
4

Information Hazing

An Examination through Computer Science Education

Elizabeth Wickes and Melissa G. Ocepek

information hazing

Misinformation is experienced in many places and forms throughout a person’s
lifetime. Unfortunately, one common place where misinformation can have a long
and lasting impact is within the classroom. As instructors working within the field of
information science, we have seen students struggle with understanding the norms
and rules of academia. Inadequate or incorrect guidance can cause negative impacts
for students. These include missed opportunities, peer ostracism, anxiety, and
lowered grades. These have long- term implications in terms of the students lived
experience as well as larger societal representation in computing fields.
We define information hazing as the use of information to directly and indirectly

harass and/or exclude newcomers. It is often used to create strong bonds of in and
out groups in social environments that have shared values and social cohesion. It is
used to demonstrate one’s current membership within a group, or worthiness for
gaining membership. This concept derives from the research literature on hazing in
academic and work settings as well as research on bullying in higher education.
The concept of information hazing provides a new framework to consider how

the norms of early computing education encourage malinformation and misinfor-
mation to spread and privilege students who are more familiar with computer
science concepts, culture, and industries.
Most traditional examples of hazing showcase overt and direct behaviors between

individuals. Information hazing is different in several distinct areas. First, it is often a
covert approach, residing within policies or other governance structures of the social
group. This content will often blend into surrounding policies, hiding behind other
discussions of ethics and morality. Second, being embedded within governance and
decision-making powers, it acts at scale on newcomers rather than individual actors.
Third, these two factors intersect to obfuscate an individual person’s ownership or
connection to these governance structures. For example, the justification for a
decision would come from the system rather than a person. Fourth, this

67

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

figure 4.1 Visual themes from information hazing: an examination through computer
science education.

68 Elizabeth Wickes and Melissa G. Ocepek

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

independence allows the systems to operate outside the normal barriers of time.
Policy language and precedents can last beyond the original author’s lifespan or
tenure within the group, with authorship credit often forgotten and attributed just to
group norms.
These factors combine to make intersectional traps that further advance informa-

tion hazing’s ability to exist under the normal checks and balances designed to
dismantle inequitable and unfair practices. While scholars have addressed many
elements of computing education that have made it unwelcoming to many, no studies
have considered how the governing documents of class including the syllabus, honor
code, student code, and other academic integrity related policies begin the process of
creating an unwelcoming environment when they are shared before or on the first day
of class. These policies have been studied under the lenses of professional practice,
detection, and prevention; there appears to be a gap of investigation into the more
holistic impact of the policies on the student experience. In this chapter, we examine
and consider the governing documents of first computing courses with an eye to
information hazing. A form of hazing that we believe is all too prevalent in computing
education and is a factor in the reason many nontraditional computer science students
struggle with their grades, mental health, and long-term prospects in the field.

Hazing

As long as higher education has existed so has hazing. Plato described what modern-
day scholars consider hazing at his Academy in 387 bc (Nuwer 1999). Since then,
public attitudes around hazing have shifted and currently forty-four states have laws
on the books to criminalize and deter hazing (StopHazing 2022). Hazing, much like
information, is a term with many definitions. Most contain three elements: a power
in-balance, abuse, and initiation.
Hazing is the exercise of control or power, usually in a punitive or abusive

manner, by persons who are members of a group or organization and directed at
individuals seeking admission to the group. Hazing often is an initiation ritual.
(Guynn and Aquila 2004, 1).
There are also distinctions in the literature between mental hazing, physical

hazing (Nuwer 1999), sexual hazing (Guynn and Aquila 2004), and academic
hazing (Costa Pinto et al. 2020). Academic hazing is the most similar to information
as it is within the context of initiation and transition into higher education.
A few notable attributes of hazing in general, which also apply to information

hazing include:

� it can happen regardless of malicious intent (Allan and Madden 2012);
� those who have been hazed believe it is their right or even responsibility

to haze others, and that it is used to maintain the values, principles, and
exclusivity of the group (Guynn and Aquila 2004).

Information Hazing 69

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

Along with exclusivity, hazing emphasizes conformity, making mass initiations
particularly difficult for members of a potential group who are different, including
but not limited to members who do not belong to the dominate race, sexual
orientation, gender, appearance, or ideology. Finally, much like the topics through-
out this book, hazing is tied to misinformation, malinformation, and deceit.

Nearly all acts of hazing involve deception. Hazers lie all the time to
newcomers. First they lie about the severity of the hazing, which is intended to
build fear in the initiate. Then as newcomers invest more and as the initiation
process nears an end, hazing escalates, always remaining secret. Hazers also lie to
one another, to adults, and to themselves to rationalize that the brutal practices
build group unity. (Guynn and Aquila 2004, 26)

Applying this framework onto a critical study of early computing education allows
for a more nuanced lens in which to consider the possible impacts of certain policies
and procedures that create an unwelcome and exclusionary academic environment
for many students.

governing knowledge commons

Governing Knowledge Commons (GKC) is a descriptive framework for analysis,
defining knowledge commons, and further investigating how the people within that
knowledge commons manage governance. The classroom space has been discussed by
others as a knowledge commons (Madison, Frischmann, and Strandburg 2009).
Classrooms operate under many agents of control, but the syllabus is one of the most
direct and personal factors between the instructor and the student. Instructors often
have a wide range of options for requirements and rules with little oversight or review.
These factors make syllabi, as governance documents, extremely interesting for analysis.

We see that information hazing can be enacted by a knowledge commons (within
the classroom) by means of governance (the syllabus). As a document directly related
to control, power, and punishment, the syllabus uses policy and procedures to enact
this control at scale. Control over behaviors, specifically around information access
and use, aligns with the GKC framework of analysis while still creating a clear link
between the framework and our novel concept of information hazing.

Previous works on commons governance have identified the university and its
various units and departments as constructed cultural commons where knowledge is
produced and disseminated throughout various levels of classrooms, research labs,
and administrative level (Madison, Frischmann, and Strandburg 2009). We build on
this work and its focus on the formal and informal institutional structures that influ-
ence a knowledge commons including policies, structures, and social norms. For our
exploration of information hazing in top-tier computer science classrooms, we view
the contextual space of higher education, research universities and small liberal arts
colleges and universities, and the physical, digital, social, and structural spaces of the

70 Elizabeth Wickes and Melissa G. Ocepek

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

classroom. The classroom and its related digital spaces are our action arena. The
actors in our exploration are the students, instructors, and teaching assistants who
populate introductory computer science education spaces. The resources that move
throughout this commons space include the informational and intellectual material
that constitutes the content of the class as well as the information that makes up the
policies and rules that constrain the learning environment.

Syllabus as Governance

Outside of direct observation, understanding the power dynamics of any classroom is
difficult. Students’ lived experiences within these spaces is an essential element of
such a description. However, our focus is on examining the governance structure
rather than field observation. The course syllabus defines the elements of power,
punishment, and control over the classroom. They are presented to students as the
governing documents for individual courses. Being used in partnership with any
existing student codes, handbooks, or other policies, syllabi have a responsibility to
inform students of instructor expectations and policies for that class. Faculty have
indicated that their academic integrity policies were sourced from a variety of levels
within their institution, often being “defined, redefined, or interpreted at multiple
levels” (Simon et al. 2018, 116). The syllabus should then be the final operationalized
product of these influences, representing the official rules for their particular space.
Hazing behaviors often appear within the initial onboarding or other introduction

to a space. The notion of an introductory or other “first” programming (CS1) course
and the resulting classroom (virtual and physical) fit these frameworks as a know-
ledge commons with formal governance structures, but also serve as a first or early
experience within a professional community of programmers The syllabus and
classroom connect as “introductory” at two levels: the syllabus as an introduction
to the classroom at the micro level and the course itself being the introduction to the
field at a macro level.
We examined introductory courses to better understand and describe the inter-

play between governance and hazing. Our working definition required each course
to be a student’s initial exposure to programming topics, without any substantial
prior programming experiences. These tend to have similar topics across many
institutions, allowing us to focus on any differences in governance and information.
A full course load for many undergraduates is between four to six classes running

concurrently each semester, meaning that students often operate under four to six
different sets of classroom policies that also exist under departmental or program
policies. The academic term changeover means that expertise in specific policies is
reset as new courses and policies come into effect. Expertise can be difficult to gain,
particularly for rarer events like academic misconduct.
Close examination of syllabi within this educational space provides key evidence

to observe governance of these knowledge commons, while maintaining our lens of

Information Hazing 71

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

information hazing on novices. Previous research (Simon et al. 2018) surveyed and
interviewed faculty members on their academic integrity policies, which were
gathered as part of data collection. These findings provide a baseline to validate
our sample and observe differences. They found that faculty used informal explan-
ations alongside official policy: “some noted that the policies are not uniformly
enforced or, more commonly, that the policies are customized – officially or not –
for a discipline, a course, or even an individual assessment” (Simon et al. 2018, 116).
Thus, we can expect that statements included within our samples to be incomplete
as compared to what students may be presented within the classroom, but provide a
fuller picture of what a faculty member would be required to enforce.

Academic Integrity

Academic dishonesty policies exist to provide definitions and explain consequences,
and encompass things like cheating on exams, using fabricated data, forgeries, and
plagiarism. These governing documents are created with a variety of names, but
students are expected to understand and abide by them. Smaller units, such as
departments within a university, often create their own versions meant to work in
conjunction with existing policies or provide contextual clarifications. These higher-
level policies are broad and meant to cover issues across many courses. The lowest
level of these policies are the ones for each course or section and are generally
required for each course. As discussed, the syllabus stands as a governing document
for the physical classroom space but also the learning space where any work is being
completed, including outside the classroom.

The higher-level policies often exist within a system for processing accusations
and sanctions. Some academic units may allow faculty members to resolve cases of
academic integrity independently, but additional groups exist to process appeals and
provide other kinds of oversight. These systems are generally very formal and can
have names like the “Honor Council” or “Integrity Committee.”

These are formal systems with specific governance charges to uphold. Yet the
policies that touch students directly come from the syllabus, where the faculty
attempt to remind students of the policies and provide contextual understanding.
This project looked at syllabi from introductory computer science courses, so the
faculty are expected to provide instruction on how the policies apply to writing
computer code and introduce students to (very probably) a new way of handling
attribution and citation.

Within Computer Science

Computing work generates a variety of written content, such as reports, documenta-
tion, presentations, and books. These items exist to support and explain the other
items: source code, executable content, data, and more. Most domains have content
needing some special handling, but the written content related to computing works

72 Elizabeth Wickes and Melissa G. Ocepek

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

well with traditional plagiarism, attribution, and crediting paradigms. Source code
and other outputs challenge the traditional approaches of detection. New definitions
are needed because, unlike with prose writing, novelty and originality appear differ-
ently within source code (Simon et al. 2013). Issues related to data (CODATA-ICSTI
Task Group on Data Citation Standards and Practices 2013) and source code (Smith,
Katz, and Niemeyer 2016) citation are current areas of research, particularly for those
working in scientific reproducibility (Vicente-Saez and Martinez-Fuentes 2018).
Source code citation and attribution within introductory computer science homework
shares some of these similar concerns but is much more focused on issues of plagiarism
and detection rather than reproducibility or citation style and object identifiers.
Existing policies around academic integrity for assessments that involve writing prose

are insufficient to cover how much of this new content is being used. Altering a
quotation from literature may make it no longer blatant plagiarism, the same is not the
case for code. Content copied directly from another source almost always requires at
least some minimal adaptation to slot into an existing program, even if your intent is to
keep the core behavior the same (Wu et al. 2019). Providing attribution for reused code
is considered important within computing, but methods for providing such attribution
are highly dependent on context and commonly accepted standards (Simon et al.
2016), making the practice not obvious and not represented under existing general
plagiarism guidance beyond simply asking students to provide attribution.

collection methods

Sample Design

Our goal was to review a broad collection of introductory computer science syllabi,
hoping to observe many forms of information governance and document standard
structural patterns.
We restricted our sample to United States higher education institutions and

focused on two groups: “Top” ranked undergraduate computer science programs
according to US News and World report (Table 4.2) and top programs within small
liberal arts colleges (SLAC) (Table 4.1). The US News and World report rankings for
2022 were obtained and saved for later reference. The actual ranked value of each
institution was not retained or considered during this investigation. These labels are
not mutually exclusive and not intended to be used as such.
SLACs tend to lack representation within nationally ranked lists of colleges by

major. Lists of top SLACs for computer science (CS) were obtained from four
separate sources.1 Institutions listed within these lists were combined, and the
number of times each appeared was tallied. The final list of candidates was obtained

1 www.collegetransitions.com/dataverse/best-small-colleges-for-computer-science. www.collegevine.com/
schools/best-liberal-arts-colleges-for-computer-science. www.koppelmangroup.com/blog/2019/11/4/the-
best-small-liberal-arts-colleges-for-computer-science. https://academicinfluence.com/rankings/discipline/
best-computer-science-liberal-arts-colleges.

Information Hazing 73

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.collegetransitions.com/dataverse/best-small-colleges-for-computer-science
https://www.collegetransitions.com/dataverse/best-small-colleges-for-computer-science
https://www.collegetransitions.com/dataverse/best-small-colleges-for-computer-science
https://www.collegevine.com/schools/best-liberal-arts-colleges-for-computer-science
https://www.collegevine.com/schools/best-liberal-arts-colleges-for-computer-science
https://www.collegevine.com/schools/best-liberal-arts-colleges-for-computer-science
https://www.collegevine.com/schools/best-liberal-arts-colleges-for-computer-science
https://www.koppelmangroup.com/blog/2019/11/4/the-best-small-liberal-arts-colleges-for-computer-science
https://www.koppelmangroup.com/blog/2019/11/4/the-best-small-liberal-arts-colleges-for-computer-science
https://www.koppelmangroup.com/blog/2019/11/4/the-best-small-liberal-arts-colleges-for-computer-science
https://www.koppelmangroup.com/blog/2019/11/4/the-best-small-liberal-arts-colleges-for-computer-science
https://academicinfluence.com/rankings/discipline/best-computer-science-liberal-arts-colleges
https://academicinfluence.com/rankings/discipline/best-computer-science-liberal-arts-colleges
https://academicinfluence.com/rankings/discipline/best-computer-science-liberal-arts-colleges
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

table 4.1 List of courses from SLACs in sample

Institution Course Term Title

Amherst College CSSC 111 Spring 2020 Intro to computer science I
Bowdoin College CSCI 1101 Fall 2019 Intro to computer science
Bowdoin College CSCI 1103 Fall 2021 Programming with data
Carleton College CS 111 Winter 2019 Intro to computer science
Colgate College COSC 101 Spring 2022 Intro to computing I
Grinnell College CS 151 Spring 2022 Functional problem solving
Harvey Mudd College CS 5 Spring 2022 Intro to computer science
Mount Holyoke College CS 100 Fall 2019 Intro to computer science
Mount Holyoke College CS 151 Spring 2022 Introduction to computational

problem solving
Swarthmore College CS 21 Spring 2022 Intro to computer science
Vassar College CMPU 101 Spring 2020 Problem solving and abstraction
Wellesley College CS 111 Spring 2022 Computer programming and problem

solving
Wellesley College CS 115 Spring 2020 Computing for the sociotechno web
Wesleyan University COMP 112 Fall 2017 Intro to programming
Williams College CSCI 134 Spring 2022 Intro to computer science

table 4.2 List of courses from top-ranked computer science programs in sample

Institution Course Term Title

Carnegie Mellon Univ 15–112 Spring 2022 Fundamentals of programming
Cornell Univ CS 1110 Spring 2022 Intro to computing using python
Cornell Univ CS 1112 Spring 2022 Intro to Ccmputing using

MATLAB
Georgia Institute of Tech CS 1301 Fall 2017 Intro to computing
Princeton Univ COS 126 Spring 2022 Computer science: an

interdisciplinary approach
Stanford Univ CS 101 Spring 2022 Intro to computing principles
Stanford Univ CS 106A Spring 2021 Programming methodologies
Univ California Berkeley CS10 Spring 2022 The beauty and joy of computing
Univ California Berkeley CS61A Spring 2022 Structure and interpretation of

computer programs
Univ of Illinois CS 105 Spring 2022 Intro computing: nontech
Univ of Illinois CS 101 Spring 2022 Intro to programming for

engineers and scientists
Univ of Michigan EECS 183 Fall 2020 Elem programming concepts
Univ of Texas Austin CS 312 Fall 2021 Intro to programming
Univ of Texas Austin CS 303e Spring 2022 Elements of computers and

programming
Univ of Washington CSE 142 Winter 2022 Intro to computer programming I

74 Elizabeth Wickes and Melissa G. Ocepek

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

by selecting all the institutions that appeared on at least two of these lists and were
not present within the US News and World report ranking group.
The use of “highest ranked” programs within our search boundary has multiple

reasons. Top programs across many types of institutions should provide an oppor-
tunity to find examples of creative nontraditional practices and possibly faculty who
are engaging in currently understood best practices within the computing education
field. More practically, we believed these programs had the highest likelihood to
have syllabi readily available within their general online resources. We believe that
these highly respected programs would serve as an informal standard that other
institutions would look toward. With openly available syllabi, we not only gain
access but other programs looking to adopt similar practices would as well.

Syllabus Collection

Computer science course descriptions were reviewed for each institution. Specific
courses were selected according to the following rules:

� must be a general programming instruction course (versus general com-
puter skills, business applications, etc.);

� may not be a hybrid course covering programming and statistics (e.g.,
data science courses);

� presume no prior personal or academic programming experience;
� not have any specialty hybrid content denoted in the title;
� multiple courses were allowed so long as the target audiences were

fundamentally different.

Tables 4.1 and 4.2 describe the identified courses from these institutions.

Data Analysis

Once all the documents were collected, we used Atlas.ti qualitative coding software
to analyze the documents. We applied thematic analysis (Braun and Clarke 2006) to
identify policy language, descriptions of cheating, collaboration, and other attributes
related to out-of-class learning. Thematic analysis provides a flexible framework for
identifying, analyzing, and reporting themes in qualitative data, including docu-
ments. Thematic analysis, unlike many other qualitative analysis frameworks, is not
tied to any larger theory or narrowly drawn process. We went through the six phases
of thematic analysis beginning with familiarizing ourselves with the data, generating
codes together through discussion based on the documents and our past familiarity
with research literature and experience as instructors in higher education. We then
considered the larger trends and themes in the codes, discussed them and their
relationships to each other and the research literature. While we focused on open
coding, we also found connections with our codes and the GKC, further supporting

Information Hazing 75

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

our findings that the classroom does represent a knowledge commons space and
syllabi are useful artifacts to observe many of these structures. Finally, producing this
chapter to where we hope to provide illustrative examples that highlight the oppor-
tunities and concerns, we see in this relevant cross-section the best of computing
education in higher education across the US.

findings and discussion

Policy presentation within the courses was quite varied, with many different section
headers, placements, and so on. Most were introduced using a mix of labels like
academic integrity, plagiarism policy, honor code, and collaboration policy. Some
linked to separate pages dedicated to specific policies or longer documentation on
their expectations for allowable group work, and so on. Many linked to, referenced, or
directly quoted the honor code or student code from their department or institution.
Most of these went to campus-level honor codes or similar policies, meant for general
academic work, but a few had computer science or programming specific guidance.

Observed themes include:

� using behavioral guidance rather than definitions;
� framing peers as information sources to be feared;
� white, western ethics as the only moral compass.

Our findings highlight many of the strategies instructors take to explain these
policies, including the variance of approaches and (natural) stumbling points of
attempting to work through such a difficult task. Our lens remains focused on
understanding the student impact that goes beyond simply understanding the
policies and acceptable behaviors.

Advice, not Governance

Plagiarism policies within syllabi serve to provide instruction to students about produ-
cing original work and respecting the work of others. These normally remind students to
focus on creating original content, use quotations to reference another author’s words
directly, paraphrase as needed, and so on. Defining these concepts is difficult and an
ongoing area of discussion among instructors and researchers as new tools for content
creation are adopted. Simon et al. (2018) investigated the language within plagiarism
policies for computing classes and stressed that instructors should not depend on student
understanding of these concepts even for prose writing, and that there is a strong need
for explicit instruction and contextualization of these policies for code writing work.

Do Your Own Work Typing
Terms related to ownership were commonly used within these plagiarism policies,
matching many traditional definitions of prose originality. A writer has their “own

76 Elizabeth Wickes and Melissa G. Ocepek

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

voice” and writes in their “own words,” for example. Attribution, crediting, quota-
tions, and other techniques are used to respect this ownership when an author’s
words are reused or for a work reference. Plagiarism can be considered theft of these
ideas or fraudulently presenting another person’s effort as your own. Most began
their policies with some instruction to only submit assignments containing their own
original content.

Assume all work you hand in is to be yours and yours alone. (Wellseley CS 111)

All the work that you submit must be yours. (Mt. Holyoke CS 100)

Work you submit must be predominantly your own.
(University of Washington, CSE 142)

Other policies focused on the creative actions taken to create the work, implying
that the act itself generated the originality and ownership. These generally add some
clarity by specifying the expected actions that the students should be doing alone,
but some still fall back to referencing ownership.

Each individual programming assignment must be coded by you.
(Georgia Tech CS 1301)

You must write your own solutions. (UC Berkeley 61a)

The solutions you write up and submit must be your own. (UT Austin CS 312)

Claiming or submitting as your own any work or code you did not fully author,
explicitly or implicitly, no matter how small. (CMU 15–112)

The last example (CMU 15–112) is from a long list of actions that are considered
academic integrity violations. Not only is “fully author” not defined, but “explicitly
or implicitly” were confusing modifiers. Students may interpret this to say that each
line of code they produce must be completely unique and original, no matter how
small. Many core programming patterns contain very short lines of code that have
little to no room for alterations.
Interestingly, many used the action of typing the content into the computer as a

replacement for the more creative actions. This is an objective measure and provides
an actionable direction to follow.

You should type and debug all the code you submit. (Stanford CS 101)

You have to be the one that types all of the work that you do in this class . . . You
should be the one entering responses to the textbook, pre-lecture activities,
and homework. (UIUC CS 105)

Behavioral guidance was commonly provided in lieu of a specific definition for
original work. Originality is difficult to explain and gauge, even in the worlds of art,
music, and writing, for example. This is compounded with the challenge of explain-
ing it to undergraduate students who likely still struggle with fully understanding

Information Hazing 77

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

plagiarism requirements for prose writing. Formal definitions may not be easily
understood by the students or explained by instructors. Behavioral examples may be
a fall back for faculty struggling to provide contextual precision from general
descriptions provided by their institutions but represent a very realistic workaround
the issues within policy language.

The use of typing as a litmus test for original work was an interesting way to provide
some objective measure for a deeply complex and subjective concept. This direction
is relatively simple to explain to students and based on an everyday action that they
would understand. The implicit meaning behind this rule accurately acknowledges
that influence and inspiration for writing the code likely came from many sources.
So long as the work was typed “by your own hand” it will be deemed acceptable.

Even when using specific examples, some held brief descriptions with little extra
clarity. Verbal guidance might be given informally during class time, but the
syllabus remains the primary governing document and is usually treated as the final
word when disagreements occur. Similar short policies were found by (Simon et al.
2018) and were described as “snippets of advice” (118).

When documented governance rules are unclear, those that prohibit a strong
knowledge commons from forming prevent essential knowledge sharing among
peers. Students may attempt to read between the lines and fill in gaps with
representations of their own risk tolerance, policies from prior courses, or their
knowledge of common industry practices. Requiring students to use their own sense
of risk when interpreting the meaning of a policy will likely result in very different
interpretations. Students from over-policed groups will be viewing academic policies
through the lens of their lived experiences, likely resulting in very different inter-
pretations than peers from under-policed groups.

Biased Threads
Faculty members usually have a wide range of freedom to contextualize policies and
requirements as needed for their courses, while also utilizing the course manage-
ment tools purchased by the wider university. Changes may stem from using
different types of assignments or teaching techniques but may also be based on
personal preference. Policies on late penalties, for example, can be a large area of
difference. Some faculty see being late to class or late submitting assignments as a
form of professional disrespect while others see one or both as a less of a matter to be
punished, and more a byproduct of life. These differences are often due to personal
experiences or professional expectations within their discipline. Personal prefer-
ences like these often end up encoded within policies.

These differing preferences among faculty are seen across the syllabi in our
sample, even within the same institution. Some suggested that solutions and related
code were completely forbidden and tainted any original work the student attempted
to produce, while another directed students to use the solutions to complete the
assignments.

78 Elizabeth Wickes and Melissa G. Ocepek

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

Looking at solutions from other students or any other source (including the web), or
collaborating to write solutions to individual work, is considered a violation of the
honor code. (Mt. Holyoke CS 100)

Homeworks are an opportunity to engage with the material and practice your
programming skills. To support you, solutions will be available on moodle. It is
your responsibility to engage with them in a way that strategically moves your
learning forward. (Mt. Holyoke CS 151)

These students will have dramatically different experiences and expectations for
future programming courses. One student may leave feeling like they missed out on
the important reflective nature of working with open solutions, while another is not
used to the isolation and struggle of closed material problem solving.
Faculty customizing policy choices allows them the freedom to quickly adapt to

students and situations, try things out, and find the right fit for their content. Our
own course policies differ based on our preferences and the kind of content that we
teach. Differences in belief about collaboration versus independence is a specific
pedagogical choice, but other areas of difference may allow for misconceptions or
bias to appear in policy.
Source plagiarism detection systems are commonly used to compare submitted

code to other submissions and other known solutions. While there are some
differences in how each system processes and calculates similarity, the core action
is comparing the text patterns within files. These tools appeared to strongly influ-
ence the policy guidance given for each course. Many policies mentioned using a
detection system and described them as systems to detect cheating or plagiarism.
Rarely were they mentioned by name or other details on how violations
were measured.
Viewing source code and prose writing as the same type of creative activity is

common and generally unproblematic. However, treating these two things as the
same when attempting to define attribution and plagiarism creates problems.
Plagiarism in source code is nothing new, and has been discussed long before these
detection tools existed. As discussed by Gibson (2009), providing attribution for
reused or referenced source code requires adaptation depending on context.
He named his guidance a “code of practice” because he wanted it to be seen as a
style guide where source code authors could make informed decisions rather than a
strict set of rules. When used in a normal context of a software project or company,
programmers have the freedom to make these contextual choices.
Some policies directed students to existing academic writing policies for their

programming assignments, even directly comparing writing code to writing essays.
These materials remain valuable for prose writing but usually lack guidance for
source code attribution if they even discuss source code at all.

Don’t cheat. Read Originality and Attribution: A guide for student writers at Vassar
College. Copying someone else’s code is plagiarism. School policy dictates

Information Hazing 79

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

instructors must report all suspected incidents of cheating to their department chair.
Please don’t put yourself or your professor in that position. When in doubt, ask your
professor before seeking help from another source. (Vassar CS 101)

One of the key things to understand about programming, and computer science in
general, is that it is a writing-heavy discipline. When you create a computer
program, you are writing a document, just like you write documents in an
English class (or any class that involves essays). Therefore, many of the same rules
that apply to writing essays also apply to computer programs, particularly
regarding plagiarism. (Cornell CS 1110)

This approach appears to be an honest but common misconception that goes
directly against known and documented limitations of this approach. Given their
lack of awareness, experience, and guidance, novice programmers could easily
violate these policies without knowing it (Simon et al. 2014). Riedesel et al. (2012)
stressed the need for institutions to have a well-understood policy for source code
plagiarism, while Simon et al. (2018) found that instructors will still amend it with
their own preferences and contextual needs. Discussion about this issue has grown
recently, making it unlikely that a faculty member would discover it otherwise unless
specifically searching for it.

The Vassar (CS 101) example below is notable because this quotation is the
entirety of the academic integrity policy section. Additionally, the book mentioned
appears to be from 1980 and only accessible from an administrator’s office. Students
are told to read a writing handbook for guidance about source code attribution,
when the handbook contains no reference to programming, so they end up with no
actual guidance. Additionally, these students may believe that it should be there, but
they lack the skill to find it.

Plagiarism is relatively easy to detect in a programming class. Do not take
shortcuts. Always do your own work. Note that we encourage discussion on
course content. (UIUC CS 101)

Some policies gave direct instructions on how to adjust their study behaviors and
conversations to better fit with how these systems work. Code or notes resulting from
student discussions were often restricted in addition to conversations. Many
explained that written notes allowed code from each student to look too similar
and could cause it to be flagged as plagiarism by detection tools.

Students sometimes unwittingly get “carried away” and start writing code discussing
a solution to an assignment, only to turn in suspiciously similar code that is flagged
by our plagiarism detection system, which is then subject to academic
dishonesty policies. (UT Austin CS 312)

One policy even went as far as suggesting that students wait thirty minutes after any
interaction to write any code as a method to prevent accidental replication between
parties.

80 Elizabeth Wickes and Melissa G. Ocepek

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

A good rule of thumb to ensuring your collaboration is allowed is not take written
notes, photographs, or other records during your discussion and wait at least
30 minutes after completing the discussion before returning to your own work.
(You could use this time to relax, watch TV, listen to a podcast, or do work for
another class.) For most students, this will result in you only bringing the high-level
concepts of the collaboration back to your work, and ensuring that you reconstruct
the ideas on your own. (U Washington ESE 142)

Remembering elements of code from conversations or other indirect connections
were not covered within working definitions of source code plagiarism (see Novak,
Joy, and Kermek 2019). Yet producing solutions that were too similar due to this was
explicitly labeled as cheating because the detection system flags these similarities.
The detection systems are literally defining the forms of cheating within
these courses.
Policies based on misconceptions can be more than just misinformation.

Directions instruct students seeking to follow the rules that help exist within certain
documents. Finding no actual reference to their problem has several consequences.
In the short term, the student may not meet expectations due to lack of guidance
and question their own understanding or seeking out help again. Longer term, the
frustration of being directed to use nonexistent information may deter the student
from progressing with a subject area.
While the comparison between source code and prose may be simple misinfor-

mation, telling students to seek help within policies containing no guidance on
source code attribution is malinformation at best and gaslighting at worst.

Certain Uncertainty

Concerns about communication and access to prohibited information were
common. The previous section covered the actions faculty required and suggested
students perform to ensure originality. Discussions of communication came up in
elements related to the plagiarism detection systems, but this next section looks
deeper into issues of communication. Student conversations were strongly policed
by many policies and faculty used policy space to add their own moral judgments
and threats about cheating and plagiarism.

Code (Of/In) Silence
Faculty used words like “collaboration,” “conversations,” “getting help,” and “dis-
cussions” within policies to describe interpersonal interaction between students
about the homework assignments. These descriptions took up most of the policies
and provided rules for interactions: specifying the modality, content, and even
language. Student collaboration to complete a group assignment was usually differ-
entiated from more generally talking about the assignment content, with the infor-
mal conversations being the instructor’s largest concern.

Information Hazing 81

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

This policy area had some of the broadest set of rules and requirements for
students, ranging from effectively no restrictions to only speaking to instructional
staff for the entire term. These policy sections had the most examples and detailed
descriptions of expectations. Most policies allowed or encouraged some form of
discussion between students and gave details on the range of acceptable topics for
their interactions.

Note that we encourage discussion on course content. (UIUC CS 101)

Discussing ideas and approaches to problems with others on a general level
is encouraged. (Swarthmore CS 21)

We believe that collaboration fosters a healthy and enjoyable educational environ-
ment. For this reason, we encourage you to talk with other students about the
course material and to form study groups. (Wellesley CS 115)

Programming assignments can involve substantial problem solving, research, trial
and error, and resolving bugs within the code. Students struggle with these areas
throughout CS1 courses, making them common conversation topics within a
classroom and learning group. Specific areas like approaches for problem solving,
programming concepts and patterns, and seeking help from peers were usually
broken into clusters approved for considerations or any off-limits topics.

In most cases, you may discuss concepts (algorithms, ideas, approaches, etc.) described
in the readings, lab exercises, or during class with anyone. (Carleton CS 111)

You are free to discuss ideas and approaches with other students, and then imple-
ment the solution yourself. (Stanford CS 101)

We recognize that collaboration can help you master course material. In fact, there
are certain ways in which we will encourage you to collaborate. These include:
discussing course content at a high level, getting hints or debugging help, talking
about problem-solving strategies, discussing ideas together. (Mt. Holyoke CS 151)

The modality was usually required to be in person with verbal communication. The
language descriptions often had the modifiers of “natural” or “human” language as a
method of restricting anything like a programming language to be spoken aloud.

Such a description should be in English or another natural human language.
(UW CSE 142)

Verbal collaboration without code sharing . . . (Bowdoin CS Collaboration Policy)

You may collaborate with other students by talking about the problem or your
solution in a natural language (e.g., English), but you may not use any formal
language, and especially not Python. (Wellseley CS 111)

Roughly speaking, it is okay to share ideas but it is not okay to share any artifacts
(code, write-up, etc.). Here is a good way to think about it: you and a classmate can

82 Elizabeth Wickes and Melissa G. Ocepek

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

get together, discuss ideas, and even write some code. However, you are expected to
leave that meeting with nothing – no notes and certainly no code – and write up
your own solution. (Colgate COSC 101)

This final example (Colgate COSC 101) gives some insight into why there were
these requirements. Code is plain text, making it very easy to share within text
platforms. Students often have group chats or another text-based communication
setup, so sharing portions of their code is quite easy and could possibly include a
dozen students as recipients. Limiting the language spoken generally forces students
to speak in broader, more conceptual terms, rather than specific elements of the
assignment being discussed. These two specific behavioral requirements encompass
many common concerns without lengthy behavioral lists.
Content and modality were not the only limited areas for interaction. Specific

groups of people were also prohibited. A few mandated students to hold no
homework-related interactions with anyone other than approved course staff.
While very strict, this rule was directly stated and essentially eliminates collusion.

Discussing any part of assignments or assessments with anyone else (besides 112 TA’s
and course faculty), no matter how briefly or casually, in person or via Discord/
WeChat/Zoom etc. unless the assignment explicitly allows it . . . all homework
exercises are solo, meaning that you must not collaborate in any way. (CMU 15–112)

Students may only collaborate with fellow students currently taking CS 1301, the
TA’s and the instructor. (Georgia Tech CS 1301)

Peers were commonly presented as a source of seeing, hearing, or receiving forbidden
information and collaboration turning into collusion. These two concepts are intrin-
sically related behaviors, as they are referring to the same set of social actions that
people may take toward a project (Fraser 2014). Collaboration describes all the
possible social actions taken toward a project or goal, while collusion covers any of
those actions that are not allowed. This means that the very definition of collusion
depends on the rules and scope for collaboration to be defined.

There is a difference between learning collaboratively and completing the work for
someone else. This can be a subtle but important distinction. . . . The following
types of collaboration are encouraged . . . The following types of collaboration are
prohibited and may constitute academic misconduct. (UWashington CSE 142)

You may not share information about your solution in such a manner
that a student could reconstruct your solution in a meaningful way (such as by
dictation, providing a detailed outline, or discussing specific aspects of
the solution). (Swarthmore CS 21)

All assignments must be done individually. No collaboration of any
kind is allowed. Any cases of inappropriate collaboration (cheating) have to be
reported to the department chair and the Academic Panel, and will be dealt
with promptly. (Vassar CS 101)

Information Hazing 83

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

Many attempted to define the level of detail students could include in their
conversations, hoping to highlight the tipping point into collusion. While not
formal definitions, providing examples of unacceptable behaviors is an appropriate
way to approach this challenge. Unfortunately, many examples explicitly told
students they should already know what is meant by these labels.

Collaboration and learning from one another are encouraged. Copying and
cheating are strictly forbidden. You are expected to be able to distinguish the two.
If you’re contemplating an action and you’re not sure into which category it falls,
you should consider whether what you intend to submit is the product of your own
efforts and represents your own understanding of the ideas involved. If it is/does not,
then you should not submit the work as your own. Wesleyan imposes an Honor
Code (to be found in the Student Handbook). You are expected to abide by it in all
of your courses, including this one. (Wesleyan COMP 112)

Encoding very fine lines of communication into clear and actionable definitions is
not an easy task. Varied interpretations (Joy et al. 2013; Sheard et al. 2002; Simon
et al. 2013) and operating definitions (Fraser 2014; Riedesel et al. 2012) about
academic integrity exist within computing faculty and students. Faculty are often
left solely responsible for writing contextualized governance. Lack of specificity in
policies passed to the faculty seems to be a related issue, where faculty “find their
role to be one of contextualization” (Simon et al. 2018) of the policies they are given.
Several of their respondents mentioned using behavioral examples because policy
language alone was insufficient for students to understand expectations, which was
also found within our sample. Providing these examples opened other areas for
misinterpretation.

Looking at code related to an assignment together is considered crossing the line
into cheating territory! (UT Austin CS 312)

This example (UT Austin CS 312) came from the middle of a large paragraph (about
430 words) that represents just a portion of the academic integrity policy content of
the syllabus. The paragraph gives numerous examples of cheating behavior, includ-
ing the example above. The phrasing “code related to an assignment” is likely
intended to mean looking at another student’s code for an assignment. This opened
a reasonably descriptive policy to potentially include any class sources related to the
assignment. Students carefully reading the policy and taking this statement very
literally could naturally include things like the professor’s notes, textbook, or even
their class notes. Each of those elements likely contain elements for the homework.

Peers were often presented as a source of forbidden knowledge and just asking for help
could potentially result in harm to both parties. This harm ranged from formal sanctions
due to violating policies to informal where learning opportunities were missed.

Please don’t put your friends at risk by asking them for unauthorized help.
(Cornell CS 1110)

84 Elizabeth Wickes and Melissa G. Ocepek

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

You rob yourself and others of learning how to approach difficult programming
problems, an essential skill for future classes. (UC Berkeley 10a)

Providing help beyond what is allowed is as much of an infraction of the honor
code as receiving help. (Bowdoin CS Collaboration Policy)

As several syllabi reported, once a student sees an example of the solution, their
memory and ability to perform “original” work has been forever tainted. Students
must complete the problems without seeing external sources and are instructed
within the policies to maintain the isolation, protect their work, and to avoid
situations where they may inadvertently expose themselves or others. While some
policies allow for students to cite what they have looked for or other sources of help,
some disallow nearly all forms of communication. These environments may differ
between instructors and institutions such that not all grades and assessment out-
comes may be considered equal. While one student has the benefit of a study group
or partner to discuss concepts and concerns with, another may only access help
during office hours or email with course staff.
Students were also warned to protect their work from peers who may maliciously

view and copy content. An unknowing victim would receive the same severity of
consequences as the student who took the direct action to copy the work.

You are expected to take reasonable measures to protect your work from
unauthorized access by others, including your electronic files, print-outs, and
written work. (UT Austin CS 312)

This presentation of peers as being sources of constant potential risk isolates students
and creates an oppositional existence instead of collegial. However, this may only be
the case for certain groups of newcomers. Students with higher risk tolerance and a
better understanding of higher education practices may not feel the same way about
their peers and are able to more freely engage in group studying and social support
for learning. Their lowered risk awareness also makes them a riskier person to
socialize with for students afraid of forbidden information exposure, further
expanding their isolation.
With collaboration and originality presented as mutually exclusive, compounded

with the individual academic assessment justification, peers tended to be described
as objects or sources to be feared. They are potential sources of exposure to external
ideas and code, but also active threats of observation. Several policies instruct
students to actively maintain a two-way barrier from viewing and being viewed.
This includes incidents where another student deliberately uses someone else’s
laptop to see the answer. The laptop’s owner is deemed just as guilty for not locking
down their computer.
Normal plagiarism policies for academic writing refer to overt actions taken by

students: the inclusion of text from another work without proper attribution, pur-
posefully copying text, and others. A purposeful choice, even if not understood to be

Information Hazing 85

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

an infraction, can be pointed to as the problem. Treating passive infractions as overt
and deliberate choices to cheat requires students to be constantly diligent of the
actions and intents of their peers. The result may look the same: Code submitted by
students could be tagged as possible plagiarism by a detection tool, but the reason is
left unclear without investigation. Students and faculty end up navigating this
confusing combination of understanding the tool, the policies, and behaviors.

Importing Morality
The origin story of any syllabus involves reuse, boilerplate requirements, and
educated guesswork. Faculty may inherit policies from previous instructors of a
course, use a template with a campus or department boilerplate, and then add their
own content and personalization. Once created, review services may not be offered
or required before the syllabus is used for a class. Errors or problematic language
easily fall through the cracks.

Although not generally required, many faculty elected to include justification and
reasoning behind their policies. These sections had some of the most informal and
emotionally changed content out of all the content reviewed for this project. Many
intended to defend the policy choices, explained why it was worth following, and
highlighted the severity of the sanctions. Some went further and presented moral
values or other ethical incentives for abiding by their governing rules. These
justifications generally fell into two categories: ethics and respect or learning goals.

Justification claims under ethics invoked a variety of concepts in their persuasive
arguments: honor, respect, fairness, honesty, personal responsibility, ethics, moral
codes, and so on. The objects these concepts acted on were often a larger social
group, such as the institution, learning community, and peers. Positive policy
examples set a tone of pride for students to adopt and maintain.

For your sake and the sake of the Claremont-Colleges community, please conduct
yourself with the highest level of academic integrity. (Harvey Mudd CS 5)

Simply put, academic integrity is about respecting yourself and respecting others.
You respect yourself by submitting work completed through your own effort; you
respect others by acknowledging contributions from others when such external
contribution is allowed. (Cornell CS 1112)

The implication of these arguments was left unsaid: that violating this respect can
cause harm to yourself; but it also threatens to withhold trust or approval of the
students should they break these rules. Negative examples focused more on this
consequence.

Sadly, we encounter such violations almost every semester, and the rulings of the
Honor Code Council tend to be harsh. For your sake and ours, please don’t be tempted
to cheat; you are likely to be much better off getting a poor grade on an problem set or
exam than you are if you are found guilty of cheating! (Wellseley CS 111)

86 Elizabeth Wickes and Melissa G. Ocepek

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

We begin by choosing to trust each of you individually. Do not be one of the few
who loses that trust. If you cheat, expect to be caught, and expect significant
consequences. Use common sense and understand these rules. (CMU 15–112)

These may lack overt emotionally charged words, but describing these acts as being
forbidden, learning shortcuts, and plain cheating set a judgmental and threatening tone.
Many of the longer policies contained emotional discussions of the morality around
cheating, yet the amount of actionable information about cheating was quite low.

Many students begin every assignment by immediately going to Google, trying to
find something that might keep them from having to solve the problem for
themselves. This is an incredibly stupid thing to do . . . you’re starting down a moral
slippery slope that’s liable to send you over a cliff . . . a complete solution that some
idiot has posted on GitHub; it will be too tempting not to use it . . . Don’t do it!
If you are caught, you will deeply regret it. And even if you’re not caught, you’re still
a cheating low-life. (UT Austin CS 303E)

It’s not that people can be divided into cheaters and noncheaters in
some preordained way, though that is an easy way to think about life. It’s more
than the stress and bad decision making of a particular situation make a cheater
of someone. (Stanford CS 106a)

Others maintained a more pragmatic framing around fairness and legitimacy. These
focused on the learning assessment process and the importance that grades accur-
ately represent their understanding of the content. Cheating or subverting the
expected values of the policy would make it unfair for the other students following
the morally correct path or unfair to your own learning.

. . . does not contribute toward developing mastery. In addition, this deprives you of
the ability to receive feedback and support from the course staff in addressing the
areas in which you are struggling. (U Washington CSE 142)

Cheating not only robs you of an opportunity to learn, it also devalues your peers’ hard
work. Because of this, we take cheating very seriously in this course. (UIUC CS 101)

Some added computing industry practices to frame the purpose of their require-
ments. These references were uncommon, but almost all did so to explain why they
promoted collaboration.

We believe that collaboration fosters a healthy and enjoyable educational environ-
ment. For this reason, we encourage you to talk with other students about the
course material and to form study groups. Programming assignments in this course
can be challenging. Also teamwork is the norm in the CS industry. Given the
above, some of the assignment work is required to be done with a partner, while
some is required to be done individually. (Wellesley CS 115)

Note: details differ from place to place, but the shared-software-development
approach described above is very common in professional practice. Sharing the

Information Hazing 87

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

building and understanding of software is the characteristic computing skill of our
era! (Harvey Mudd CS5)

Authentic assessment is the concept of a course using assessments that closely match
authentic actions within the practice. As discussed by Simon and Sheard (2015),
these are valuable for learning but often require higher levels of interaction with the
instruction team and are harder to grade at scale and involve collaboration. These
factors put adoption of authentic assessment at odds with the focus on individual
learning and assessment needed for awarding individual grades.

These justifications also highlight the two general approaches taken toward
academic integrity: consequences and virtuousness. The former seeks to leverage
punitive measures to ensure that students do not act on the desire to cheat, while the
latter attempts to fill in educational and mindset gaps to prevent the desire in the
first place.

Introductory students within these restrictive and highly individualistic classes get
an inauthentic and overly policed experience within computer science. At a micro
level, individual students work under a punitive and unclear policy. At a meso level,
looking at the collection of peers operating under these policies, experienced
students are put at the advantage both in permissible communication and
deepening peer connections. Students with novice level experience work in isol-
ation while being instructed to fear betrayal by peers.

In considering the macro level in all these policies, many students are being
prepared to operate in an environment that mischaracterizes the essential operations
within this profession. Code is commonly discussed, shared, borrowed, and
inherited within teams. The errors and omissions described here may seem like
honest mistakes from an instructor navigating a vague space, but we argue that it is
precisely this imprecision that is the point. We argue that the hazing element comes
from how the policies describe information that should be accessed or restricted.
These policies may be unintentionally problematic at an individual level, but when
situated among their peers, they replicate those in power who seek to promote same
or similar group learners to achieve success and value placing additional checks
against marginalized groups.

Encoding White Spaces

Academic integrity does not have a single universal definition. Global and historical
traditions intersect as well as discipline specific interpretations. As discussed by
(Macfarlane, Zhang, and Pun 2014), discussions and literature in this area can
include academic integrity, honor codes, and professional ethics. Synonyms abound
and most works spend a nontrivial amount of time clarifying their viewpoint and
scope for their research. Growing education globalization, information access, and
technologies for text similarity detection have reinforced the need for institutions to

88 Elizabeth Wickes and Melissa G. Ocepek

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

have a shared understanding of academic integrity issues and active training on
the topics.
Modern tools to detect plagiarism and other academic dishonesty issues may be

presented as objective measures, but each require review and interpretation. This
means that the gap between being flagged and being accused is once again expected
to be filled by “gut” feelings. Faculty must understand these tools but also navigate
their own policies to determine if further action is needed. Vague and open-ended
policy description leave decision making susceptible to unconscious biases and
subjective opinions. These tools presented as objective measures remain dependent
on evaluators to make objective judgments.
Unconscious bias and suspicion put black students at higher risk of being reported

by peers for perceived infractions. This is directly discussed by participants in
Feagin and Sikes (1995). Participants reported being accused of plagiarism by
instructors solely because they did not often speak up in class and the professor
simply did not believe their work was original. Those with the power to assess
student work may easily be swayed by unconscious biases about the innate abilities
of students of color.
Historically white colonial traditions can be found within modern expectations of

academic behavior. Bonilla-Silva and Peoples (2022) outlined these acts and their
result of perpetuating erasure of nonwhite traditions. Higher education curricula not
only stress white content, but also values and traditions. While not directly discussed
by Bonilla-Silva and Peoples, the elements of whiteness held up within these insti-
tutions can be extended to the policies of the classroom and therefore the syllabus.
The long history of nonwhite students being subjected to the varied feelings and

perceptions of faculty members continues to this day and certainly within computer
science classrooms. Policies being written and enforced with technical review tools
to support them provide a sense of authority and likely make faculty feel comfortable
that they are working within a “color-blind” system, but do very little to provide
safeguards for students who have historically been subjected to higher levels of
scrutiny and mistrust. Without clear process documentation and clear policies to
be accused of violating, the power here rests solely within the accusing faculty’s
perception of the truth and internal definitions of the rules.
Disproportionate impact cannot be measured as a byproduct of the intent of the

faculty member writing the policy. Students will act according to the policies as they
are given and interpreted through their understanding of rights and risk. This means
that each student will have a unique interpretation and thus experience different
impacts on their behavior. This alone will always be the expectation, but becomes
problematic when certain groups of students will be systematically impacted in
different ways along the lines of race, socioeconomic status, and other social factors.
New tools and techniques used in response to these challenges of student growth

are constantly created and adopted. Some may have existed a decade ago but were
not used at the scale they are at the time of this writing. Creating the code database

Information Hazing 89

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

mentioned in the example below was not truly possible until recently. Faculty
writing these syllabi likely learned how to program under very different systems;
most importantly, their work was less likely to be monitored at such a degree.

Plagiarism detection. We use sophisticated software tools to detect plagiarism. For
example, we compare each submission (including interim submissions) against a
code database, which includes all submissions from this offering and previous
offerings of the course. While we take no pleasure in bringing cases to the
Committee on Discipline; it is our duty to keep the playing field level for the
overwhelming majority of students who work very hard in this course and follow
the rules. (Princeton COS 126)

While these policies are attempting to dismantle a knowledge commons forming
within the classroom, it is actually dismantling it only for these risk-averse students.
Students with in-group connections can be told or mentored through how to subvert
or avoid detection, preserving the knowledge commons just for them. Out-group
students must remain isolated and fearful, providing evidence to the in-group
members that any outsiders who were able to complete courses like this must be
exceptional and worthy of academic respect.

Utilizing discussion with peers to facilitate your learning is a critical skill for
success in computer science. However, at the same time, you must be aware that
getting stuck and pushing through challenging problems is essential for
robust learning. (Grinnel CSC 151)

The struggle through these introductory programming courses is often seen and
framed as a rite of passage, one that the instructor survived and thus so must they.
Their survival is framed as tribute to the industry. Yet the struggle and isolation
created under some of these policies is a lie. Those working in industry borrow and
build on external code constantly. They also work together in teams. While pair
programming is a common tool for code review and mentorship, large projects are
split up among members of a team who will work on independent elements, but
each with the support and guidance of other team members.

Conclusions

Much of the research has been on what people consider misconduct, and whether
students committing misconduct are aware they are doing so. We seek to flip this
question, and ask: How far might a student go to avoid misconduct out of a fear of
committing an infraction? Are the forms of these policies doing a disservice for
students in fully recognizing their own behavior as misconduct; but do the policies
also open up the possibility for students to incorrectly limit their own behaviors?

Overly restrictive policies also create stressors via isolation and fear. Students are
isolated from peers in their work with the content, with the potential to reinforce
prior feelings of otherness and being an impostor. As defined by many of the

90 Elizabeth Wickes and Melissa G. Ocepek

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

policies, communication and sharing resources with peers is something to be feared.
All of this creates an environment rife for misinformation to spread.
Hazing also continues after the first programming class. These strict policies and

foundational fears are cemented during job interviews. Whiteboard coding ques-
tions are the epitome of fictional practices treated as a norm within computer
science. Presenting handwritten syntactically perfect code on a whiteboard with
no tools or resources, under time constraints and observation, creates a high stress
environment that represents very little of what the actual day to day job is like. The
growing cost of higher education and the student loan crisis make these interviews a
high-stakes finale to the overall system of hazing within the computing industry.
However, many will complete these efforts because they have been prepared by
prior hazing rituals to expect the initiation costs to be high. The other element of the
lie that makes this hazing is that all these tasks are meant to be a measure of your
worth within a giant meritocracy, when networking, bias, alumni networks, and
programming interview cram schools are all leveraged by others to bypass these
checks of merit.
Employers are outsourcing the measurement and evaluation of a candidate’s skill

in the field to the grades assigned during academic evaluation (Simon and Sheard
2015). By outsourcing this evaluation work, they measure elements of hireability as
those who are successful within the university grading system. Obviously not the sole
factor used by many companies, grade point average (GPA) and other exam ranks do
play an important role in determining candidates and finalists for internships and
full-time work. Students who have more access to support or more freedom to
subvert assessment strategies have a stronger chance of ranking higher and receiving
these positions.
Academic dishonesty policies are contributors to creating an environment where

students expect to be creating source code in isolated, high pressure, and competi-
tive environments. Many startup companies expect staff to show their dedication to
the project by working extreme hours within similarly high-pressure situations.
A student graduating out of such a program and landing a role within a company
may have little experience or basis to push back on these unhealthy expectations.
Hazing is more than simple gatekeeping, but an effort to ensure that all who pass

through come to believe that those filtering structures are valid and important. The
goal is not just to reenact them when they later come into their own house of power
but to have those in power genuinely believe in those structures and the reasoning
behind them. Information hazing, therefore, is setting these structures off and
making the filters based on how information is used and accessed by those new-
comers. Rather than overt acts upon them or specific demands for action, this
hazing is more subtle. It circumvents many of our normal triggers to view something
with suspicion or questioning.
The information hazing observed within this study hides behind western ethics

and neoliberal morality frameworks. After all, questioning something that is

Information Hazing 91

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

supposed to uphold honor and integrity must make that questioning be in oppos-
ition to those factors. Those not interested in upholding the virtues of honesty must
therefore be against it. However, holding the rigid moralistic jargon up to a lens of
information use and access allows for objections that are based in tangible ways: that
many of these statements are problematic due to wide ambiguity of or a misrepresen-
tation of the natural process of computing work.

In closing, we want to note that although we have highlighted many aspects of
information hazing that we believe are likely to cause harm in the classroom and
beyond, we do not write with this to blame the instructors who have created,
curated, and crafted the syllabi in our sample. We know how hard teaching is and
how complicated plagiarism and academic integrity are to teach, enforce, and
navigate. We created this work with the goal of identifying problems in order to
create positive change, and we hope that this chapter helps us to see the things that
we have ignored or thought were the last best option.

references

Allan, Elizabeth J., and Mary Madden. 2012. “The Nature and Extent of College Student
Hazing.” International Journal of Adolescent Medicine and Health 24 (1): 83–90. https://
doi.org/10.1515/ijamh.2012.012.

Bonilla-Silva, Eduardo, and Crystal E. Peoples. 2022. “Historically White Colleges and
Universities: The Unbearable Whiteness of (Most) Colleges and Universities in America.”
American Behavioral Scientist 66 (11): 1490–1504. https://doi.org/10.1177/00027642211066047.

Braun, Virginia, and Victoria Clarke. 2006. “Using Thematic Analysis in Psychology.”Qualitative
Research in Psychology 3 (2): 77–101. https://doi.org/10.1191/1478088706qp063oa.

CODATA-ICSTI Task Group on Data Citation Standards and Practices. 2013. “Out of Cite, Out
of Mind: The Current State of Practice, Policy, and Technology for the Citation of Data.”
Data Science Journal 12: CIDCR1–CIDCR7. https://doi.org/10.2481/dsj.OSOM13–043.

Costa Pinto, Ligia M., Carla Sá, Nuno Soares, Sílvia Sousa, and Marieta Valente. 2020. “The
Case for Academic Hazing as a Rational Choice: An Economic Approach.” Economic
Analysis and Policy 66 (June): 51–62. https://doi.org/10.1016/j.eap.2020.02.004.

Feagin, Joe R., and Melvin P. Sikes. 1995. “How Black Students Cope with Racism on White
Campuses.” Journal of Blacks in Higher Education 8: 91–97. https://doi.org/10.2307/
2963064.

Fraser, Robert. 2014. “Collaboration, Collusion and Plagiarism in Computer Science
Coursework.” Informatics in Education 13 (2): 179–195. https://doi.org/10.15388/infedu
.2014.10.

Gibson, J. Paul. 2003. “Software Reuse in Final Year Projects: A Code of Practice.” Report
NUIM-CS-2003-TR12, Maynooth: National University of Ireland, November.

2009. “Software Reuse and Plagiarism: A Code of Practice.” ACM SIGCSE Bulletin 41 (3):
55–59. https://doi.org/10.1145/1595496.1562900.

Guynn, Kevin L., and Frank D. Aquila. 2004. Hazing in High Schools: Causes and
Consequences. Bloomington, IN: Phi Delta Kappa Educational Foundation.

Joy, Mike S., Jane E. Sinclair, Russell Boyatt, Jane Yin-Kim Yau, and Georgina Cosma. 2013.
“Student Perspectives on Source-Code Plagiarism.” International Journal for
Educational Integrity 9 (1): 3–19. https://doi.org/10.21913/IJEI.v9i1.844.

92 Elizabeth Wickes and Melissa G. Ocepek

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://doi.org/10.1515/ijamh.2012.012
https://doi.org/10.1515/ijamh.2012.012
https://doi.org/10.1515/ijamh.2012.012
https://doi.org/10.1515/ijamh.2012.012
https://doi.org/10.1515/ijamh.2012.012
https://doi.org/10.1515/ijamh.2012.012
https://doi.org/10.1177/00027642211066047
https://doi.org/10.1177/00027642211066047
https://doi.org/10.1177/00027642211066047
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.2481/dsj.OSOM13
https://doi.org/10.2481/dsj.OSOM13
https://doi.org/10.2481/dsj.OSOM13
https://doi.org/10.2481/dsj.OSOM13
https://doi.org/10.1016/j.eap.2020.02.004
https://doi.org/10.1016/j.eap.2020.02.004
https://doi.org/10.1016/j.eap.2020.02.004
https://doi.org/10.1016/j.eap.2020.02.004
https://doi.org/10.1016/j.eap.2020.02.004
https://doi.org/10.1016/j.eap.2020.02.004
https://doi.org/10.1016/j.eap.2020.02.004
https://doi.org/10.2307/2963064
https://doi.org/10.2307/2963064
https://doi.org/10.2307/2963064
https://doi.org/10.2307/2963064
https://doi.org/10.15388/infedu.2014.10
https://doi.org/10.15388/infedu.2014.10
https://doi.org/10.15388/infedu.2014.10
https://doi.org/10.15388/infedu.2014.10
https://doi.org/10.15388/infedu.2014.10
https://doi.org/10.1145/1595496.1562900
https://doi.org/10.1145/1595496.1562900
https://doi.org/10.1145/1595496.1562900
https://doi.org/10.1145/1595496.1562900
https://doi.org/10.21913/IJEI.v9i1.844
https://doi.org/10.21913/IJEI.v9i1.844
https://doi.org/10.21913/IJEI.v9i1.844
https://doi.org/10.21913/IJEI.v9i1.844
https://doi.org/10.21913/IJEI.v9i1.844
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

Macfarlane, Bruce, Jingjing Zhang, and Annie Pun. 2014. “Academic Integrity: A Review of
the Literature.” Studies in Higher Education 39 (2): 339–358. https://doi.org/10.1080/
03075079.2012.709495.

Madison, Michael J., Brett M. Frischmann, and Katherine J. Strandburg. 2009. “The
University as Constructed Cultural Commons.” Journal of Law and Policy 30: 365.
https://doi.org/10.31228/osf.io/z8x7m.

Novak, Matija, Mike Joy, and Dragutin Kermek. 2019. “Source-Code Similarity Detection
and Detection Tools Used in Academia: A Systematic Review.” ACM Transactions on
Computing Education 19 (3): 1–37. https://doi.org/10.1145/3313290.

Nuwer, Hank. 1999. Wrongs of Passage: Fraternities, Sororities, Hazing, and Binge Drinking.
Bloomington: Indiana University Press.

Riedesel, Charles P., Alison L. Clear, Gerry W. Cross, Janet M. Hughes, Simon, and Henry M.
Walker. 2012. “Academic Integrity Policies in a Computing Education Context.”
In Proceedings of the Final Reports on Innovation and Technology in Computer Science
Education 2012 Working Groups, 1–15. ACM, Haifa. https://doi.org/10.1145/2426636.2426638.

Sheard, Judy, Martin Dick, Selby Markham, Ian Macdonald, and Meaghan Walsh. 2002.
“Cheating and Plagiarism: Perceptions and Practices of First Year IT Students.”
In Proceedings of the 7th Annual Conference on Innovation and Technology in Computer
Science Education, 183–187. ACM, Aarhus. https://doi.org/10.1145/544414.544468.

Simon, and Judy Sheard. 2015. “Academic Integrity and Professional Integrity in Computing
Education.” In Proceedings of the 2015 ACM Conference on Innovation and Technology
in Computer Science Education, 237–141. ITiCSE 2015. Association for Computing
Machinery, New York. https://doi.org/10.1145/2729094.2742633.

Sheard, Simon, Beth Cook, Judy Sheard, Angela Carbone, and Chris Johnson. 2013.
“Academic Integrity: Differences between Computing Assessments and Essays.”
In Proceedings of the 13th Koli Calling International Conference on Computing
Education Research, 23–32. ACM, Koli. https://doi.org/10.1145/2526968.2526971.

2014. “Student Perceptions of the Acceptability of Various Code-Writing Practices.”
In Proceedings of the 2014 Conference on Innovation and Technology in Computer
Science Education, 105–110. ITiCSE 2014. Association for Computing Machinery, New
York. https://doi.org/10.1145/2591708.2591755.

Simon, Judy Sheard, Michael Morgan, Andrew Petersen, Amber Settle, and Jane Sinclair.
2018. “Informing Students about Academic Integrity in Programming.” In Proceedings of
the 20th Australasian Computing Education Conference, 113–122. ACE 2018. Association
for Computing Machinery, New York. https://doi.org/10.1145/3160489.3160502.

Simon, Judy Sheard, Michael Morgan, and Charles Riedesel et al. 2016. “Negotiating the
Maze of Academic Integrity in Computing Education.” In Proceedings of the
2016 ITiCSE Working Group Reports, 57–80. ITiCSE 2016. Association for Computing
Machinery, New York. https://doi.org/10.1145/3024906.3024910.

Smith, Arfon M., Daniel S. Katz, and Kyle E. Niemeyer. 2016. “Software Citation Principles.”
PeerJ Computer Science 2 (September): e86. https://doi.org/10.7717/peerj-cs.86.

StopHazing. 2022. “States with Anti-Hazing Laws.” Stophazing.Org. 2022. https://stophazing
.org/policy/state-laws/.

Vicente-Saez, Ruben, and Clara Martinez-Fuentes. 2018. “Open Science Now: A Systematic
Literature Review for an Integrated Definition.” Journal of Business Research 88 (July):
428–36. https://doi.org/10.1016/j.jbusres.2017.12.043.

Wu, Yuhao, Shaowei Wang, Cor-Paul Bezemer, and Katsuro Inoue. 2019. “How
Do Developers Utilize Source Code from Stack Overflow?” Empirical Software
Engineering 24 (2): 637–673. https://doi.org/10.1007/s10664–018-9634-5.

Information Hazing 93

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009255165.004
Downloaded from https://www.cambridge.org/core. IP address: 18.188.60.146, on 07 May 2025 at 05:02:03, subject to the Cambridge Core terms of

https://doi.org/10.1080/03075079.2012.709495
https://doi.org/10.1080/03075079.2012.709495
https://doi.org/10.1080/03075079.2012.709495
https://doi.org/10.1080/03075079.2012.709495
https://doi.org/10.1080/03075079.2012.709495
https://doi.org/10.1080/03075079.2012.709495
https://doi.org/10.31228/osf.io/z8x7m
https://doi.org/10.31228/osf.io/z8x7m
https://doi.org/10.31228/osf.io/z8x7m
https://doi.org/10.31228/osf.io/z8x7m
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://doi.org/10.1145/3313290
https://doi.org/10.1145/2426636.2426638
https://doi.org/10.1145/2426636.2426638
https://doi.org/10.1145/2426636.2426638
https://doi.org/10.1145/2426636.2426638
https://doi.org/10.1145/544414.544468
https://doi.org/10.1145/544414.544468
https://doi.org/10.1145/544414.544468
https://doi.org/10.1145/544414.544468
https://doi.org/10.1145/2729094.2742633
https://doi.org/10.1145/2729094.2742633
https://doi.org/10.1145/2729094.2742633
https://doi.org/10.1145/2729094.2742633
https://doi.org/10.1145/2526968.2526971
https://doi.org/10.1145/2526968.2526971
https://doi.org/10.1145/2526968.2526971
https://doi.org/10.1145/2526968.2526971
https://doi.org/10.1145/2591708.2591755
https://doi.org/10.1145/2591708.2591755
https://doi.org/10.1145/2591708.2591755
https://doi.org/10.1145/2591708.2591755
https://doi.org/10.1145/3160489.3160502
https://doi.org/10.1145/3160489.3160502
https://doi.org/10.1145/3160489.3160502
https://doi.org/10.1145/3160489.3160502
https://doi.org/10.1145/3024906.3024910
https://doi.org/10.1145/3024906.3024910
https://doi.org/10.1145/3024906.3024910
https://doi.org/10.1145/3024906.3024910
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://stophazing.org/policy/state-laws/
https://stophazing.org/policy/state-laws/
https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/10.1007/s10664%96018-9634-5
https://doi.org/10.1007/s10664%96018-9634-5
https://doi.org/10.1007/s10664%96018-9634-5
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009255165.004
https://www.cambridge.org/core

