism. In §8.3, the results from the previous
subsections are properly ‘pasted together’ to give a directive sequence where every level
morphism is non-recognizable (and, in addition, it is a particularly nice letter-to-letter
factor map). Finally, in §8.4, we modify this sequence slightly to obtain the desired
everywhere growing but not (eventually) recognizable directive sequences. Note that all
intermediate level subshifts which occur in our constructions turn out to be minimal; they
are furthermore both substitutive and IET.

Before starting the detailed description, we will highlight its essential features in a
special case, in a language that may be more easily accessible to those of us who are
less familiar with Thurston’s work on surface homeomorphisms.

Remark 8.1.
(1) Let us consider the tiling of the real plane R

2 by squares of side length 1 that have
their vertices on the points with integer coordinates. We now pick a slope s, say
0 < s < 1, and we foliate the plane by lines that have slope s. By choosing the slope
s to be irrational, we make sure that on any line of the foliation, there is at most
one vertex of our square tiling. To every line � that avoids any such vertex, one can
associate canonically a biinfinite word w(�) in the letters h and v, which records
the sequence of intersections of � with a horizontal (‘h’) or vertical (‘v’) line of our
square grid. To fix an indexing of the letters of w(�), we pick a distinguished ‘base
square’ Q and require that � passes through the interior of Q. We quickly observe
that the orbits in our family of lines �, with respect to the canonical Z⊕ Z-action on
R

2, are in one-to-one relation with the shift-orbits of the resulting set of words w(�).
Indeed, for this one-to-one relation, it suffices to consider the positive half-words
of any w(�), so that it extends naturally to the lines � that pass over any of the
vertices.

We consider now more closely any of the ‘troublesome’ lines �P that cross
over a vertex P of the square grid. To �P , we associate two words wabove(�P ) and
wbelow(�P ) in {h, v}Z, which are read off from �P after isotopying it slightly in the
neighborhood of P so that it passes either above or below P. From the above observed
one-to-one relation between the Z⊕ Z-orbits of the lines � and the shift-orbits of the
corresponding words w(�), we deduce that the words wabove(�P ) and wbelow(�P ) do
not belong to the same shift-orbit.

The set Xs ⊆ {h, v}Z of all biinfinite words w(�), including the above defined
wabove(�P ) and wbelow(�P ), for any line � that passes through our distinguished base
square Q, is a subshift—indeed, a well-known Sturmian subshift.
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(2) We now proceed by subdividing the top and bottom side of each square into
segments of equal length through introducing a new vertex at the midpoint of any
horizontal segment of the square grid. Any transition of a line � through the left
half of the subdivided horizontal square side will now be recorded by the letter
hleft, and any transition through the right half by hright, to give a new biinfinite word
w′(�) ∈ {hleft, hright, v}Z. The morphism σ : {hleft, hright, v}Z→ {h, v}Z defined by
hleft �→ h, hright �→ h and v �→ v maps any w′(�) to w(�), and it will be one-to-one,
except for the new ‘troublesome’ lines �R that pass through any of the new vertices
R in the middle of our original horizontal square grid intervals. For such lines,
we have as before two words w′above(�R) and w′below(�R), and both have the same
image word w(�R). Since w′above(�R) and w′below(�R) belong as above to distinct
shift-orbits, the morphism σ is not shift-orbit injective, and hence not recognizable
(see Proposition 3.6(1)).

Clearly, this process can be iterated arbitrarily often and, every time, the obtained
morphism is shift-orbit injective except for two particular shift-orbits, which have
the same image orbit.

(3) The above set-up of lines in a square grid of R2 admits a particularly convincing
translation into an IET setting, since for any of the squares, we can use the left-hand
and the bottom sides together as ‘bottom intervals’, and the top side together with
the right-hand side as ‘top intervals’, and the line segments of our foliation that
are contained in the chosen square give canonically a classical IET system. If the
chosen square agrees with the above picked base square Q, then the interval coding
associated traditionally to the IET defines a subshift that agrees precisely with the
one given by the set of biinfinite words w(�) (or similarly for w′(�)), which have
been read off above from the intersections of the lines � with the given square grid.

After this ‘appetizer’, we now give a detailed description of our construction in the
subsequent four subsections. We assume a minimal familiarity with the basic terminology
of Thurston’s work on surfaces, such as ‘pseudo-Anosov homeomorphism’, ‘stable
lamination’, or ‘invariant train track’.

8.1. The basic geometric quotient construction. We will start by describing our basic
geometric construction, using a pseudo-Anosov homeomorphism h of a compact ori-
entable surface 
, and its expanding invariant lamination �s , which consists of uncount-
ably many biinfinite geodesics (called ‘leaves’) with respect to a fixed hyperbolic structure
on 
. (The family �s was called ‘the stable lamination’ by Thurston, as he was looking
at its behavior when lifted to the universal covering of 
, identified with the hyperbolic
plane H2, in the neighborhood of a ∂h̃-fixed point on ∂H2 (where h̃ is a lift of h to H

2 and
∂h̃ is the canonical extension of h̃ to ∂H2).)

It is a standard procedure to translate such laminations (for instance, by using an
h-invariant train track neighborhood of �s) into a classical interval exchange setting, which
in turn (assuming that �s is orientable and 
 has at least one boundary component) allows
a direct translation of �s into a subshift X ⊆ AZ, where A is given by the intervals in the
IET. Since both of these translations are well known (see for instance [12, 20, 21]), we will
restrict ourselves here only to a description of the geometry of h and �s .

https://doi.org/10.1017/etds.2024.19 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.19


3150 N. Bédaride et al

For our purposes, it is convenient to impose the following extra conditions.
(H1) Assume that 
 has r ≥ 2 boundary components, which are all fixed by h.
(H2) Each complementary component of �s contains precisely one boundary

component.
(Note that this assumption effects that there is a natural identification of π1


with the free group F(A).)
(H3) Each complementary component has at least two cusps, and each cusp is fixed by h.

We now pick a particular complementary component 
i ⊆ 
 of �s , and assume that

i has precisely two cusps, and thus also precisely two boundary leaves �1 and �2, which
(as do all boundary leaves of complementary components) will then both belong to �s .
We now pass to a quotient surface 
′ by ‘filling in’ the boundary component of 
 that is
contained in 
i , through identifying all points of the boundary curve in 
i into a single
point P of 
′. Then h induces a pseudo-Anosov homeomorphism h′ : 
′ → 
′ with stable
lamination �′s, and there is a canonical quotient map q : �s → �′s that commutes with h
and h′, respectively. The map q is one-to-one everywhere, except at points on the leaves �1

and �2, which are identified by q to a single leaf �′ ∈ �′s. The leaf �′ is fixed and expanded
by h′, and the sole h′-fixed point on �′ is precisely the above point P. This can be seen for
example by the canonical passage from the stable lamination �s to the associated stable
foliation F s for h.

Remark 8.2.
(1) There is a remarkable feature here in that both �s and �′s are minimal laminations

(that is, each leaf is dense), while the map q induces on the leaf spaces of �s and
�′s a map that is surjective, but not injective.

(2) This is translated (via the associated IETs as indicated above) into a subshift X ⊆ AZ

that is mapped by a morphism σ : A∗ → A′∗ to a subshift σ(X) =: X′ ⊆ A′Z (for
A′∗ ⊆ F(A′) = π1


′, in complete analogy to A and 
 in the above set-up). Here
both X and X′ are minimal, while the map induced by σ on X is not shift-orbit
injective, so that σ is not recognizable in X.

(3) More precisely, since there is a natural one-to-one correspondence between the
shift-orbits of X and the leaves of �s (and similarly for X′ and �′s), we observe
that σ maps precisely two shift-orbits of X to a common image shift-orbit of X′,
while everywhere else, the induced map on shift-orbits is one-to-one.

8.2. The ‘inverse’ geometric quotient construction. After having presented our basic
geometric quotient construction, we will now describe the precise converse procedure. For
this purpose, we assume in this subsection that σ0, h0, �s

0, A0 and X0 are as 
, h, �s , A
and X in §8.1 above, and that in particular the conditions (H1)–(H3) are satisfied, except
that in condition (H1), we lower the assumption on the number r of boundary components
of 
0 to r ≥ 1. We now select any non-boundary leaf �0 of �s

0 which is fixed by h0:

h0(�0) = �0. (8.1)

Since �s
0 is expanded by h0, it follows that there is precisely one fixed point

P = h0(P ) ∈ �. We derive the surface 
1 from 
0 by puncturing a hole in 
0 at the
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point P, and observe from equation (8.1) that h0 induces a homeomorphism h1 : 
1 → 
1.
Again from considering the stable foliation F s

0 associated to �s
0, we obtain the stable

lamination �s
1 ⊆ 
1 for h1 from �s

0 by doubling the leaf �0 into two leaves �̂0 and �̂′0,
which are boundary leaves of a new complementary component 
′1 ⊆ 
1 that has no
further boundary leaf. The component 
′1 contains a new boundary component of 
1 that
runs around the puncture where formerly the point P ∈ 
0 was located.

From this construction, we obtain a quotient map q0 : �s
1 → �s

0 that satisfies

h0 ◦ q0 = q0 ◦ h1, (8.2)

and q0 is one-to-one everywhere except on the leaves �̂0 and �̂′0, which are identified by q0

to the single leaf �0 ∈ �s
0. We thus observe that the ‘quotient procedure’ from 
1, h1 and

�s
1 to 
0, h0 and �s

0 is precisely the same as described in §8.1 when passing from 
, h

and �s to 
′, h′ and �′s.

Remark 8.3. In the passage from �s
0 to �s

1, when translated into the IET language as in
Remark 8.2, we observe that the IET for �s

1 derives from the IET for �s
0 by subdividing

one of the intervals (namely the one onto which we choose to isotope P along the leaf �0).
Hence, the alphabet A1 for �s

1 derives from A0 by doubling one of its letters, namely the
one corresponding to the subdivided interval.

For the minimal subshift X1 ⊆ AZ

1 associated to �1 and the morphism σ0 : A∗1 → A∗0
determined by the map q0, which maps X1 to X0 and is non-recognizable in X1, it follows
that σ0 is letter-to-letter, so that X0 is actually a factor of X1.

8.3. Iteration of the inverse quotient construction. We now look for a leaf �1 ∈ �s
1 with

h1(�1) = �1. As shown in the previous subsection, this is the only ingredient needed
to repeat the above procedure to obtain a surface 
2, a pseudo-Anosov homeomor-
phism h2 : 
2 → 
2 with stable lamination �s

2, a map q1 : �s
2 → �s

1, and a morphism
σ1 : A∗2 → A∗1 that is non-recognizable on the minimal subshift X2 which satisfies
σ1(X2) = X1.

Hence, to be able to repeat this procedure infinitely often, with the purpose to get for any
n ≥ 0, a morphism σn : A∗n+1 → A∗n that is non-recognizable on a minimal subshift Xn+1

with σn(Xn+1) = Xn, we just need for any �s
n, a leaf �n ∈ �s

n with hn(�n) = �n . However,
up to replacing hn by a power h

t(n)
n for some suitable integer t (n) ≥ 1, this is no problem.

It is well known that any pseudo-Anosov map h has infinitely many h-periodic leaves in its
stable lamination. We obtain the following result, which is however only an intermediate
step in our construction. In particular, the subshifts Xn are not the intermediate level
subshifts of the given directive sequence←−σ .

PROPOSITION 8.4. There exists a directive sequence ←−σ = (σn : A∗n+1 → A∗n)n≥0 and
subshifts Xn ⊆ AZ

n , such that for any n ≥ 0, the following hold:
(1) σn(Xn+1) = Xn and σn is not recognizable in Xn+1;
(2) card(An+1) = card(An)+ 1;
(3) σn is letter-to-letter. In particular, σn commutes with the shift operator and Xn is a

factor of Xn+1;
(4) Xn is minimal, aperiodic, and uniquely ergodic;
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(5) Xn is substitutive (see Remark 2.6(2)) for some primitive substitution τn : A∗n→ A∗n;
(6) τ

t(n)
n ◦ σn = σn ◦ τn+1 for some integer t (n) ≥ 1.

Proof. Properties (1), (2), and (3) have been derived in the construction described above.
The substitution τn from property (5) is the translation of the homeomorphism hn into the
monoid setting through the canonical embedding A∗n ⊆ F(An) = π1
n. The primitivity
of τn is a direct consequence of the assumption ‘pseudo-Anosov’ for h and thus for all
hn. Property (4) is a direct consequence of property (5), and property (6) is the translation
into the monoid setting of the commutativity relation h

t(n)
n ◦ qn = qn ◦ hn+1 , which is a

consequence of equation (8.2) together with the above replacement of hn by h
t(n)
n .

8.4. Everywhere growing directive sequences that are not (eventually) recognizable.
The sequence←−σ from Proposition 8.4 is not everywhere growing; in fact, for any integers
m > n ≥ 0, the telescoped level map σ[n,m) is letter-to-letter. However, by choosing
suitable ‘diagonal’ or ‘eventually horizontal’ paths through the infinite commutative
diagram built from the above morphisms σn (‘vertical’) and τn (‘horizontal’), we will
derive below everywhere growing directive sequences with interesting properties.

Using the terminology from Proposition 8.4, we first define for each n ≥ 0, the
morphism

σ ′n := τ t ′(n)
n ◦ σn (= σn ◦ τ

s(n)
n+1),

where we set t ′(n) := s(n) t (n) for some suitably chosen integer s(n) ≥ 1 which ensures
that the incidence matrix M(τ

t ′(n)
n ) is positive. Such s(n) exists because of property (5) of

Proposition 8.4, and since M(σn) has no zero-columns, it follows furthermore that

the incidence matrix M(σ ′n) is positive for any index n ≥ 0. (8.3)

We now define a directive sequence ←−σ ′ = (σ ′n : A∗n+1 → A∗n)n≥0 with intermediate
level subshifts called X′n. Since τn(Xn) = Xn and σn(Xn+1) = Xn, we have

σ ′n(Xn+1) = Xn (8.4)

for any n ≥ 0, so that from the minimality of Xn, we can deduce Xn ⊆ X′n. In particular,
we obtain from statement (1) of Proposition 8.4 together with Lemma 3.7 that σ ′n is not
recognizable in Xn+1 and thus neither in X′n+1. From equation (8.3), we obtain directly
(see Remark 2.8(1)) that the sequence←−σ ′ is everywhere growing.

Furthermore, we define for any integer k ≥ 0, a directive sequence ←−τ k = (τ ′n)n≥0

through setting τ ′n := τk for all n ≥ k and τ ′n = σ ′n if 0 ≤ n ≤ k − 1. We also specify the
starting surface 
0 to be a punctured torus, so that one has |A0| = 2, and X0 is Sturmian.
It follows that for any level n ≥ k, the intermediate level n subshift of←−τ k is equal to the
substitutive subshift Xk defined by the substitution τk from statement (5) of Proposition
8.4, so that for every 0 ≤ n ≤ k − 1, we deduce from equation (8.4) that the level n subshift
is equal to Xn. The primitivity of τk implies in particular that the directive sequence←−τ k

is everywhere growing. Recall also that (as is true for all stationary sequences, see [1]
and the references given there) the truncated stationary sequence←−τ k = (τ ′n)n≥k is totally
recognizable.
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We obtain hence as immediate consequence of Proposition 8.4 the following result; we
observe that its parts (2) and (3) give directly the statements that have been rephrased in
§1 and stated there as Proposition 1.7.

COROLLARY 8.5.
(1) The directive sequence ←−σ ′ is everywhere growing and satisfies the properties (1),

(2), (4), (5), and (6) from Proposition 8.4, with σn replaced by σ ′n.
(2) For any integer k ≥ 0, there exists a directive sequence←−τ k , with level alphabets An

of size card(An) = k + 2 for any level n ≥ k, and card(An) = n+ 2 if n ≤ k.
The sequence ←−τ k is everywhere growing and eventually recognizable: each of

the first k level morphisms on the bottom of ←−τ k is not recognizable in its corre-
sponding level subshift, while all level morphisms of level n ≥ k are recognizable
in their corresponding level subshift. Indeed, the sequence←−τ k is stationary above
level k.

(3) All intermediate level subshifts of the above directive sequences ←−τ k are mini-
mal, uniquely ergodic, and aperiodic. In particular, the properties ‘recognizable’,
‘shift-orbit injective’ (see Definition 3.6), and ‘recognizable for aperiodic points’
(see Remark 3.10(2)) are equivalent, for each level morphism in its corresponding
intermediate level subshift.

Remark 8.6. It turns out that property (3) of Corollary 8.5 is also true for the direc-
tive sequence ←−σ ′. Indeed, from property (6) of Proposition 8.4 and the well-known
North-South dynamics induced by any pseudo-Anosov homeomorphism of 
 on the
projectivized space of all measured laminations (= the boundary of Teichmüller space
for 
), one can deduce that the inclusion Xn ⊆ X′n derived after equation (8.4) is
actually an equality. However, laying out the details of these arguments would go beyond
our self-imposed limits on the amount of Nielsen–Thurston theory imported into this
section.

Remark 8.7. Given any eventually recognizable everywhere growing directive sequence←−σ = (σn)n≥0 of finite alphabet rank, one may ask whether there is an upper bound
to the number level morphisms σn which are not recognizable in their corresponding
intermediate level subshift. This question has sparked some interest, see [9, 13]. We note
that the examples given in part (2) of Corollary 8.5 above contradict the bound claimed in
[13, Theorem 3.7] as stated; to rectify that statement, additional hypotheses would need to
be imposed. This error could also effect the upper bound claimed in [17, Corollary 1.5] on
the number of successive factor maps, for a large class of subshifts.

In this context, we also want to point to the very recent paper [2, Example 7.5], where
a family of directive sequences is presented that has the same properties as exhibited in
Corollary 8.5(2) above for the sequences←−τ k . The examples from [2] are easier to describe,
but fail to have the extra properties listed in part (3) of Corollary 8.5.

Another construction of a similar kind (but closer to our Corollary 8.5 above) has
been communicated to us by Espinoza [18] in the final stages of the revision of this
paper.
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