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Abstract

The complex algebra of an inverse semigroup with finitely many idempotents in each D-class is stably
finite by a result of Munn. This can be proved fairly easily using C∗-algebras for inverse semigroups
satisfying this condition that have a Hausdorff universal groupoid, or more generally for direct limits of
inverse semigroups satisfying this condition and having Hausdorff universal groupoids. It is not difficult
to see that a finitely presented inverse semigroup with a non-Hausdorff universal groupoid cannot be a
direct limit of inverse semigroups with Hausdorff universal groupoids. We construct here countably many
nonisomorphic finitely presented inverse semigroups with finitely many idempotents in eachD-class and
non-Hausdorff universal groupoids. At this time, there is not a clear C∗-algebraic technique to prove these
inverse semigroups have stably finite complex algebras.
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1. Introduction

Given an inverse semigroup S, we denote by E(S) its semilattice of idempotents and
by ≤ its natural partial order (hence, a ≤ b if and only if a = eb for some e ∈ E(S)).
Given s ∈ S, let λS(s) = {t ∈ S | t ≤ s} and let μS(s) denote the set of maximal elements
of λS(s) ∩ E(S) for ≤.

Paterson [5] associated an étale groupoid G(S) to every inverse semigroup S, called
its universal groupoid, and showed that the C∗-algebra of the inverse semigroup
is isomorphic to the C∗-algebra of its universal groupoid. The second author later
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generalized Paterson’s result by showing that if K is any commutative ring with unit,
then the semigroup algebra KS of S is isomorphic to a certain convolution algebra of
K-valued functions on the groupoid G(S) [8]. There is now a well-developed theory
of étale groupoid algebras which has proven useful for studying inverse semigroup
algebras. Both the algebra and C∗-algebra of an étale groupoid are best behaved when
the groupoid is Hausdorff. In particular, the theory of traces on groupoid C∗-algebras
seems to only be well developed in the Hausdorff case where there is a faithful
conditional expectation mapping to the algebra of continuous functions vanishing at
infinity on the unit space. Universal groupoids of inverse semigroups are not always
Hausdorff. It was shown in [8] that G(S) is Hausdorff if and only if λS(s) ∩ E(S) is
finitely generated as an ideal in E(S), that is, there is a finite set F ⊆ λS(s) ∩ E(S) such
that if e ∈ λS(s) ∩ E(S), then e ≤ f for some f ∈ F. In particular, if G(S) is Hausdorff,
then μS(s) is finite. For example, if G is a nontrivial group and E is the semilattice
consisting of a zero element and a countably infinite set of orthogonal idempotents,
then S = G ∪ E is an inverse monoid, where G acts trivially on the left and right of E,
with a non-Hausdorff universal groupoid. Indeed, if 1 � g ∈ G, then λS(g) ∩ E(S) = E
which has infinitely many maximal elements. Note that S is a Clifford inverse monoid:
eachD-class of S contains a single idempotent. However, S is not finitely generated and
each of its finitely generated inverse subsemigroups does have a Hausdorff universal
groupoid and hence S is a direct limit of Clifford monoids with Hausdorff universal
groupoids.

The second author has recently initiated a study of stable finiteness of étale groupoid
algebras [9] and, in particular, recovered a result of Munn showing that if S is an inverse
semigroup whose D-classes have finitely many idempotents, then KS is stably finite
for any field K of characteristic 0 [4]. Recall that a ring R is stably finite if Mn(R) does
not contain a copy of the bicyclic monoid as a subsemigroup for any n ≥ 1. In the case
where S has a Hausdorff universal groupoid, this can be deduced using the theory of
C∗-algebras, but in the non-Hausdorff case, one needs to work around this. However,
since the stable finiteness result can be reduced to the case of finitely generated inverse
semigroups with finitely many idempotents in each D-class, it becomes of interest to
know whether there are examples of such finitely generated inverse semigroups with
non-Hausdorff universal groupoids. The easiest way to guarantee that each D-class
of S contains finitely many idempotents is to impose the stronger condition that each
R-class of S is finite (since each idempotent f in the D-class of e is of the form s−1s
with s in the R-class of e).

This paper is then motivated by the following question.

PROBLEM 1.1. Is there a finitely generated inverse semigroup S such that:

(i) every R-class of S is finite; and
(ii) μS(s) is infinite for some s ∈ S?

In Section 3, we present a construction that provides uncountably many nonisomor-
phic 3-generated inverse monoids satisfying the conditions of Problem 1.1.
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In Section 4, we present a construction which provides infinitely many noniso-
morphic finitely presented 3-generated inverse monoids satisfying the conditions of
Problem 1.1.

It is not difficult to show (see [9]) that if S is finitely presented and has a
non-Hausdorff universal groupoid, then S cannot be written as a direct limit of inverse
semigroups with Hausdorff universal groupoids. Since stable finiteness is preserved
under direct limits, to really show that we cannot reduce stable finiteness of KS to
the case that S has a Hausdorff universal groupoid, it is important to have a finitely
presented inverse semigroup satisfying the conditions of Problem 1.1.

2. Preliminaries

The reader is assumed to have basic knowledge of inverse semigroup theory and
automata theory, being respectively referred to [2, 6] for that purpose. Since the inverse
semigroups we construct are actually inverse monoids, all the relevant definitions are
presented in the monoid version.

2.1. Inverse automata. Given a finite alphabet A, we denote by A−1 a set of formal
inverses of A and write Ã = A ∪ A−1. An inverse automaton over the alphabet Ã is a
structure of the formA = (Q, i, t, E), where:

• Q is the set of vertices;
• i, t ∈ Q are the initial and terminal vertices, respectively;
• E ⊆ Q × Ã × Q is the set of edges,

satisfying the following properties:

• deterministic, (p, a, q), (p, a, q′) ∈ E ⇒ q = q′;
• involutive, (p, a, q) ∈ E ⇔ (q, a−1, p) ∈ E;
• trim, every vertex lies in some path from i to t.

If i = t, we refer to it as the basepoint of A. If we do not specify the initial and
terminal vertices, we have an inverse graph.

Assume now thatA is involutive and trim, but not deterministic. A folding operation
onA consists of identifying two distinct edges of the form p

a←− q
a−→ r (identifying also

the inverse edges p
a−1

−−→ q
a−1

←−− r). If A is finite and we fold enough edges, we end up
obtaining a finite inverse automatonA′, which we say is obtained fromA by complete
folding.

Is this operation confluent? That is, does the inverse automaton depend on the
sequence of foldings? Given u, v ∈ Ã∗, write u

∗−→ v if v can be obtained from u by
successively erasing factors of the form aa−1 (a ∈ Ã). It is easy to check that

L(A′) = {v ∈ Ã∗ | u ∗−→ v for some u ∈ L(A)}.
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Hence, the language of the inverse automaton A′ is completely determined by A.
Since inverse automata are known to be minimal (see for example [1]), it follows that
A′ is itself determined byA and so the folding process is confluent.

A Dyck word on Ã is some w ∈ Ã∗ satisfying w
∗−→ 1. These are the words

representing the identity in the free group on A, and also play an important role in
the theory of inverse semigroups as we soon see.

2.2. Free inverse monoids. Let A be a nonempty alphabet. We extend −1 : A→
A−1 : a �→ a−1 to an involution on the free monoid Ã∗ through

1−1 = 1, (a−1)−1 = a, (uv)−1 = v−1u−1 (a ∈ A; u, v ∈ Ã+) .

The free inverse monoid on A is the quotient FIMA = Ã∗/ρ, where ρ is the congruence
on Ã∗ generated by the relation

{(ww−1w, w) | w ∈ Ã∗} ∪ {(uu−1vv−1, vv−1uu−1) | u, v ∈ Ã∗},

known as the Wagner congruence on Ã∗.
Munn provided in [3] an elegant normal form for FIMA using inverse automata (see

also [7] by Scheiblich).
Given w = a1 · · · an ∈ Ã∗ (ai ∈ Ã), let Lin(w) denote the linear automaton of w:

�� q0
a1 �� q1

a2 �� · · · an �� qn ��

that contains also the inverse edges (to make it involutive). The Munn tree of w is the
finite inverse automaton MT(w) obtained by completely folding Lin(w). This provides
the following solution for the word problem of FIMA.

THEOREM 2.1 [3]. For all u, v ∈ Ã∗, the following conditions are equivalent:

(i) uρ = vρ;
(ii) MT(u) � MT(v);
(iii) u ∈ L(MT(v)) and v ∈ L(MT(u)).

Such Munn trees are precisely those finite inverse automata on Ã whose underlying
undirected graph is a tree (when we consider only the edges labeled by A).

It is easy to see that, given w ∈ Ã∗,

wρ ∈ E(FIMA)⇔ Lin(w) has a basepoint ⇔ w is a Dyck word.

2.3. Inverse monoid presentations. A (finite) inverse monoid presentation is a
formal expression of the form P = 〈A | R〉, where A is a (finite) alphabet and R is a
(finite) subset of Ã∗ × Ã∗. We usually describe the relations in R as formal equalities
r = s.

Let τ = (ρ ∪ R)� be the congruence on Ã∗ generated by the relation ρ ∪ R. The
quotient S = Ã∗/τ is the inverse monoid defined by P. Equivalently, we might write
S = FIMA/R�, viewing R as a relation on FIMA. We denote by ϕ : Ã∗ → S the canonical
homomorphism.
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Stephen devised in [10] an approach which is the most useful tool known to date
to deal with inverse monoid presentations. The Cayley graph of S with respect to the
generating set A, denoted by CayA(S), has vertex set S and edges of the form s

a−→ s(aϕ)
for all s ∈ S and a ∈ Ã. This is not in general an involutive graph (it would be if S is a
group). However, the strongly connected components of CayA(S) are actually inverse
automata. Additionally, these correspond to the various R-classes of S (so there exist
paths

in CayA(S) for some u, v ∈ Ã∗ if and only if s1s−1
1 = s2s−1

2 ). The Schützenberger
graph of w ∈ Ã∗, denoted by SΓ(w), is the strongly connected component of CayA(S)
containing wϕ (that is, the induced subgraph having the R-class of wϕ as a set of
vertices). The Schützenberger automaton of w ∈ Ã∗, denoted by A(w), is obtained
from SΓ(w) by setting (ww−1)ϕ as initial vertex and wϕ as terminal vertex. We may
also write SΓ(uϕ) = SΓ(u) orA(uϕ) = A(u) if it suits us.

Stephen proved the following theorems, which generalize those of Munn.

THEOREM 2.2 [10]. For all u, v ∈ Ã∗, the following conditions are equivalent:

(i) uϕ ≥ vϕ;
(ii) u ∈ L(A(v)).

THEOREM 2.3 [10]. For all u, v ∈ Ã∗, the following conditions are equivalent:

(i) uϕ = vϕ;
(ii) A(u) � A(v);
(iii) u ∈ L(A(v)) and v ∈ L(A(u)).

Since uϕ ∈ E(S) if and only if (uu−1)ϕ = uϕ, it follows that the idempotents of S are
characterized by having a basepoint at their Schützenberger automaton.

It follows from Theorem 2.3 that the word problem is decidable forP if membership
is decidable in the languages of its Schützenberger automata. In general, it is not.
However, Stephen devised a procedure which brings positive results in many important
cases. We describe it now.

Suppose thatA is a finite involutive automaton and r = s is a relation in R such that
there exists in A a path of the form p

r−→ q but no path p
s−→ q (or vice versa). If we

glue to A a ‘path’ p
s−→ q with the corresponding inverse edges (to keep it involutive),

we say that this new automaton A′ is obtained from A by an expansion (expanding
through the relation r = s).

If L(A) ⊆ L(A(w)) and A′ is obtained from A by either folding or through an
expansion through some relation in R, then L(A′) ⊆ L(A(w)). We call any finite
involutive automaton A such that w ∈ L(A) ⊆ L(A(w)) an approximate automaton
of w (for the presentation P). This is the case of any finite inverse automaton
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obtained from MT(w) through a finite sequence of foldings and expansions. If A
is an approximate automaton of w that admits neither foldings nor expansions, then
A � A(w).

Assume now that the R-classes of S are all finite. Then the Schützenberger automata
are all finite as well. Can we compute them? If R is finite, the answer is given
through Stephen’s sequence, which provides a systematic way of building approximate
automata. Take A1(w) = MT(w). If An(w) is defined, let A′n+1(w) be obtained by
performing simultaneously all the possible expansions of An(w). Since R is finite,
A′n+1(w) is a finite involutive automaton. Now define An+1(w) by completely folding
A′n+1(w). We get then a sequence (An(w))n of approximate automata of w. If A(w) is
finite, it will eventually show up as a member of the sequence.

This is still true for infinite R if:

• we are sure of S having only finite R-classes;
• only finitely many expansions can be applied to eachAn(w).

Anyway, in the general case of an arbitrary presentation, v ∈ L(AT (u)) implies that
v is recognized by some approximate automaton of u; in fact, given any approximate
automaton of u, one can perform a finite sequence of foldings and expansions to obtain
an approximate automaton recognizing v.

The results in this subsection are used throughout the paper without further
reference. The reader is referred to [10] for more details on Schützenberger automata
and Stephen’s sequences.

3. Finitely generated examples

In this section, we present a construction which provides uncountably many
nonisomorphic 3-generated inverse monoids satisfying the conditions of Problem 1.1.

We start by proving the following proposition.

PROPOSITION 3.1. Let S be an inverse monoid where everyR-class is finite. Let 〈A | R〉
be an inverse monoid presentation of S. Let E ⊆ E(S) \ {1} and let we ∈ Ã+ be a Dyck
word representing e for every e ∈ E. Let T be the inverse semigroup defined by the
inverse monoid presentation

〈A ∪ {b} | R, web = we (e ∈ E)〉, (3-1)

where b is a new letter. Then:

(i) every R-class of T is finite;
(ii) if no two distinct elements of E are J-comparable in S and E is infinite, then

μT (b) is infinite.

PROOF. (i) Note that an idempotent e can always be represented by some Dyck word
since e = ee−1. Write B = A ∪ {b} and let ψ : Ã∗ → S and ϕ : B̃∗ → T be the canonical
homomorphisms.
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We use the notation AS(u) and AT (u) to denote the Schützenberger automata of u
relative to the presentation of S and T, respectively.

Let u ∈ B̃∗. Then MT(u) is essentially the disjoint union of finitely many Munn
trees for some words in Ã∗, connected by b-trees to each other in a way that results
in a tree. Let Q′ be the set of vertices of MT(u) that admit a b-loop (at their image)
in AT (u). Let A1 be the finite inverse automaton obtained from MT(u) by adjoining
a b-loop at each q ∈ Q′ followed by complete folding. Adding a b-loop and folding
can absorb b-trees into that vertex creating possibly a wedge of Munn trees with
Ã-edges at that vertex. Such a wedge of Ã-trees is itself an Ã-tree, and hence an
approximate automaton for some Ã-word for FIMA, folding therefore into a Munn
tree. Thus, A1 is a finite inverse automaton consisting of Munn trees with edges in
Ã, say MT(u1), . . . , MT(un), connected by b-edges and having some b-loops adjoined.
Moreover, A1 is an approximate automaton of u with the property that each b-edge
that is not a loop comes from MT(u).

We start now what we call the iterative process. Since every R-class of S is
finite, we can turn each of these Munn trees MT(ui) inside A1 into a finite inverse
automaton admitting no R-expansions by a finite series of R-expansions and foldings.
The resulting automaton (which contains the same b-edges as A1) is a finite inverse
automaton admitting no R-expansions, and is still an approximate automaton of u.
However, vertices of the Munn trees MT(ui) may have been identified in the process,
so now folding of b-edges may become possible. After folding the b-edges, different
Ã-components may now share a vertex, but we claim that these new Ã-components
may still be viewed as approximate automata for some word on Ã.

Indeed, assume that B and C are subautomata ofA1 corresponding to approximate
automata of v, w ∈ Ã∗, respectively. If we identify the vertex p of B with the vertex q
of C, we may modify v, w to assume that p and q were, respectively, the terminal and
initial vertices of B and C. It follows easily that, by identifying p and q, we get an
approximate automaton of vw ∈ Ã∗.

We may now restart the process. At each iteration, the number of b-edges decreases,
so we are bound to eventually halt by obtaining some finite inverse automaton A2
admitting no R-expansions, which is still an approximate automaton of u.

Now let A3 be obtained from A2 by adjoining a b-loop at each vertex p admitting

a path p
w−1

e−−→ · · · for some e ∈ E (if it does not exist already). Adjoining these new

b-loops does not allow any folding: if p
bε−→ q � p would be an edge ofA2 for ε = ±1,

then we have necessarily p ∈ Q′ because p is doomed to host a b-loop in AT (u),
and then we already have a b-loop at p in A1. Hence, A3 admits no folding and it
certainly admits no expansions of any sort. Since A3 is an approximate automaton of
u, it follows thatA3 = AT (u), which is therefore finite.

Therefore,AT (u) must be finite in all cases and so is Ruϕ.
(ii) We start by noting that the homomorphism η : S→ T extending the identity

mapping on A is an embedding. It is immediate that we have a homomorphism
θ : T → S defined by
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bθ = 1, aθ = a (a ∈ A).

Then θη = 1S (as it is the identity on A), and so η is an embedding of S into T.
Let e ∈ E. To construct AT (we), we start by turning MT(we) into AS(we), which is

an approximate automaton of we for the presentation in Equation (3-1). Expanding
through the relation web = we and subsequent folding produces a b-loop at the
basepoint i and possibly at other vertices where a path labeled by we (necessarily a
loop) can be read.

Suppose now that we have some path of the form p
we′−−→ q in AS(we) with

e′ ∈ E \ {e}. Then uwe′v ∈ L(AS(we)) for some u, v ∈ Ã∗ and so (uψ)e′(vψ)e = e, yielding
e′ ≥J e. This contradicts the assumption that no two distinct elements of E are
J-comparable in S, and hence AS(we) admits no path of the form p

we′−−→ q and so
AT (we) is indeedAS(we) with a few b-loops attached (namely at the basepoint).

In view of the relation web = we, we get weϕ ≤ bϕ and so weϕ ∈ λT (bϕ) ∩ E(T).
Suppose now that weϕ ≤ f ∈ λT (bϕ) ∩ E(T). Let v ∈ B̃∗ be a Dyck word representing f.

On the one hand, weϕ ≤ vϕ implies L(AT (v)) ⊆ L(AT (we)). On the other hand,
since f ≤ bϕ, we have vϕ = f = f (bϕ) = (vϕ)(bϕ) = (vb)ϕ. Thus, AT (vb) � AT (v)
and so there exists a b-loop at i inAT (vb).

It follows that at some point in the Stephen’s sequence of vb, we must have had
some expansion through some relation of the form we′b = we′ . Hence, we′ labels some
path inAT (v) and so xwe′y ∈ L(AT (v)) ⊆ L(AT (we)) for some x, y ∈ B̃∗.

We have seen above that there is no path in AS(we) (and consequently none in
AT (we)) labeled by some we′ for e′ ∈ E \ {e}, and hence AT (v) must admit some loop
labeled by we at some vertex q1.

Let i = q0
w−→ q1 be a path in AT (v). For those familiar with the bicyclic monoid,

if we put x = (vwwe)ϕ, then xx−1 = f and x−1x = e(w−1ϕ) f (wϕ)e ≤ e ≤ f . So if e < f ,
then x, x−1 generate a copy of the bicyclic monoid with identity f and hence the
R-class of f is infinite, contradicting part (i). For those not familiar with the
bicyclic monoid, here is a direct proof. Here, wwew−1 ∈ L(AT (v)) ⊆ L(AT (we)) and so
(wwew−1)ϕ ≥ weϕ. Assume that there exists a path

inAT (v) for some j ≥ 1. Then wjwew−j ∈ L(AT (v)) yields (wjwew−j)ϕ ≥ vϕ and so

(wj+1wew−(j+1))ϕ = (wj(wwew−1)w−j)ϕ ≥ (wjwew−j)ϕ ≥ vϕ.

Thus, wj+1wew−(j+1) ∈ L(AT (v)). By induction, it follows that we have a path of the
above form inAT (v) for every j ≥ 1. SinceAT (v) is finite by part (i) and is an inverse
automaton, we must have qj = q0 for some j ≥ 1. However, then we labels a loop at
q0 = i inAT (v) and so weϕ ≥ vϕ = f .

Thus, f = weϕ and so weϕ ∈ μT (bϕ) for every e ∈ E.
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Since E is infinite and η : S→ T induced by the identity on A is an embedding,
{weϕ | e ∈ E} is an infinite subset of μT (bϕ). �

Now we can use Proposition 3.1 to produce examples which answer positively
Problem 1.1.

EXAMPLE 3.2. Let I ⊆ N \ {0} be infinite and let TI be defined by the inverse monoid
presentation

〈a, b, c | abia = abiac (i ∈ I)〉. (3-2)

Then:

(i) all the R-classes of TI are finite;
(ii) μTI (c) is infinite.

Indeed, let S = FIM{a,b}, which has finite R-classes [3]. Then

EI = {((abia)−1(abia))ρ | i ∈ I}

is an infinite subset of E(S). If i, j ∈ I are distinct, then there is no path labeled by abia
in MT(abja) and vice versa, so no two distinct elements of EI are J-comparable in S.
Consider now the inverse monoid presentation

〈a, b, c | (abia)−1(abia) = (abia)−1(abia)c (i ∈ I)〉.

In any inverse semigroup, u = uc is equivalent to u−1u = u−1uc, and hence this
presentation is equivalent to Equation (3-2).

Now it follows from Proposition 3.1 that all the R-classes of TI are finite and μTI (c)
is infinite.

We can now use Example 3.2 to prove the following proposition.

PROPOSITION 3.3. There exist uncountably many nonisomorphic 3-generated inverse
monoids satisfying the conditions of Problem 1.1.

PROOF. For each infinite I ⊆ N \ {0}, let TI be defined by the inverse monoid
presentation in Equation (3-2). We have shown in Example 3.2 that TI satisfies the
conditions of Problem 1.1. Since a countably infinite set contains uncountably many
infinite subsets, it suffices to show that TI � TJ for distinct I, J ⊆ N \ {0}.

Out of symmetry, we may assume that i ∈ I \ J. Suppose that θ : TI → TJ is an
isomorphism. It is easy to see that each generating set of TJ must contain:

• a or a−1;
• b or b−1;
• c or c−1.

Hence, any minimal generating set of TJ is necessarily of the form {aε, bδ, cγ} with
ε, δ, γ = ±1. Thus, we may assume that θ is induced by some bijection {a, b, c} →
{aε, bδ, cγ}.
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Since abia = abiac is a relation of the presentation of TI , then (abia)θ = (abiac)θ
holds in TJ . Hence, cθ labels a loop inATJ ((abia)θ) and so cθ = cγ necessarily.

Since abia = abiac holds in TI , then (abia)θ = (abia)θcγ must hold in TJ . The only
way of enabling an expansion in MT((abia)θ) is if aθ = a, bθ = b, and i ∈ J, which is
a contradiction. Therefore, TI � TJ . �

4. Finitely presented examples

In this section, we present a construction which provides infinitely many noniso-
morphic finitely presented 3-generated inverse monoids satisfying the conditions of
Problem 1.1.

EXAMPLE 4.1. For each t ≥ 2, let St be defined by the inverse monoid presentation

〈a, b, c | ca = a, cb−tc−1bt = cb−tbtc−1〉.

Then:

(i) every R-class of St is finite;
(ii) μSt (aca−1) is infinite.

Let us check these facts.
(i) Write S = St and A = {a, b, c}. Let ϕ : Ã∗ → S be the canonical homomorphism.

For every x ∈ A, let πx : Ã∗ → Z be the homomorphism defined by

yπx =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if y = x,
−1 if y = x−1,
0 if y ∈ Ã \ {x, x−1}.

Let u ∈ Ã∗. It suffices to show that SΓ(u) possesses only finitely many edges labeled
by a, b, c.

If we perform an expansion involving the letter a, the subsequent folding prevents
the number of a-edges to increase. Hence, the number of a-edges in SΓ(u) is bounded
by the number of a-edges in MT(u).

Dealing with the b-edges is harder because its number may increase through the
Stephen’s sequence of u. We start by proving a few remarks.

If v labels a loop in SΓ(u), then vπb = 0. (4-1)

Inspection of the defining relations shows that πb induces a homomorphism
πb : St → Z. If v reads a loop in SΓ(u), then s(vϕ) = s for some s ∈ St, and so
sπb + vπb = sπb, whence vπb = 0.

Let v ∈ Ã+. We call a vertex (respectively edge) of SΓ(v) original if it corresponds
to some vertex (respectively edge) of MT(v). We show that:

Every vertex p of SΓ(u) admits some path p
bm

−−→ q with m ≥ 0 and q original. (4-2)
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Once again, this property holds trivially for MT(u) and is preserved through folding.
What about expansions? If we expand through the relation ca = a and fold once to
make the new c label a loop, the property still holds. Hence, we may assume that we
are expanding through the relation cb−tc−1bt = cb−tbtc−1. The only way of getting new
vertices is described by the following picture (where some appropriate folding is also
assumed to limit the appearance of new vertices to a minimum):

If the property holds for the vertex p0, it must also hold for the new vertices (p4 and
p5 in the picture), thus the property is preserved through both sorts of expansions. It
follows that the property holds throughout the whole Stephen’s sequence of u. Since
every vertex p of SΓ(u) must originate from some term of the Stephen’s sequence, then
Equation (4-2) holds.

Let X be the set of b-edges of SΓ(u). Let σ be the equivalence relation on X
generated by relating edges

p
b−→ q and p′

b−→ q′

whenever SΓ(u) admits a path

p
bs

�� • c �� • b−s
�� p′

for some s ∈ Z. Since the unique expansions that increase the number of b-edges
involve the relation cb−tc−1bt = cb−tbtc−1, it follows easily by induction on the usual
expansion/folding scheme that every edge in X is σ-equivalent to some original edge.
Thus, σ has only finitely many equivalence classes and we only need to show that
the size of each equivalence class can be bounded. Let k be the number of vertices
in MT(u). Suppose that some equivalence class of σ possesses k + 1 different edges

pi
b−→ qi for i = 0, . . . , k. By Equation (4-2), for each i = 0, . . . , k, there is a path qi

bmi

−−→
ri in SΓ(u) with mi ≥ 0 and ri original. Hence, there exist 0 ≤ i < j ≤ k such that ri = rj.

Since qi � qj, we get mi � mj. However, it is easy to see that since pi
b−→ qi and pj

b−→ qj

are σ-equivalent, there exists some path qi
w−→ qj in SΓ(u) with wπb = 0. However, then

qi
w �� qj

bmj
����
��
��
��

ri

b−mi

����������

is a loop in SΓ(u) with (wbmj b−mi )πb � 0, contradicting Equation (4-1). Therefore, each
equivalence class of σ has at most k elements and so SΓ(u) has finitely many b-edges.
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It remains to bound the number of c-edges. Suppose that we remove all the a-edges
and b-edges from SΓ(u) to get the automaton A. Each time we remove an edge, the
number of connected components increases at most by one. Hence, the number of
connected components of A is bounded and it suffices to show that all of them are
finite.

Now for every edge pi
c−→ qi � pi appearing for the first time in Ai(u) in the

Stephen’s sequence, there exist necessarily some edge pi−1
c−→ qi−1 � pi−1 in Ai−1(u)

and paths

qi−1 qi
bt

��

pi−1

c

��

pibt
��

c

��

in Ai(u) because the expansion ca = a could never produce the straight edge pi
c−→ qi.

It follows that, for every edge p
c−→ q � p in SΓ(u), there exist some edge p1

c−→ q1 in
MT(u) and paths

q1 qbm
��

p1

c

��

p
bm

��

c

��

in A(u) for some m ≥ 0. Since MT(u) is finite and SΓ(u) has finitely many b-edges,
then we can bound the size of each connected component ofA. Thus, SΓ(u) possesses
only finitely many c-edges and we are done.

(ii) For every n ≥ 1, let en = ((abtna)(abtna)−1)ϕ. We claim that

(4-3)

is SΓ(en). Here an edge p
bt

−→ q is shorthand for a sequence of t edges in a straightline
from p to q, labeled by b, (together with their inverse edges) and with no other edges
incident on any vertex other than p, q.

It is clear that MT(en) is

�� �� p0 a
�� p1 bt

�� p2 bt
�� · · ·

bt
�� pn+1 a

�� pn+2 .

Expanding through the relation ca = a, we can produce the first and the last c-loops.
Then we expand through the relation cb−tc−1bt = cb−tbtc−1 to successively produce the
c-loops at pn, pn−1, . . . , p1. Since Equation (4-3) is an inverse automaton and admits
no expansions, it must be SΓ(en), which has therefore tn + 3 vertices.

https://doi.org/10.1017/S1446788723000198 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788723000198


396 P. V. Silva and B. Steinberg [13]

Now A(en) is obtained from SΓ(en) by declaring p0 the basepoint. Since aca−1 ∈
L(A(en)), then (aca−1)ϕ ≥ en and so en ∈ λ((aca−1)ϕ) ∩ E(S). We show that en ∈
μS((aca−1)ϕ).

Suppose now that f ∈ λ((aca−1)ϕ) ∩ E(S) satisfies en ≤ f . Let v ∈ Ã∗ be a Dyck
word representing f.

First we note that f ∈ λ((aca−1)ϕ) implies f ≤ (aca−1)ϕ. Hence, aca−1 ∈ L(A(v)).
Write B = {b, c}. We show that

If w ∈ B̃∗, then SΓ(w) contains no c-loops. (4-4)

First note that if u ∈ B̃∗, then u does not represent the same element of St as any
word z containing a or a−1 since the relation ca = a cannot be applied to any word in
B̃∗. It then follows that the inverse subsemigroup Tt of St generated by B is defined by
the relation cb−tc−1bt = cb−tbtc−1. It also follows that a cannot label an edge in SΓ(w)
for any w ∈ B̃∗ since if a labels an edge in SΓ(w), then wϕ = zϕ for some word z ∈ Ã+

containing an a or a−1. Thus, the Schützenberger graphs of w in St and Tt coincide.
From the presentation for Tt, πc|B̃∗ factors through a homomorphism Tt → Z. Since Z
is a group, it follows that if z ∈ B̃∗ labels a loop in SΓ(w), then zπc = 0, and so Equation
(4-4) holds.

Since en ≤ f = vϕ, then v ∈ L(A(en)). Let A be obtained by removing the vertex
p2n+2 from A(en) (in the notation given in Equation (4-3) for SΓ(en)). Suppose that
v ∈ L(A). We can factor

v = ci0 (aw1a−1ci1 ) · · · (awma−1cim )

with m ≥ 1, ij ∈ Z, and wj ∈ B∗. Expanding Lin(v) through the relation ca = a and
folding to get c-loops, we get the automaton

Applying expansions and folds to the part corresponding to Lin(w1 · · ·wm), the graph
we get is SΓ(w1 · · ·wm) (which contains no c-loops by Equation (4-4)) with finitely

many subgraphs adjoined. No further expansion applies to this graph,
and hence what we get is really A(v). However, we have remarked before that
aca−1 ∈ L(A(v)), contradicting the nonexistence of c-loops in SΓ(w1 · · ·wm). Thus,
v ∈ L(A(en)) \ L(A′).
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It follows that we can factor v = v′v′′ so that v′ labels a path of the form

p0
v0−→ p0

a−→ p1
v1−→ p1

v2−→ p2
v3−→ p2

v4−→ p3
v5−→ · · ·

v2n−−→ pn+1
v2n+1−−−→ pn+1

a−→ pn+2

inA(en) for some factorization v′ = v0av1v2 · · · v2n+1a such that v2j ρ bt for j = 1, . . . , n.
And we may assume that

The displayed edge p0
a−→ p1 features the last occurrence of p0 in the path labeled by v′. (4-5)

For j = 0, . . . , n, letAj denote the inverse automaton depicted by

We show that

A(w) = An−j for all j = 0, . . . , n and w ∈ L(An−j). (4-6)

We use induction on j. The case j = 0 is immediate in view of the relation ca = a.
Hence, we assume that j > 0 and Equation (4-6) holds for j − 1.

Let w ∈ L(An−j). Then we may write w = w′xw′′ with x ρ bt and w′′ ∈ L(An−(j−1)).
By the induction hypothesis, we get A(w′′) = An−(j−1). Folding the b-edges and
expanding through the relation cb−tc−1bt = cb−tbtc−1, we obtain A(btw′′) = An−j.
However, w ∈ L(An−j) and xw′′ρ = btw′′ρ, and thus wϕ ≥ xw′′ϕ. Therefore,

wϕ = (w′xw′′)ϕ = (w′xw′′)ϕ((xw′′)ϕ)−1(xw′′)ϕ = wϕ((xw′′)−1xw′′)ϕ = (xw′′)ϕ

and soA(w) = A(btw′′) = An−j, whence Equation (4-6) holds.
In particular, A(z) = A0 for z = v1btv3bt · · · btv2n+1a in view of Equation (4-5).

Expanding through the relation ca = a and folding, it is easy to see that A(az)
is just A(en) with p2n+2 as terminal vertex. Since v0 labels a loop at p0, we
have v0ϕ ≥ (az)(az)−1ϕ and so v0azϕ = azϕ. Thus, A(v′) = A(v0az) = A(az). Hence,
A(v′(v′)−1) = A(en) and so (v′(v′)−1)ϕ = en. However, then

en = (v′(v′)−1)ϕ ≥ vϕ ≥ en

yields vϕ = en and so en ∈ μS((aca−1)ϕ) for every n ≥ 1. Since we have established
before that SΓ(en) has tn + 3 vertices, it follows that μS((aca−1)ϕ) is infinite.

We can now use Example 4.1 to prove the following proposition.

PROPOSITION 4.2. There exist infinitely many nonisomorphic finitely presented
3-generated inverse monoids satisfying the conditions of Problem 1.1.

PROOF. We have shown in Example 4.1 that St satisfies the conditions of Problem 1.1
for every t ≥ 2. Thus, it suffices to show that St � Sn for distinct t, n ≥ 2.

Suppose that θ : St → Sn is an isomorphism. It is easy to see that each generating
set of Sn must contain:
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• aα with α = ±1;
• bε with ε = ±1;
• cδ with δ = ±1.

Hence, any minimal generating set of Sn consists necessarily of three elements of this
form. Thus, we may assume that θ is induced by some bijection {a, b, c} → {aα, bε, cδ}.

Since ca = a is a relation of the presentation of St, then (cθ)(aθ) = aθ holds in Sn,
yielding successively cθ = cδ (since a and b never label loops), aθ = aα, and bθ = bε.

However, cb−tc−1bt = cb−tbtc is also a relation of the presentation of St, and hence
cδb−εtc−δbεt = cδb−εtbεtc−δ holds in Sn. Since MT(cδb−εtc−δbεt) admits no expansion
for the presentation of Sn, we have reached a contradiction. Therefore, St � Sn. �
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