GROUPTHECGRETICAL CHARACTERIZATION OF
PROJECTIVE SPACE AND CONFORMAL SPACE

MINORU KURITA

In this paper we characterize a projective space and a conformal space,
namely a space of inversive geometry of point and sphere, from the standpoint
of a homogeneous space. In such spaces a covariant differential of a vector-
field is not a vector, contrary to the case stated in my previous paper “On the
vector in homogeneous spaces.” (This journal vol. 5. This paper will be re-
ferred to as [1] below.) But when we restrict a rotation about a point to a
certain subgroup of the full rotation group, we get a covariant differential
which is also a vector, and this situation holds good in a general homogene-
ous space. If the fundamental group & of a homogeneous space is generated
by the full group of rotation about a point and a commutative subgroup of &
which operates simply transitively on our space, a translation of a vector can
be defined smoothly on the whale space. We call such a space a space of pro-
jective type, a projective space and a conformal space being such. We charac-
terize among the homogeneous spaces of projective type a projective space and
conformal space by certain properties. In particular a conformal space of di-
mension greater than 2 can be characterized as a homogeneous space of pro-
jective type whose linear group of isotropy is conformal.

1. Projective space and conformal space

1.1 Let & be a group of projective transformations of #n-dimensional pro-
jective space, and Ay, A1, ..., An be a set of analytic points in the space,

which we can take as a frame of our space. Then putting dA;:Zow,-,-Aj
e

"
(X wi=0,i=0,1,..., n) we have as structure equations
i=0

dwoi = Lowwe] + % Lowwril, dow = 21[wniwil

(1.1)
dwio = Lwioww] + 2}; Lwirorod, dwij = Lwiwe]+ % Loikwes].

Denoting by A an z#x1 matrix with A,, 4, ..., An as its coefficients we can
write dA; = > wijA; in the form dA =2A, 2= (w;). We take any projective
J

transformation P which fixes the point A, and whose determinant is =1 and
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where p and ¢ are n X1 matrices, P, is an #X n matrix and moreover p -+ pPyg
=0, plPBl = 1. We denote the set of all such transformations by $. Putting
dA = QA we get

2=PQP'+dPP™,
When we put

(33 G5

where w; is a 1 X n-matrix and w. is an #X1 matrix, we get
(1.2) 1= por Pyt
- _ dp 0. — -1 ~1 -1
W = pw1q + Woo + p , £0= pwrPs" + PPy + dPyP;

(1.3)
w2 = %— (pow + Pows) + pwig + Poleq -+ ‘-lf + dPg.

(1.2) is the transformation of principal relative components by a linear group
of isotropy in the projective space with points as its elements. We define a
vector in such a homogeneous space by a set of numbers = (v, ..., Un)
which is transformed in such a way that

(1.4) 7= pvPs’

by a projective transfomation which fixes A;. We take a vectorfield which
is differentiable. Then we get by (1.2) (1.3) (1.4)

dD — 0¥ + D20 + pw1gP = p(dv — we + 120 — pvqu) P51,

Hence the term in the bracket of the second side does not give a vector. But
if we restrict the rotation about a point A, to the element of its subgroup
satisfying the relation ¢ =0 we get

(1.5) av — oo + 520 = p(dv — wwv + v20) P5*.
For such elements we have on account of the relation g=0
(1.6) wi =0, wip=0.

If we add the relation p =1 we have

(1. 7) Wi = 0, woo = 0, Wi = 0.
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Now the integral manifold of the differential equation
(1.8) wio =0

containing an identity of @ forms a subgroup and if we restrict the rotation
to the elements of such a subgroup we get an affine space of dimension #. By
such a restriction of the rotation a covariant differential of a vector » which
is defined by Dv =dv — wwv + v2, is also a vector and the geodesic can be de-
fined by the curve get by solving

d (o) _wnwr 012 _ o
dd(dd) el 4 9% =0 (n=0)

which also can be obtained by solving w;=cids, ww=0, wip=0, 2,=0 and is
nothing but a straight line. Next for the elements of § satisfying p=1 and
P, = unit matrix we get by (1.4) # =v. For such elements of § we have

(1.9) wi=0, wn=0, w;=0.
These are the guiding ideas for our investigation. When we put w; = we, mij
= wij — 8ijww we get instead of (1.1) the following
dw; = %} Lwjrii], dwe= 21_._‘ Lwiwid, dwio= ; [mijwjol
(1.10) drij = g [rikrcri] + Loawi]l  (i%7)
dnii = %} Crirmei] + [wiowi] — %} Lwjwiel.

1.2 An analogous situation holds in the conformal space with points as
jts elements. We take two points A, A~ and 7 spheres A, As, ..., An such
that

(AAy) =0, (Adi) =0, (Ads)=-1,
(AiA;) =08i5, (AiAs) =0, (AcAs)=0

and take these as a frame of our space. Then putting dA; =gwijAj (¢, =0,
1,...,n ) and wy=wi, mij=wij—0ijow (4, j=1,..., n) we get

dw; = ;[wjﬂ'ji] , dow= g} [wiwinl, dwi= g‘: [rijwjol
(1.11) drij = kz [riemrid + Loiow;i] + [wiwje] (% 7)

mij=—mji (ix7), mi=— own.

As to (1.6) (1.7) (1.8) the assertion concerning the projective space holds good

in the conformal space too.
Thus we get the following schema of subgroups for these two spaces. In this
schema w; = 0, m;; = 0, for example, means a subgroup satisfying these conditions.
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— 1 9 wi=0

’h A 0i=0, mj=0 [’—-—-ﬁ__——a—“—

|
(1.12) | identity |-——{®, D: wi=0, wio=0 ’“I

16 wp=0
l S: woo =0, wio=0 ‘__ I N
’ mij=0

2. Homogeneous space of projective type

2.1 Let @ be r-parametric Lie group which operates transitively on the
space of dimension # and let an element of & be given by S; : #f = fi(x1, . . .,
Xn; @, ...,a) (i=1,...,n). Let the subgroup  of & which fixes a cer-
tain fixed point of the #-dimensional space be closed and connected. We de-
note by i, ..., wn principal relative components of our homogeneous space
®/9 and by wn+1, . .., wr secondary relative components. We use indices in
the following manner throughout the discussion

i’j7k’l’h=1)2""’n P’q$s,t,u=1’27""r
a B, 7, 0=n+1,...,7
We have
(2.1) doi = 2 cpiiLwpwil,  dwe = 2] cpgaLwpwg].
(p3) (pg)

Let a frame at a point x be S,R for which relative components are w;, w. If
we rotate the frame about the point x and get S:S:k (S:€$) we obtain for the
relative components w;, . of S = S;S; the relations

(2.2) Bi = 20Tij0j, B = 2] Tapp + OF
7 14

where (rp,) = (tp4(#)) is an element of a linear adjoint group corresponding to
S: and w{"’s are the relative components of S;. As 9 is connected we have
(2.3) Cupi=0, Tix=0

(] 0
(2.4) drpg = D) Canpwl tug, drij = 2 Cariod i,

au alk
(2.5) DCstaTpa = DA CarpTasTre, 21CakjTij = 21 CojiThaTike
q qr 7 B2

Moreover we assume & operates effectively on &/$ namely the transformation
which fixes all the points of &/$ is nothing but the identity.

2.2 As defined in [1] 2.2 a vector in a homogencous space is a set of
real numbers v = (91, . .., ¥x) corresponding to S;R which is transformed by
a frame transformation from ‘SR to S;5:R in such a way that
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(2.6) Ui = > Ti0).
J

Then using the notations as in [1] 2.2 we get by [1] (2.10)

(2.7) dv; — gcuk@uﬁk = 2 tij(dvj — Ek}cakjwuvk) — D) CakiTahThiORY]
a. 2 a akhj

Putting as in [1] 2.2
(2.8) Bijn = 21 CuijToh,

(2.9) dBijn = z( - zk] CrviBirn + zf_‘.. civkBrin + 5; CaifCrhaThR)OF .

If we restrict the rotations about a point x to elements of 9 satisfying

(2.10) w;i =0, ZT.‘lCaijCTkawT =0

we get Bijn=0 on account of (2.9) and Bjjsr=0 for S:=identity. Then we

have by (2.7) that Dv; = dv; — 2] cakivsvr is a component of a vector. That the
ak

integral manifold of (2.10) containing the identity transformation gives a sub-

group can be verified by Frobenius’s theorem in the following way.

(2.11) d(Xcakswa) = 20 CijaCoks Lwin;] + ;cakscpiu Lo + %)Cakacma Lwswr]

a(iy)

(2. 12) ankafara = - chkiCiﬁs - 2 CrkeCa3s — Ecksicirs - Zt‘ksacara
o ¢ a ¢ a
Szca,aacajh = - 203]’10!«11 = 2)¢jalCl3h-
L

Hence doi, d(gmjhcakawa) vanish under the relation (2.10) and the integral

manifold of (2.10) containing an identity forms a subgroup. We denote this
by ® in correspondence with that in the schema (1. 12). It can also be veri-
fied by (2.11) and (2.12) that

(2.13) w0i=0, 2lcrhawr=0
T
determines a subgroup. But the equation
(2.14) gmkuwr =0
is, in general, not completely integrable. It is so when and only when
(2.15) > CijaCeks = 0

as is evident from the consideration of (2.11).
Thus we get the following theorem

Tueorem 2.1 Let (vy, . .., vn) be components of a vector of a differenti-
able veclorfield on the homogencous space corresponding to the frame S.StR (St
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€9). Then Dv; =dvi— > cariwavr is not in general a component of a vector.
ak

But if we restrict S: to the elements of a subgroup satisfying the relations
(2.10) Dv; forms a component of a vector.

THEOREM 2.2 The equation (2.13) determines a subgoup. Let it be P.
Even if we choose S, suttably for each point of our homogeneous space corre-
sponding to S0, a set of all SaB does not constitute a homogeneous space. It
is so when and only when (2.15) holds.

2.3 Now we consider the space in which (2.15) holds. In such a space
we can define a parallel translation of a vector by restricting the frames at
each point to S.BR, mentioned to in theorem 2.2, Then the translation of a
vector can be defined in our space by the equation

(2.16) Dw; = dvi — 2 ¢ajivatj =0
@)

and this definition is intrinsic in the sense that the equation does not depend
on the choice of the frame S.S:R (S:€®R). When we translate a vector
from one point to another the resulting vector depends in general on the path
joining these two points. It is independent when and only when the equation
(2.16) is completely integrable. By Frobenius’s theorem this condition can be
paraphrazed into

(2.17) D CijsCaki =0

as was shown in [1] 8.2. Here we state a lemma.
LemMA. A set of all equations > esCenr =0, DesCoekn =0 leads to e, =0 (a
=n+1 ..., 7).

Proof. Let X; and X, be infinitesimal operators of our group ®& corre-
sponding to relative components «; and w.. Then the set of all operators
Sle.X. such that Dlecqrr =0, D) eaCern =0 generates a subgroup 9, of § which
a a a

commutes with any one-parametric subgroup generated by > a:;X; and any
i

transformation of £, fixes each point of /. Owing to the effectivity of &
stated at the end of 2.1 9, reduces to an identity and hence e, =0. That the
set of all >Je.X. above stated forms an infinitesimal group and commutes

with Za;X; can be verified as follows.

(2 e.Xe, % eBXp) = g ea@aCasrXr
a a3y
g( S eaesCapr)Crhs = 2 eae,q(g CaarCrhs)
a3 o3

= Eﬁeaea( - 2 C3kiCias — 20‘%707;& - EckaiCiaa - ;Ckar(:raa) =0
[ i <
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2(2 €al3Cazy ) Crki = 26&3( — 23 C3kjCiai — 2 ChajCizi) =0
T o a J J
(XeaXe, Xi) =2 ea(ScaisX; + ;CMX.@) =0.

a a J

By virtue of this lemma we get from (2.15) and (2.17)
(2.18) Cije = 0.

This relation is equivalent to the condition that Xi, ..., X» generate a sub-
group of &. Thus we get the following

THEOREM 2.3 In the homogeneous. space where D) CijeCoks =0 holds the

translation of a vector is absolute when and only when cijs =0 hold. This con-

dition is also equivalent to the following: in &/H © is generated locally by
and an n-parametric subgroup of &.

2.4 Now we consider a space satisfying ¢ij« =0. Then we have
doe = 2 coka Lwpgwr] + 20 cra Lwpwrr]
Bk (BY)
and so w, =0 is completely integrable. We can restrict a frame at each point
of the space /9 to that satisfying this relation. We get then a homogeneous

space which is transformed simply transitively, and the structure equation of
such a space is given by dwi = >, cjr;Lwjor]. We call a transformation of our
(2K}

space &/9 satistying w, =0 a translation and denote the group of all trans-
lations by . The commutativity of the group ¥ can be expressed by cijr = 0.
We call the space satisfying the relations c¢ij. =0 and cir =0 a homogeneous
space of projective type. A projective space and a conformal space with points
as their elements are the spaces of this type. In the space of projective type
we have the relations

(2. 19) chfmcaﬁ = Ecjﬁacaki, Eck_’mcajf = chﬁacak“f
o P o a

which can easily be verified by Jacobi’s identity.

2.5 In a homogeneous space the differential equation

(2.20) 0i=0, > Caijws=0

is completely integrable on account of the relations (2.1) and
(2.21) d(S)caiywa) = ) CrhaCaij Loronl + 23 caraaijlwpor] + 23 corocaijLwpwr]
3 (kh)a Bka [Gapl]
(2.22) S cpraCoij = — ’2 CrikChaj — 20 CighChj
o 3 X

In fact dw; =0, d(X)ceijws) =0 under the condition (2.20).

Thus we have a schema of subgroups in a general homogeneous space.
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*—*““* | ‘ZI wi =0, Ecwm =0 "——-*’

e o)
. w;i=0 _ w;i=0
23 ) anmwu =0 i_ D: 2041_707]“(01* =0

i
1
i

(2.23) { 1dent1ty

h

In the homogeneous space of projective type we have the following. We give
attention to the correspondence with (1.12).

‘ A wi = 03 Ecaij(’)a =0 —
i ' @ w; = l

[ . . :_ . wi; = 0 :: w; = 0 ‘
(2.24) | identity —| B Seawa=0 " D Seaorsaor =0

i

D

‘(&—m;;'—;' €: gcamwa =0 '

3. Characterization of projective space

3.1 In a homogeneous space of projective type we have

(3.1) dwi = 2 cajil wewi]
L)
(3.2) dwe = Ek Cake Loswn] + g)cara Loswr].
P {

In contrast with the equation in the case of projective space (1.10) we put

(3.3) Tij = — 21 Caij®a.

Then we have
(3.4) dw; = 2 Lwjmjil.
J

By virtue of (2.21) (2.19) (2.22) and the relation czr. =0 we get
(3.5) drij = 2] CizaCaki Lwpor] + % Crirmril.

In a projective space we have by (1.10)
(3.6) dri; = Lwiw; ]+ 2 [miemei]  (E7).

So if there exist such A that
(3- 7) Zcz;}acuk; ch%acau = Anak] (i#])

we obtain (3.6) by putting
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(3.8) Wi = zﬁl Aiwg.
(3.7) being assumed we get from (3.8)
(3.9) dwiy = %Aia(% evesLoror] + (szcrsa Lorws]).

In order that this reduces to

(3.10) dwio = 23 [rirwro]

k

with i, mi;; defined by (3.8) and (3.3) it is sufficient that we have the re-

lations
(3.11) EB} Aiscrrg =0
(3.12) % Aicrsp = — ; CrikArs + g CsikAkr .

Next we consider the condition in order that
(3.13) dmii = % [rikmril + Loiowi] = ? Lwjwj]
holds. By (3.3) and (3.7) we have
(3.14) dnii = — ;Cdi(% coke Lopor] + %cm Lwswr])
= %Aka Lopwr] — ? AjsLopwi] - %Caiicﬁia Lwpwil

- 2 CaiiCBra [wsw\'] .
a(3T)

and by (3.3) and (3.8) we have
(3.15) % Creirmes] + Lwiowi] — EJ] Lwjwjol
= ;[zf‘_. CaikWa s %} Cokiwp] + % AisLwpoi] - ?7; Ais[wiwp].
That the coefficients of [wsw+] in (3.14) and (3.15) are the same can be veri-

fied by the Jacobi’s identity (2.22). As for the coefficients of [wsw;] it is suf-
ficient that

(3.16) > CipaCaii = 2 Aig
holds. Thus we get (3.7) (3.11) (3.12) (3.16) as sufficient conditions in order
that (1.10) except dwm):Z[a)iwio] holds for z;j, 7 given by (3.3) (3.8). Now

we remark that (3.12) is a consequence of other relations. In fact if we take
k which is not equal to 7, the dimension of the space being assumed to be
greater than one, then we have Ai; = 2 cisacqrt and hence
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(3.17) X Aiscrsp = Eﬂc'-’ﬁﬂciﬂacakk
i3 a
= 23D esijcira + 2 Csiglora + 20 CiriCise + % CitpC350 ) Cakk -
@ 7 B 2

By (3.7) (3.16) (2.19) we have
D) csijCivaCakk = 21 CsijAjr + CoikArr
ay J
3 CoigtpraCabh = = Ecm(E CrkiCisk + 2 CrajCitk)

= Ecémcﬁkkc‘rkk - Ecsncakkcrkk - EckSﬁcmzchk CrikArs.

Similarly X cirjcjsaCakk = — 2)CrijAjs — CrikArs, 2)CirgCasaCakl = — CsikArr. Putting
aj F] af

these into the right side of (3.17) we get (3.12). The verification of the case
n =1 is more easy. Thus we obtain a set of conditions

(H cije=0, ¢Cija=0
(1) DCipaCakj =0 (ixj, kxj)

“Zcmacan = Ecﬂdccj] ECmaCa;] = A;p (z#j)

(IIT) >) Ajscrrs = 0.
8

Under these conditions we get the structure equations of a projective space
(1.10) when we put

1
ij = — Ecaijwcty wio = EAiﬂw(}, Woo = Ecauwau
@ 3 741 e
The formula for wy can be verified as follows. We have by virtue of the re-
lation > wii=0
=0

n

g ii g (wii — wp) = = (#+ 1) wn.

Hence wyp = ——iizcu,,wa. That this satisfies the equation dwew = 2i[wiwil

can be verified as follows.

(2 Cj3aCaii [ijﬂ] -+ 2 Cﬂ'racau [wﬁw'r])

aiyp

2[0),1, Ecﬁacauwﬂ] + ‘1— 2 cﬁ?acau Lwpwr]

dwg =

n + 1 )
= ;2‘_*_—12 [u); 9 (n+ 1)2 Amw;s] + 1 (JZU( % CvikChgi + % Ciakckri)[wowr]
= 21 [wjwje].
J
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3.2 The geometrical interpretation of the relation (I) was given in 2.
Now we will interprete (II). In the homogeneous space of projective type we
restrict to the frames satisfying >, cezsw. =0 as was mentioned to in 2.2, then

a translation of a vector is defined by Dui = dvi — 3 cakinatk =0 and a geodesic
ak

can be defined as the curve obtained by solving

£<(ﬂ) = Dcari 2% =0

do\de! ~ %" dods
with a suitably chosen parameter ¢. The curve can also be obtained by solv-
ing
(3.18) w; = cidos, we=0 (c;i=const.).

The discussion is analogous to that of [1] 4.1. We call the frames along the
geodesic satisfying (3.18) adapted frames corresponding to the geodesic. Let
these be SqR and operate on them infinitesimal rotations S:. Relative displace-
ment of these frames S;S:R is (SuS:) 'Sa+daS: = S:'(Sz'Sz+da)Se and its relative
components are given by ;‘."ka[edo‘ where (tp,) is an element of a linear ad-

joint group corresponding to S:. Hence by (2.4) we have for an infinitesimal

change of relative components corresponding to the frame transformation from
SaR to SaSsR

dwi = 2 CakieCrdo, Ows = >, CyhasChdo
ak 3&

where (0, ..., 0, es+1, - . ., &) are parameters for S:. Thus if we neglect

terms of higher order with respect to e. we get for secondary relative com-

ponents of SeS:R ws + dws = dws = 2)Cpheeschds. When we attach to each point
3h

of a curve in the homogenecus space a fixed frame, we can define a trans-

lation of a vector v along the curve relative to the frames by the equation

Dv; = dv; — > cojiwra; =0
@)

although the translation thus defined is not intrinsic with respect to the curve.
In this sense of parallelism c¢=(ci, ..., ¢n) is parallel with respect to the
frames S.R.

Let ¢=(c1, ..., cn) be a vector which determines the geodesic (3.18)
and we assume for any geodesic and S: that

“when we translate a vector ¢ with respect to frames S.S:R the di-
(3.19) rection of c¢ is invariant except for a second order with respect to
the parameters of S:.”

Then we get (II) as follows. The property (3.19) means that
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Dc; = dc; — Ek Caki{We + 8000 )Ck = — 2 Cari(D) Canaescndo ) cr
a ak Bh

is proportional to ¢;. Hence we can put >, c.kiCshe€sCicCr = c:P. As ey is arbi-
pakh
trary we get

(3.20) > CakiCahaChCk = CiPs.
akh

Hence >)cskicpnacnck/ci = Py does not depend on i As ¢; is arbitrary P, must
akh

be a linear combination of ¢;, . .., cx. Hence
(8.21) SlConaCari =0 (hxi. kxi)
and so

Py = 3 csiaCaiiCi + 23 (2] CiaCaji + 23 €3jaCaii ) Cj -
o

I(%i) « @

As we have >, CpiaCaji = 2 CsjaCqii by (2.19) we can put
(3.22) 263i¢0¢ii = -2 Ai.x, Ecﬁjacczii == AJS (l=\=]).
a a

Thus we obtain (II).

3.3 Ncw we will show that if the dimension of our space is greater than
one the relation (III) is a consequence of (II). We begin with the case of the
dimension greater than 2. Then we can take for any ¢ and %k a positive inte-
ger j such that i/, k=j. By virtue of the relation (II) and (2.19) we get

2 Aiacrks = = EchﬁcﬂiaCajj = - Z Cxk3C3jaCaij = — 207j363k¢0aij =0.
3 sa R12

hi-3

In the case of dimension 2 such j as we used above can be taken except for
SV Acien and D) Asscris.  In this case we proceed as follows. We get by (3.22)
i ]

(2.19)
2 Z A€oz = — ECTZﬁcﬁlacan = - 2071303246‘«11 = 207151‘125.
3 Ba da 3

Similarly > Asscriz =2 D) cra5dss.  Hence ) Asscriz = 20 Aiscraz = 0.
3 3 3 8

In the case of dimension one I can not give a geometric interpretation to
the relation (III) namely

2 Amcnp = Z:Crmcmacan =0.
3 P
Thus we get a characterization of a projective space which can be stated
as follows:

THEOREM 3.1 A homogeneous space of projective tvpe whose dimension is
greater than one can be locally imbedded into the projective space of the same
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dimension preserving the group-theoretical structure if it satisfies the following
condition: whern we operate on all the adapted frames along any geodesic any
infinitesimal rotation S:, the vector which is tangent to this geodesic and has
constant components does not change its direction by the translation with re-
spect to the rotated frames, except for an order greater than one.

This condition is rather complicated. It is desirable to replace it by one
which is simpler. The rotation group about a point when it is imbedded into
the projective space is in general a subgroup of that of the projective space.

In one-dimensional case (I) (II) are always satisfied. Hence we get the
following theorem.

THEOREM 3.2 A one-dimensional homogeneous space satisfying the relation
SicscsaCar =0 can be imbedded into the one-dimensional projective space pre-

ap

serving the group-theoretical structure.

Although a projective space with points as its elements is of projective type
and satisfies (3.19) the converse of theorem 3.1 is not true. A simple example
shows that there exists a homogeneous space which can be imbedded into the
projective space of the same dimension and yet is not of projective type. A
homogeneous space which can be imbedded into the projective space of the
same dimension and whose fundamental group contains a group of all trans-
lations is of projective type. In fact in such a space (1.10) holds, where mj,
wi are linear combinations of relative components w;, w. with constant coef-
ficients. The differential equations i =0, wjo=0 are completely integrable,
though =ij, wi are not always independent. We take frames satisfying these
relations. Then owing to the assumption that the fundamental group contains
a group of all translations w;’s (=1, ..., n) are independent even when we
put 7;; =0. wio=0. So we can take secondary relative components w. anew
such that =;j, w;, are linear combinations of w, with constant coefficients. Then
we get ¢k =0, ¢ijo =0 and hence a space of projective type. We have in ad-
dition (3.3) (3.8), and (3.19) is satisfied.

4. Characterization of conformal space

4.1 Now we treat the case of a conformal space which is simpler than
that of the projective space. In a conformal space we have by (1.11)

mi=— o, w;=-—ri (I%f).

Hence the linear group of isotropy is conformal. Ve take a homogeneous
space of projective type and seek for the conditions in order that it can be
imbedded into a conformal space. In the first we put
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(4.1) mij = — g&:ijwc

to get dw; = 2)[wjnji] from (3.1). We assume that a linear group of isotropy
of our space ;s conformal, namely

(4.2) Caij = — Caji  (£%]), Caii = Ca.

We have by (2.19) ;Ckm(:uji =§c,;ucak;. So if we put gcmcu‘i = Pji we have

Prji = Pjr; and by virtue of the assumption (4.2) Piji = — Prij for i % 5. Hence
for ixjxk we get

Pyji = — Prij = — Pixj = Pijk = Pjit = — Pjki = — Puji.
Hence Piji=0 (ixj=k). For other cases we get
Pjji = — Pjij= — Pijj = — 21CigaCaji = — 2)CizaCa = — Piii (i 7).
Hence putting > cipeCe = Ais we get

SlcisaCeie =0 (ixkxj)
(4.3) *

g CisaCaji = — Ea]cz'.aacaij = %3 CipaCaii = Ajz (I J).
As our space is of projective type we have by (3.5)
dnij = azm; CisaCaki L] + ; Criemes].
So for i%j we obtain by (4.3)
drnij = % CisaCuji Lwpwi]l + % CisaCaij Lwawi] + % Crirree]

= % ALl + Zﬁ}Aj,« Lwswi] + g BTSN

If we put

(4.4) Wio = % Aisws

we get

(4.5) drij = Lwaw;i] ~ Lwjwwi] + ; [rikmril.

From (4.4) we get
dwiy = % Aiacrks [wrwk] +q§ )flipcrsp ['tO'rum]

and this reduces to

(4.5) dwiv = 2 [mijwil
J

if the relations
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(4.6) ‘34_._‘ AisCrap = — 2 crijAjs + 2 csisAjr
s J 2
(4.7) ZAiac*rkc =0
5

are satisfied. The former is a consequence of other relations as is shown in
the following. We have by (4.3)

.
SV Aiscrsp = — Eﬂ Cr53CaiaCs = 21 ChijCitaCa + ﬁECaiac,mca + Eﬂcmcagac, + D ¢iriCiseCa
s @ Je « o Ja

(4.8) D CaraCaii = — 23 CrikChai — EkJCi.akari = D\ CakiCrik — gcskicrik =0,
[ k k
and so we get
S AisCras = 20 C5ijCiraCa + 2 CitiCisaCa
8 Ja Jo
= — D)CrijCjsaCa + 20 CsijCirale = — 23CrijAjs + 21 CoijAjr.
Je Jx 2 2

As for (4.7) we can proceed as in 3.3 if #>2 and ¢xk but if n>1 and i=%k
we proceed as follows. Let i%j then we have by (4.2) (2.19)

-
}_, AigCriz = ZCTi;%CiﬁaCajj = ZCTiﬁcjﬁaCaii
[ ap a

= — 23CrjpCisaCaji = = 21 CrjaCinaCaii = — 23 AjpCripe
a8 ap 3
Hence >3 Aigcris + 23 Ajscris = O.
B 3

From the equations obtained from this by putting j, ¥ and k. ¢ in place of i, j
we get (4.7), and so (4.7) holds good if »>2. In the case n=2 we get only

—
D cr180130Ce + S CraaamaCe = 0
Ja 3o

and in order that each term reduces to O it is necessary and sufficient that

(4.9) 26‘7130134% = 2672562341041-

al al
When n=1 we have

Ecﬂscmacall =0.
ald
As to mii= —ow= — 2.¢:w; We have
(-2

dwon = 2] Caiit ke Loyor] + 2 CaiiCpra Lopor] = = 2] Aps Lwpor] + %)Cm‘acdii Lwzor].
at3T) Bk a;

adk
and we get dom = > Lorowl by virtue of (4.8).
I
Thus if #>2 and the relations

(1) cijk=0, Cija=0
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(1D Caij = — Caji (I%7), Coii =Co
are satisfied we get (1.11) by putting

Wl
T = = D)Caija, W0 = — i = ) Calda,  Wig = 2 Cizalaldy.
3 @ ad

In the case # =2 we must add one more condition (4.9). The case of dimen-
Ie)

sion one reduces to theorem 3. 2.
Hence we get the following.

THEOREM 4.1 A homogeneous space of projective type whose dimension is
greater than 2 and whose linear group of isotropy is conformal can be locally
imbedded into a conformal space of the same dimension preserving the group-
theoretical structure. If the dimension of the space of projective tvpe is 2 and
the linear group of isotropy is conformal and (4.9) holds, the space can be im-
bedded into the conformal space of dimension 2.
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