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Recent developments in the design of magnetic confinement fusion devices have
allowed the construction of exceptionally optimized stellarator configurations. The
near-axis expansion in particular has been proven to enable the construction of magnetic
configurations with good confinement properties while taking only a fraction of the
usual computation time to generate optimized magnetic equilibria. However, not much
is known about the overall features of fast-particle orbits computed in such analytical, yet
simplified, equilibria when compared with those originating from accurate equilibrium
solutions. This work aims to assess and demonstrate the potential of the near-axis
expansion to provide accurate information on particle orbits and to compute loss fractions
in moderate to high aspect ratios. The configurations used here are all scaled to
fusion-relevant parameters and approximate quasi-symmetry to various degrees. This
allows us to understand how deviations from quasi-symmetry affect particle orbits and
what are their effects on the estimation of the loss fraction. Guiding-centre trajectories
of fusion-born alpha particles are traced using gyronimo and SIMPLE codes under
the NEAT framework, showing good numerical agreement. Discrepancies between
near-axis and magnetohydrodynamic fields have minor effects on passing particles but
significant effects on trapped particles, especially in quasi-helically symmetric magnetic
fields. Effective expressions were found for estimating orbit widths and passing–trapped
separatrix in quasi-symmetric near-axis fields. Loss fractions agree in the prompt losses
regime but diverge afterwards.

Keywords: fusion plasma, plasma simulation

1. Introduction

Energetic alpha particles generated by fusion reactions carry a significant amount of
energy and have the potential to drive a plasma towards a self-sustaining fusion state,
commonly referred to as a burning plasma. To achieve this, the fraction of alpha particles
that deposit their energy in the plasma before being expelled needs to be maximized to
guarantee sufficient alpha heating (Freidberg 2007). Additionally, energetic particles that
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leave the plasma can cause significant damage to the plasma-facing components of the
fusion device, leading to a shorter device lifetime (Mau et al. 2008). Therefore, it is crucial
to confine these energetic particles and accurately predict their behaviour in the plasma
to achieve the desired levels of alpha heating and advance the development of fusion
energy.

The most general condition for the confinement of orbits in stellarators is omnigenity,
which requires a vanishing time-averaged radial drift, 〈�ψ〉. An important subset of
omnigenity, quasi-symmetry (QS), is obtained through a symmetry in the modulus of
the magnetic field B when expressed in Boozer coordinates (Boozer 1981). Experiments
such as the W7-X (Beidler et al. 1990) and HSX (Anderson et al. 1995) intend to
approximate omnigenity via quasi-isodynamic and quasi-symmetric fields, respectively.
Although perfectly omnigenous (Cary & Shasharina 1997) and quasi-symmetric (Garren
& Boozer 1991a) devices have been conjectured not to exist, it has been shown that very
precise approximations can be obtained (Landreman & Paul 2022; Goodman et al. 2023).

While these experiments have been proven to generally confine thermal plasmas, the
loss of energetic alpha particles is still a key research area for stellarators (Bader et al.
2019a; LeViness et al. 2022). Minimizing the amount of lost particles is usually performed
through optimization of plasma properties such as quasi-symmetry (Henneberg et al. 2019)
and omnigenity (Goodman et al. 2023) or using proxies for loss fractions, such as Γc
(Bader et al. 2019b) and Γα (Sánchez et al. 2023). Direct optimization of loss fractions
has only recently been performed, albeit at a substantial computational cost (Bindel,
Landreman & Padidar 2023).

Such optimization procedures require the repeated variation of the last closed flux
surface and are not only hindered by the existence of multiple local minima, and thus
highly dependent on the initial conditions, but are also computationally demanding and
offer limited insight into the number of effective degrees of freedom of the problem,
as well as the specific physical implications associated with individual coefficients or
their collective groups (Landreman, Sengupta & Plunk 2019). Additionally, to obtain a
reactor-grade stellarator, it is essential to balance the confinement of energetic particles
with other physical and engineering constraints such as stability, turbulence and coil
geometry tolerances (Hegna et al. 2022), which may increase its overall computational
cost.

A way to circumvent the issues above is through the introduction of an analytical
approximation to a magnetohydrodynamic (MHD) equilibrium. Such construction is a
near-axis expansion (NAE), which is valid in the core of all stellarators and can be
introduced in the early stages of optimization enabling the use of better initial conditions
(warm start initial conditions) for conventional optimizations while allowing for extensive
searches in the parameter space of the design (Landreman 2022). This expansion can be
obtained resorting either to the direct method (Mercier 1964; Solov’ev & Shafranov 1970;
Jorge, Sengupta & Landreman 2020), explicitly determining the magnetic flux surface
function ψ using the Mercier coordinates (ρ, θ , ϕ), or the indirect method (Garren &
Boozer 1991a,b; Landreman & Sengupta 2018; Landreman et al. 2019), which directly
computes the position vector r as a function of the Boozer coordinates and is the one
we will use throughout this work. Such constructions not only describe high aspect ratio
devices but also the region around the axis of any stellarator, while enabling useful
analytical insight due to its simplicity at lowest orders. As we show here, the estimation of
loss fractions directly from orbit following codes can be computationally expedited within
the near-axis framework, without significant accuracy degradation due to its simplified
analytical nature for short time frames. This speed up arises from the direct computation
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of the magnetic field and other related quantities as an alternative to the many Fourier
coefficients needed in conventional optimization.

The main goal of this paper is to study the accuracy of fast particle trajectories in
approximate analytical near-axis equilibria when compared with the same trajectories in
accurate numerical MHD equilibria. By understanding how much these orbits deviate
from each other, we are able to assess the validity of the expansion for loss fractions
estimation in scenarios with a variety of aspect ratios, time scales and perpendicular
velocities. As the collisional effects have been shown to be negligible for particle losses in
the prompt losses time scales and time scales up to a fraction of the energy deposition time
(Lazerson, LeViness & Lion 2021), we are only interested in the collisionless dynamics of
the energetic particles, which were studied resorting to the integration of the particles’
guiding-centre (GC) orbits. The primary focus of this work is on configurations that
approximate quasi-symmetry to varying degrees to employ the quasi-symmetric version
of the NAE of Landreman & Sengupta (2019) and Landreman (2022). The concept of
quasi-symmetry, derived from the gyroaveraged Lagrangian, implies that QS stellarators
are specifically designed to confine GC orbits. Therefore, our analysis focused solely on
these orbits. This approach is also more computationally efficient than simulating the full
orbits of particles.

A large number of GC or full-gyromotion particle tracers, such as ANTS (Drevlak et al.
2014), ASCOT (Hirvijoki et al. 2014), BEAMS3D (McMillan & Lazerson 2014), FOCUS
(Clauser, Farengo & Ferrari 2019), LOCUST (Ward et al. 2021), OFMC (Tani et al. 1981),
GNET (Masaoka & Murakami 2013), SPIRAL (Kramer et al. 2013) and VENUS-LEVIS
(Pfefferlé et al. 2014), have been used for fast particle transport and loss studies. In this
work, we use the Euler–Lagrange equations of motion for the GC (Littlejohn 1983) as
implemented in the general-geometry particle tracing library gyronimo (Rodrigues et al.
2023), which is a convenient tool for comparing between different geometries, and the
Hamilton equations of motion as implemented in the code SIMPLE (Albert, Kasilov
& Kernbichler 2020b). Both particle-tracing codes are open source. To make the direct
comparison between trajectories as straightforward as possible, the same equations and
algorithms are used for particles in near-axis and MHD fields. Later specialization could
improve the computational efficiency of the procedures. However, the achieved levels of
speed are already relevant for near-axis equilibria optimization.

This paper is organized as follows. Section 2 provides an overview of the NAE and
the Boozer coordinate system. In § 3, we describe the GC motion and the different
approaches taken for its calculations. In § 4, the results for single-particle tracing in
configurations close to quasi-symmetry are shown, within a reasonable scope of initial
conditions. Additionally, expressions for the estimation of the orbit radial amplitudes
and the passing–trapped boundary are derived and compared with computational results.
Taking knowledge obtained in this last section into account, total loss fractions are
computed and analysed in § 5 for two distinct configurations. In § 6, we summarize the
primary findings and delineate potential pathways for future research.

2. The near-axis expansion

In this section, we follow the notation of Landreman & Sengupta (2019) and introduce
the near-axis expansion using the inverse approach first presented by Garren & Boozer
(1991a). We begin by writing the magnetic field in Boozer coordinates (ψ, θ, ϕ), with
2πψ the toroidal flux, and θ and ϕ the poloidal and toroidal coordinates, respectively.
This results in
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B = ∇ψ × ∇θ + ι∇ϕ × ∇ψ,
= β∇ψ + I∇θ + G∇ϕ, (2.1)

where I = I(ψ) and G = G(ψ) are flux functions, β = β(ψ, ϕ, θ) is a quantity related
to the plasma pressure that usually depends on the three coordinates and ι = ι(ψ)

is the rotational transform. As we want to analyse both stellarators which exhibit a
quasi-symmetry in the toroidal angle, named quasi-axisymmetric (QA), and in a linear
combination of poloidal and toroidal angles, termed quasi-helically symmetric (QH), it is
convenient to introduce a helical angle ϑ = θ − Nϕ, where N is a constant integer equal to
0 for a QA stellarator and, usually, the number of field periods for a QH one. This results
in the following expression for the magnetic field:

B = ∇ψ × ∇ϑ + ιN∇ϕ × ∇ψ,
= β∇ψ + I∇ϑ + (G + NI)∇ϕ. (2.2)

To derive the NAE’s main features at first order, we begin by writing the general position
vector r as

r(r, θ, ϕ) = r0(ϕ)+ rX1(θ, ϕ)n(ϕ)+ rY1(θ, ϕ)b(ϕ)+ O(r2), (2.3)

with r =
√

2|ψ |/B̄ an effective minor radius, B̄ a reference magnetic field and r0 the
position vector along the axis, with a given set of Frenet–Serret orthonormal basis vectors
(t, n, b), a local curvature κ = κ(ϕ) and torsion τ = τ(ϕ). At first order, we additionally
take the profile functions G(r) and I(r) to be G0 and I2r2, respectively (Landreman &
Sengupta 2018). In quasi-symmetry, r can be written as (Landreman & Sengupta 2019)

r(r, ϑ, ϕ) = r0(ϕ)+ rη̄
κ(ϕ)

cosϑn(ϕ)+ rsψsGκ(ϕ)

η̄
[sinϑ + σ(ϕ) cosϑ]b(ϕ)+ O(r2/R),

(2.4)

where sψ = sign(ψ), sG = sign(G0) and η̄ is a constant reference field strength that
parametrizes B = |B| as

B = B0(1 + rη̄ cosϑ)+ O((r/R)2), (2.5)

where B̄ = sψB0 and σ(ϕ) as a periodic function related to the flux surface shape, which
satisfies the Riccati-type equation

dσ
dϕ

+ (ι0 − N)
[
η̄4

κ4
+ 1 + σ 2

]
− 2G0η̄

2

B0κ2

[
I2

B0
− sψτ

]
= 0. (2.6)

Equation (2.5) only enables the construction of stellarators with elliptical cross-sections,
so a higher order is needed to express the stronger shaping of existing stellarators. At the
second order, nine new functions of ϕ arise in the surface shapes that can now possess
triangularity and a Shafranov shift. However, these functions are constrained by 10 new
equations of ϕ, a mismatch that results in the fact that most axis shapes are not consistent
with quasi-symmetry at this order. Landreman & Sengupta (2019) circumvented this by
allowing quasi-symmetry to be broken at second order in the field strength, which is the
method used here. Furthermore, a detailed description of the application of this method to
the construction of stellarator shapes is provided, built on a third-order method with the
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shaping details that need to be taken into account to generate a boundary surface that is
consistent with the desired field strength and eliminate unwanted mirror modes.

As the present work performs comparisons between equilibria generated with the
quasi-symmetric NAE code pyQSC (Landreman 2021) and with VMEC (Hirshman 1983),
an MHD equilibrium code, it is important to note that these do not use the same
coordinates. Unlike the description made for the radial coordinate in the NAE, VMEC
uses a normalized radial coordinate s = ψ/ψb, with ψb the toroidal flux at the last closed
flux surface. Therefore, to obtain r in the NAE system, we use the relation

r = rmax
√

s, (2.7)

where rmax =
√

2ψb/B̄. Additionally, the toroidal angle in VMEC, φ, corresponds to the
azimuthal cylindrical coordinate defined as arctan(y/x), while pyQSC operates with a
cylindrical coordinate on-axis, φ0, that corresponds to the asymptotic value on axis, i.e.

φ0 = lim
r→0

tan−1
(y

x

)
, (2.8)

which is distinct from the Boozer coordinate described in the NAE derivation above. In our
workflow, we use the Boozer coordinate ϕ and transform it into φ0 through φ0 = ϕ − ν,
where ν is an output of the pyQSC code given by Landreman & Sengupta (2018). The
coordinate φ is further computed through a root-finding function. Finally, the poloidal
coordinate in VMEC, θV , is in the range [−π,π], whereas θ in pyQSC is defined from 0
to 2π in the opposite direction, leading to the relation θV = π − θ . The initialization of a
particle in a pyQSC field is, however, done with the helical angle ϑ = θ − Nϕ.

3. Guiding-centre formalism and orbit integration

The confinement properties of a given stellarator configuration are commonly estimated
employing either proxies or direct methods, such as numerically simulating particle orbits
in a plasma. Although proxies for confinement such as QS, Γc and others have proven
fruitful in device optimization due to their minimal computational expense (Bader et al.
2019a; Henneberg et al. 2019), they also bring some drawbacks. For example, QS may
be too stringent of a condition when dealing with a multi-objective optimization, possibly
undermining our capacity to achieve optimal outcomes for other objectives like MHD
stability or feasible coil sets, and proxies like Γc and Γα might not capture the full physical
picture of drift orbits (Albert, Kasilov & Kernbichler 2020a). Furthermore, orbit following
is necessary if one wants to either understand the mechanisms that lead to losses or take
those into account in the loss estimation. Thus, we apply the equations of motion for
charged particles in a magnetized plasma to assess such mechanisms.

Computing particle trajectories in a magnetic field is commonly not a straightforward
task, often requiring numerical treatment. To do so, we leverage the fact that in the
magnetized plasmas of interest, the magnetic field is strong enough that we can decouple
the high-velocity cyclotronic motion of charged particles from the slowly varying GC
coordinates and parallel velocity, therefore simplifying our problem. We begin by writing
the position of a particle r in terms of its GC position R and its gyration radius vector ρ in
the following way (Cary & Brizard 2009):

r(t) = R(t)+ ρ(t). (3.1)

If the gyroradius ρc = mv⊥/qB of a particle of mass m and charge q is small enough
compared with a field gradient length LB, we can average out the particle’s motion over a
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gyration time tc = 1/Ωc, where Ωc = qB/m is the gyrofrequency, and still retain most of
the information about the particle motion for time scales much greater than tc. To a first
approximation, the GC motion can be described with the non-canonical gyro-averaged
Lagrangian (Littlejohn 1983):

L = qA · Ṙ + mv‖b · Ṙ + mμ
q
Ωc − mv2

‖
2

− μB, (3.2)

where μ = mv2
⊥/2B is an adiabatic invariant (magnetic moment), v‖ and v⊥ are

respectively the components of the velocity parallel and perpendicular to the magnetic
flux surfaces, b = B/B the magnetic unit vector, and A is the magnetic potential. As we
are not considering the effects of electric fields from local charge densities or varying
magnetic fields, the electric potential is absent from the Lagrangian above. The application
of Lagrangian mechanics to this system allows us to use the Euler–Lagrange equations to
derive equations of motion that not only conserve energy for time-independent systems
but also possess Poincaré integral invariants and allow for derivations of conservation laws
from Nöether’s theorem in the presence of spatial symmetries (Cary & Brizard 2009). The
GC Lagrangian in Boozer coordinates has the following form:

L = q(ψθ̇ − ψpϕ̇)+ mv‖
B
(ψ̇β + θ̇ I + ϕ̇G)+ mμ

q
Ωc − mv2

‖
2

− μB, (3.3)

where we used the fact that, as B = ∇ × A = ∇ψ × ∇θ + ∇ϕ × ∇ψp with dψp/dψ = ι,
A can be written as A = ψ∇θ − ψp∇ϕ, where ψp is the poloidal flux. In the case of
quasi-symmetry, where the magnitude of B depends only on (ψ, χ), with χ = Mθ − Nϕ,
(3.3) exhibits a continuous symmetry in a third coordinate η = M′θ − N ′ϕ, with M′/N ′ 	=
M/N. In compliance with Nöether’s theorem, this symmetry leads to the conservation of a
quantity analogous to the canonical angular momentum in the tokamak, which constrains
the trajectories of the particles in the plasma, improving their overall confinement up to
modern tokamak levels or greater (Landreman & Paul 2022).

Once we have the equations of motion, there is no unique method of performing their
integration to obtain particle orbits. Although (3.2) is valid independently of the applied
system of coordinates, the standard approach to particle tracing is to write this Lagrangian
in terms of coordinates that are more suitable to the problem in question, such as Boozer
coordinates, as shown in (3.3), usually leading to simplified equations of motion. This
is the case of SIMPLE (Albert et al. 2020b), a symplectic (energy conserving) orbit
tracer used in this work. The symplectic approach to particle following has significant
advantages regarding numerical stability and energy conservation, but its implementation
is not straightforward. Symplectic integrators rely on canonical coordinates and an explicit
expression of the GC Hamiltonian,

H(z) = mv2
‖(z)

2
+ μB(z), (3.4)

which exists only in non-canonical coordinates z = (ψ, θ, ϕ, pϕ), where pϕ = ∂ϕ̇L, so a
coordinate transformation to canonical coordinates (q, p) = (θ, ϕ, pθ , pϕ) is needed and
can be found from Albert, Kasilov & Kernbichler (2020c), with pθ = ∂θ̇L. The canonical
coordinates can be written as explicit and invertible functions q = q(z) and p = p(z) with
inverses z(q, p) given only implicitly. Although this would not be sufficient for an explicit
integrator, it is enough for semi- or fully implicit integrators.
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The equations of motion of the canonical coordinates in SIMPLE are given by the
following set of equations:

θ̇ (t) = ∂H
∂ψ

(
∂pθ
∂ψ

)−1

, (3.5)

ϕ̇(t) = ∂H
∂pϕ

− ∂H
∂ψ

(
∂pθ
∂ψ

)−1
∂pθ
∂pϕ

, (3.6)

ṗθ (t) = −∂H
∂θ

+ ∂H
∂ψ

(
∂pθ
∂ψ

)−1
∂pθ
∂θ
, (3.7)

ṗϕ(t) = −∂H
∂ϕ

+ ∂H
∂ψ

(
∂pθ
∂ψ

)−1
∂pθ
∂ϕ
, (3.8)

which are then solved with symplectic schemes, such as implicit Euler schemes, Verlet and
implicit midpoint, estimating the time evolution of the radial coordinate ψ in the process,
as further described by Albert et al. (2020a).

The inconveniences related to canonical transformations and their inversions can be
avoided by employing the Euler–Lagrange equations of motion that result from the
Lagrangian in (3.2), as these are invariant regarding any specific choice of coordinates.
This is the approach followed by one of the equations-of-motion models implemented in
the library gyronimo, with the corresponding dynamical system being written in terms of
the general curvilinear coordinates X as

Ω∗ dX
dτ

= Ω̃ṽ‖b + ṽ2
‖∇̃ × b − b ×

(
Ẽ − ṽ‖∂τb − μ̃∇̃B̃

2

)
, (3.9)

Ω∗ dṽ‖
dτ

= (Ω̃b + ṽ‖∇̃ × b) ·
(

Ẽ − ṽ‖∂τb − μ̃∇̃B̃
2

)
, (3.10)

where Ω∗ = Ω̃ + ṽ‖(b · ∇̃ × b), the position X of the GC is normalized to a reference
length Lref, the time τ to Tref and the parallel velocity to Vref = Lref/Tref. In these
expressions, B̃ = B/Bref is a normalized magnetic field magnitude, Ẽ = Ẽref(E/Eref) a
normalized electric field and Ω̃ = ΩrefB̃ a normalized gyrofrequency. Moreover, ∇̃ =
Lref∇, Ẽref = Ω̃ref(ErefV−1

ref B−1
ref ) and the magnetic moment μ is normalized to the ratio

Uref/Bref and Uref is the kinetic energy corresponding to Vref.
This enables the use of different kinds of magnetic equilibria in any given geometry.

Using these equations of motion, the integration of the particles’ dynamics can be
performed independently of the specific geometry and coordinate system of the problem,
taking only the tensor metric g and either the co- or contravariant components of B
as inputs. All magnetic configurations analysed in this work are equilibrium vacuum
configurations with no electric fields resulting in ∂τb = 0, b · ∇̃ × b = 0 and Ẽ = 0,
effectively reducing the equations of motion to

dX
dτ

= ṽ‖b + μ̃

2Ω̃
b × ∇̃B̃ (3.11)

and
dṽ‖
dτ

= − μ̃
2

b · ∇̃B̃. (3.12)
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(a) (b)

FIGURE 1. Evaluation of the performance of different integration algorithms. (a) Constant-step
Runge–Kutta (RK), Adams–Bashforth (AB) and Bulirsch–Stoer (BS) integrators. (b) Best
performing constant-stepintegrators and their adaptive-step counterparts available in the
boost::odeint library.

The equations of motion (3.9) and (3.10) can be integrated with a wide assortment
of algorithms made available by the ordinary differential equation (ODE) library
boost::odeint (Ahnert & Mulansky 2011), either with constant or adaptive time step, which
can be easily selected from within the gyronimo framework and allow the flexibility
to choose the algorithm best adapted to the problem being solved. Henceforth, we will
work with the Dormand–Prince (RK5) method from the Runge–Kutta family of ODE
solvers. This decision is based in figure 1, where panel (a) shows the trade-off between
the energy loss �E = (E − E0)/E0, which is a proxy for the computational error since
the energy should be conserved, and the computation time required by different constant
time step algorithms to integrate up to the same final instant. In panel (b), one compares
the best-performing constant-step algorithms with their adaptive-step counterparts when
available.

Although the Bulirsch–Stoer (BS) method and the fourth-order Runge–Kutta (RK4)
constant-step methods exhibit better performances, they entail increased computational
costs, which is a significant bottleneck when evaluating loss fractions for a wide range
of magnetic configurations in optimization workflows. Even though the adaptive-step
Runge–Kutta–Fehlberg (RK78 adapt) appears to accomplish this, the parameters that
control the energy loss do not show a linear dependence and so were left to later statistical
and systematic analysis. It is also interesting to note that there is a limit on how small we
can make the step size and still decrease the relative energy loss, a limit that may be due
to the numerical precision used in the code.

4. Single-particle motion

We begin by performing integration of the GC trajectories of alpha particles at an
energy of 3.52 MeV. All of the equilibria were scaled to have an effective minor radius
aA = 1.7044 m, equal to that of the ARIES-CS reactor (Najmabadi et al. 2008), and major
radius larger than ARIES-CS, RA = 7.7495 m, with a magnetic field of 5.3267 T. Here,
ARIES-CS is used as a baseline scale as it was one of the latest viability studies for a
power plant-grade compact stellarator. However, as it is a compact device, its aspect ratio
A, the ratio between its major radius RA and its minor radius aA, may stretch the limit
of applicability of the NAE to be effective all the way up to the boundary, so we take
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(a) (b) (c)

(d) (e) ( f )

FIGURE 2. Comparison between gyronimo (vmec) and SIMPLE (simple) tracers for original
precise QA, scaled to have ARIES-CS minor radius aA and B0, the field at the plasma axis. With
an initial position (s, θ, φ) = (0.25, 0.1, 0.1) and λ = 0.95 in panels (a,d), the particle describes
a passing orbit, and for λ = 0.97 in panels (b,e) and λ = 0.99 in panels (c, f ), trapped orbits are
observed. Top panels are the temporal evolution of the radial coordinate s and bottom panels are
the poloidal view of the orbit in VMEC coordinates, with an inner dashed circle for the initial
flux surface and an outer dashed circle for the last closed flux surface. Only approaching the
passing–trapped separatrix (λ = 0.97) do the tracers slightly diverge.

higher values of the major radius to obtain a better behaviour of this approximation, albeit
at the cost of a less compact reactor. The effective minor radius in this work is given as
an average of this quantity throughout the last closed surface, which can be written as
πa2

A = 1/2π
∫ 2π

0 S(φ) dφ, where S(φ) is the area of the surface cross-section at each point
of the cylindrical angle φ (Jorge & Landreman 2021). We note that the minor radius value
is substantially larger than the alpha particles’ gyroradius as expected of this kind of fusion
reactor.

Finally, we initialize the particles velocities with two parameters: sv‖ , the sign of the
initial parallel velocity, which can take the values +1 and −1, and λ, the ratio between
the initial perpendicular kinetic energy E⊥i = mv2

⊥/2 and the total kinetic energy E =
mv2/2. The normalized adiabatic invariant is given by μ̃ = λ(E/Eref)(Bref/B(ri)), where
ri represents the initial position of the particle.

To benchmark gyronimo with SIMPLE, the same alpha particles were followed with
both tracers for 1 ms in the precise QA VMEC equilibrium of Landreman & Paul (2022)
scaled to the conditions described above, except for the major radius, which is R = 6aA
to preserve the original aspect ratio of A = 6. Figure 2 exhibits the orbits of particle
with sv‖ = 1 and initial position (s, θ, φ) = (0.25, 0.1, 0.1). The angular coordinates θ
and φ were chosen to be finite values to ensure these are not a special case where the
orbits coincide, which could happen for θ = φ = 0. Although this benchmark included
the variation of all initial values, we only exhibit here a change in the value of λ which
was observed to be one of the most important factors in the alignment between integrators.
In the presented results, the values of λ are 0.95, 0.97 and 0.99.

The radial oscillations predicted by the two different approaches agree for the cases λ =
0.95 and λ = 0.99, which correspond respectively to a passing and a trapped particle. Such
agreement, however, starts to decrease over extended temporal intervals for the case λ =
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(a) (b) (c)

FIGURE 3. Orbits obtained with SIMPLE with (s, θ, φ) = (0.25, 2.89, 1.84) and v‖/v = 0.44
as initial conditions, by varying the angular grid factor multharm: (a) multharm = 3; (b)
multharm = 4; (c) multharm = 5.

0.97. This corresponds to a trapped particle that starts to approach the passing–trapped
transition where orbits tend to be more sensitive to slight changes in the integration
conditions. For those values of λ, the amplitude of oscillations in s remains the same but its
temporal variation contains a delay between the codes, while the average radial position
exhibits a small deviation. While the temporal deviation may be due to the symplectic
nature of SIMPLE, the source of the difference in the average radial position, among
other factors, may include the fact that the motion of a particle in the transition from the
trapped to the passing regime depends strongly on higher order terms of the GC motion.
The segment of the banana orbits around reflection points (banana tips) correspond to low
values of v‖. We note that such higher order terms may have a non-negligible effect in
points along the orbit where the values of v‖ stay close to zero.

We conclude that we may work with gyronimo as it compares well in most cases
with SIMPLE. Throughout the rest of the analysis, we will not be showing the results
of the SIMPLE particle tracing as such a good match for some orbits is only achievable
using an increased amount of memory due to the number of grid points necessary for the
interpolation used by SIMPLE. The effect of varying an interpolation angular grid factor
that controls the number of poloidal and toroidal grid points within SIMPLE can be seen
in figure 3 for a particle initialized with si = (0.25, 2.89, 1.84) and v‖ /v = 0.44, with
drastic changes on its passing orbit. This is partially explained by the fact that the main
goal of SIMPLE is to achieve long-term conservation of invariants like energy rather than
minimizing the spatial deviation from a reference orbit (Albert et al. 2020c). Despite that,
all single-particle results were compared with the corresponding values in SIMPLE with
a low grid factor to ensure that there are no major divergences between tracers, including
those shown in this work.

We will divide our comparison for QA and QH configurations due to the nuanced
analysis needed between them. The reference case for a QA stellarator used was the precise
QA of Landreman & Paul (2022) and the one for QH stellarators was the four field period
QH vacuum configuration with magnetic well from § 5.4 of Landreman (2022). Although
we will use the terms QH and QA for all of the magnetic configurations that are close to
precise QS, some have finite deviations from it. This is the case because we take the outer
surface of NAE configurations calculated by pyQSC and create an input file for VMEC
with the relevant configuration parameters, following the procedure of Landreman et al.
(2019). VMEC computes an ideal MHD equilibrium from this input file which may not
retain some of the initial features of the NAE configuration. This is especially true for
equilibria with smaller aspect ratios, where the outer bounds are not well described by an
expansion from the axis.
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(a) (b) (c)

FIGURE 4. QA VMEC equilibria generated from the precise QA from pyQSC with different
major radius scalings. Top panels are the 3-D versions of the equilibria and bottom panels are
the contour plots of the magnetic fields on the angular VMEC coordinates. (a) Aspect ratio
A = 6.8. (b) A = 9.1. (c) A = 13.6.

To have a good overall picture of how the NAE compares with with different aspect ratio
equilibria, the analysis will encompass equilibria with major radius R = 3, 2 and 1.5 times
the major radius of ARIES-CS, RA. We can see from figures 4 and 7 how quasi-symmetry
degrades when generating a VMEC equilibrium from the near-axis one for lower aspect
ratios. While this effect is more evident for the QH stellarator in figure 7, such degradation
is visible also in the QA one in the contour lines representing higher values of B in figure 4.
The contour lines representing lower magnitudes of B appear not to follow this trend, but
only because they are closer to θ/2π = 0.5 for the A = 13.6 equilibrium than for the
A = 9.1 one.

4.1. Quasi-axisymmetry
We now proceed to the comparison between orbits of particles for the VMEC equilibria
and the pyQSC ones that originated them. All orbits were traced for 1 ms, to be compared
in the same time frame, although varying the aspect ratio affects the number of toroidal
turns and the number of radial oscillations, similarly for changes in the value of λ.

We show in figures 5 and 6 an example of a passing particle with λ = 0.9
and a trapped particle with λ = 0.99, correspondingly. To observe the banana orbits
characteristic of trapped particles in tokamaks, we transformed the VMEC equilibria to
the BOOZ_XFORM (Sanchez et al. 2000) format and calculated the particle trajectory for
this field, where the angular coordinates are Boozer coordinates similar to pyQSC. The
plots in Boozer coordinates in panels (d–f ) of each figure show the comparison between
the orbits in these two fields, which exhibit circular curves for passing orbits and bean or
banana-shaped curves for trapped orbits. We also show a view from above of the orbits in
the pyQSC field (qsc) and in the VMEC equilibrium (vmec). In this case, the same inputs
for the particles result in the same type of orbits, but this does not have to be the case as in
different aspect ratios, we have different values of initial B and, therefore, for some values
of λ, some orbits are trapped and some are not for different aspect ratios.
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(g) (h) (i)

FIGURE 5. Comparison between alpha particle orbits in pyQSC (qsc), VMEC (vmec) and
BOOZ_XFORM (booz) QA equilibria with initial position (s, θ, ϕ) = (0.25, 0.1, 0.1) in Boozer
coordinates and λ = 0.8. (a–c) Evolution of the radial position in time. (d–f ) Normalized
poloidal view of the orbit. (g–i) Top view of the orbit in Cartesian coordinates. (a,d,g) A = 6.8.
(b,e,h) A = 9.1. (c, f,i) A = 13.6.

For higher λ, orbits have some deviations from one another for all aspect ratios, but
the most striking differences happen when we have trapped particles, as can be seen in
figure 6, where the average radial positions deviate significantly for the lower aspect ratio
which implies larger differences in all the points of view of the orbit. Although no loss
of particles is shown in the figures, it is easy to imagine that, for wider banana orbits, we
would lose a particle for all equilibria, at least for the higher aspect ratios, making the
prompt loss fraction similar between these configurations, despite small differences in the
magnetic field.

The fact that the orbits in the BOOZ_XFORM (booz) and VMEC (vmec) fields are quite
different from each other, figure 6 shows that slight changes on the equilibrium, which
can arise from interpolation errors or resolution differences, can cause large differences
in the radial excursion of a given particle with the same initial conditions when we are
further away from QS or omnigenity. Although increasing the resolution could improve
the convergence between fields, the required increase in toroidal and poloidal modes to
achieve convergence would substantially affect the computational costs of the procedure.
Furthermore, VMEC is known to have decreased accuracy near the magnetic axis, so
some level of disagreement is expected there. However, even though the orbits are not
aligned with each other, the impact of this effect in the confinement of these particles is
not obvious as the misalignment in the form of time delays or small average deviations
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FIGURE 6. Comparison between alpha particle orbits in pyQSC (qsc), VMEC (vmec) and
BOOZ_XFORM (booz) QA equilibria with initial position (s, θ, ϕ) = (0.25, 0.1, 0.1) in Boozer
coordinates and λ = 0.99. (a–c) Evolution of the radial position in time. (d–f ) Normalized
poloidal view of the orbit. (g–i) Top view of the orbit in Cartesian coordinates. (a,d,g) A = 6.8.
(b,e,h) A = 9.1. (c, f,i) A = 13.6.

may not have a big impact on the fraction of lost particles. Such small deviations will be
assessed in the next section.

4.2. Quasi-helical symmetry
The orbit widths obtained for the QH stellarator have, in general, smaller amplitudes,
which matches the observation of Landreman & Paul (2022) that the radial excursions
are expected to decrease with a higher value of |ι− N|. The lower amplitudes, which
can be observed in figures 8 and 9, appear to be accompanied by higher frequencies of
oscillation. Additionally, passing orbits such as those in figure 8 exhibit proportionally
higher deviations of the VMEC and BOOZ_XFORM orbits from the pyQSC ones,
although in absolute value, they tend to be smaller than their QA counterparts in figure 5.

For the case where λ = 0.99, as depicted in figure 9, distinct behaviours emerge based
on the aspect ratio. When considering a smaller aspect ratio, the orbit in the NAE magnetic
field is a purely trapped particle, while the remaining orbits oscillate between trapped
and passing states throughout the temporal evolution. In this scenario, the total radial
amplitude of the transitioning trajectories exhibits only a marginal increase compared with
the purely trapped orbits. For the medium aspect ratio, the particle in an NAE field is now
a passing one, while the other particles continue to demonstrate the previously observed
behaviour, with radial amplitudes exceeding twice that of the passing trajectory. For the
case of a larger aspect ratio, as all particles are passing ones, only small deviations are
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(a) (b) (c)

FIGURE 7. QH VMEC equilibria generated from the ‘2022 QH nfp4 well’ from pyQSC with
different major radius scalings. Top panels are the 3-D versions of the equilibria and bottom
panels are the contour plots of the magnetic fields on the angular VMEC coordinates. (a) Aspect
ratio A = 6.8. (b) A = 9.1. (c) A = 13.6.

observed between orbits. It is also interesting to note that the banana widths are smaller in
the QH case than in the QA case, as expected.

Another important aspect is that no signs of trapped particles with an average outward
radial drift, �ψ > 0, were observed for the orbits in the QH NAE fields. This may
in part be caused by the increased quasi-symmetry in these fields or an expression
of the simplicity of the field, not allowing for locally trapped or detrapping particles.
Passing–trapped transitions can be caused by the finite banana width, which is usually
a small effect, and by the misalignment of field maxima, which can be attributed to
a deviation from perfect quasi-symmetry and can cause stochastic diffusion losses of
approximately 10 % for particles born at half-radius (Beidler et al. 2001). The latter effect
is thus more relevant to the QH configurations, where the degree of quasi-symmetry
achieved is smaller. We note that such deviation is expected to stem mainly from
differences in B as the same code, equations and algorithms were used. Despite this fact,
the lower transport due to increased rotational transform, an important feature of most QH
stellarators, as it provides better confinement of energetic particles for lower time frames,
is partially captured by the NAE.

4.3. Trapped–passing separatrix
As the alignment of orbits for the different equilibria appears to be appreciably worse
for trapped particles than for their passing counterparts, it becomes of interest to try
to estimate the threshold between the two of them taking into account their initial
coordinates. We attempt exactly that using the first-order NAE analytical formula for the
magnetic field.

Defining the energy and magnetic moment as E = m(v2
⊥ + v2

‖)/2 and μ =
mv2

⊥/2B(s, θ, φ), respectively, and defining λ = E⊥i/E = μBi/E, where the subscript i
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FIGURE 8. Comparison between alpha particle orbits in pyQSC (qsc), VMEC (vmec) and
BOOZ_XFORM (booz) QH equilibria with initial position (s, θ, ϕ) = (0.25, 0.1, 0.1) in Boozer
coordinates and λ = 0.8. (a–c) Evolution of the radial position in time. (d–f ) Normalized
poloidal view of the orbit. (g–i) Top view of the orbit in Cartesian coordinates. (a,d,g) A = 6.8.
(b,e,h) A = 9.1. (c, f,i) A = 13.6.

stands for the initial value given for the simulation, we arrive at

v2
‖ = v2

(
1 − λB(s, θ, φ)

Bi

)
. (4.1)

For a trapped particle, there is a given critical radial position (sc, θc, ϕc) at which v‖ = 0,
leading to B(sc, θc, ϕc)) = Bc = Bi/λ. With a first-order near-axis expansion, we can write
Bi = B0(1 + aA

√
siη̄ cos θi) and Bc = B0(1 + aA

√
sc|η̄|), which we take to be a poloidal

maximum of B for this estimation, which leads to | cos θ | = 1. This assumption results in
an overestimation of the value of Bc, but simplifies the analysis, leading to an estimation
of λ at which we have the passing–trapped separatrix, λs, depending only on the initial
position of the particle and the radial position where the parallel velocity is null, sc. Taking
advantage of the fact that confined orbits perform an oscillatory motion, we may assume
sc should be between si − 2�s and si + 2�s, where 2�s is an estimation of the maximum
radial peak-to-peak amplitude of orbits. This is done since the starting point can be in the
peak or the valley of the oscillation. Finally, we arrive at the following interval for the
transition value λs:

(1 + aA
√

siη̄ cos θi)

(1 + aA
√

si + 2�s|η̄|) ≤ λs ≤ (1 + aA
√

siη̄ cos θi)

(1 + aA
√

si − 2�s|η̄|) . (4.2)
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FIGURE 9. Comparison between alpha particle orbits in pyQSC (qsc), VMEC (vmec) and
BOOZ_XFORM (booz) QH equilibria with initial position (s, θ, ϕ) = (0.25, 0.1, 0.1) in Boozer
coordinates and λ = 0.99. (a–c) Evolution of the radial position in time. (d–f ) Normalized
poloidal view of the orbit. (g–i) Top view of the orbit in Cartesian coordinates. (a,d,g) A = 6.8.
(b,e,h) A = 9.1. (c, f,i) A = 13.6.

To demonstrate how effective this interval is at predicting if a particle is trapped or
passing, we traced particles in the pyQSC QA and QH equilibria of aspect ratio A = 9.1
with linearly spaced initial conditions θ , ϕ and λ for three different radial positions si =
0.25, 0.5 and 0.75. We then check if the particles have v‖ = 0 at any point of their orbit
(trapped) or not (passing), discarding all the lost particles classified as passing orbits. This
last step was performed to avoid false negatives, as some orbits could be trapped particles
that are lost before achieving v‖ = 0. The interval in (4.2) is depicted in the form of three
thresholds, two of them corresponding to the lower and higher bounds on λs and the third
one corresponding to sc = si. For the QA stellarator, we take 2�s to be 0.4 and, for the
QH, 0.1 as the maximum amplitudes in our examples appear to be of this order.

The obtained results can be seen in figures 10 and 11, where the threshold lines match
the changes in the trapped area in a quite accurate way both in the QA and the QH
stellarators for different radial initial positions. It is also interesting to note that the
interval encompasses almost all overlapping dots even when the interval is of a smaller
magnitude, such as in the QH case even though it is the product of a few assumptions.
That said, the middle threshold can still be useful to have a single predictor of the type
of orbit in question, especially in the QH case, where the amount of overlapping points is
substantially smaller.
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FIGURE 10. Comparison of estimated interval for trapped to passing separatrix with computed
results for a QA stellarator. Trapped ( red) and passing ( blue) particles are plotted as a function
of the initial Boozer poloidal coordinate θ and of λ = μBi/E for three different initial radial
positions si. High and low thresholds correspond to interval bounds, while mid threshold
corresponds to an average separatrix : (a) si = 0.25 ; (b) si = 0.5 ;(c) si = 0.75.

In future works, this interval could be used to select a priori only passing or trapped
particles for analysis. This would be interesting to do because trapped particle orbits
are generally unconfined and may exhibit chaotic behaviour, and could be more easily
studied with this approach. Furthermore, these particles represent a substantial part of
alpha-particle losses and so, computing loss fractions of trapped particles only would be
more computationally efficient without considerable information losses. However, as the
interval�s was found only a posteriori, it is still necessary to find a way of estimating this
value. An attempt to do exactly this is found in the next subsection.

4.4. Radial oscillation amplitude
Not only is it of interest to have an estimate of the maximum oscillation amplitude �s
to complete the above study, but also to have an expression for the dependence of the
amplitude with λ and si. To estimate these quantities, we take advantage of the fact that, for
a general quasi-symmetric stellarator, the conserved momentum pη can be obtained from
the Lagrangian in (3.3) through a coordinate transformation from (s, θ, ϕ) to (s, χ, η).
This momentum can be written in the following way:

pη = q
N
M
ψ − qψp + mv‖

B(s, θ, ϕ)

(
G + N

M
I
)
, (4.3)

and is the starting point of our estimation. Taking the first-order NAE, we approximate I =
0, ψp = ∫

ι dψ = ι0ψ and G = G0 = LB0/(2π), where L = ∫ 2π

0 dφ�′ is the axis length
and � is the arc length along the field line. Additionally assuming ιN = ι0 − N and M =
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FIGURE 11. Comparison of estimated interval for trapped to passing separatrix with computed
results for a QH stellarator. Trapped (red) and passing (blue) particles are plotted as a function
of the initial Boozer poloidal coordinate θ and of λ = μBi/E for three different initial radial
positions si. High and low thresholds correspond to interval bounds, while mid threshold
corresponds to an average separatrix: (a) si = 0.25; (b) si = 0.5; (c) si = 0.75.

1, and using (4.1), we find an expression for the radial excursion of the particle in flux
surfaces

ψ = − pη
qιN

± mvLB0

2πqιNB(s, θ)

√
1 − λB(s, θ)

Bi
, (4.4)

which depends on the magnetic field B, which in turn depends on the radial position
s and poloidal angle θ , an implicit equation that would have to be computationally
solved. However, we can estimate the amplitude of the orbits by applying the linearization
�ψ/�B = ∂Bψ to (4.4) and taking ∂Bpη = 0. For the estimation of the variation of B, we
take into account that it depends on s and θ , and thus sum its variation in both coordinates

�B =
∫ π

0
∂θB dθ +

∫ si+�smax

si

∂sB ds

= (B(si,π)− B(si, 0))+ (B(si +�savg, θi)− B(si, θi))

= |η̄|aAB0(2
√

si + (
√

si +�smax − √
si) cos θi). (4.5)

Using the expression for �B in (4.5), applying the partial derivative of B and making
B(s, θ) = B0, we obtain an estimation of the amplitude of oscillation of the flux surface
coordinate ψ which, written as the normalized radial coordinate s = ψ/ψb, with ψb =
B0a2

A/2, becomes

�s = mvLη̄
πqιN0 aAB0

1 − λB0/(2Bi)√
1 − λB0/Bi

(2
√

si + (
√

si +�savg − √
si) cos θi). (4.6)
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FIGURE 12. Comparison of computed with estimated orbital radial amplitude �s in a QA
configuration as a function of λ = μBi/E for different initial poloidal and radial coordinates.
Vertical lines indicate the average passing–trapped separatrix for each θi, where the two
quantities start to diverge : (a) si = 0.25 ; (b) si = 0.5 ; (c) si = 0.75.

This expression leads to results that approximate the computed ones up until the
passing–trapped separatrix, as can be seen in figures 12 and 13, starting to deviate from
it afterwards. This appears to be the limit of the applied linearization. To extend the
region of applicability of our estimation, it may be possible to go to higher orders on the
approximation. The expression appears to capture the differences in amplitude for different
stellarator configurations and different initial conditions.

Concerning a reasonable estimation of the maximum of the radial amplitude of the
motion, it would be necessary to neglect the θ component of �B. However, the maximum
value would remain outside this regime so it may not be prudent to use the above
expression to obtain the wanted value directly. The value of the proposed expression at
the separatrix could instead give an initial guess of the appropriate value.

In conclusion, through examining single-particle orbits in different equilibria, we have
gained critical insights into the dynamics of particles in NAE and ideal MHD magnetic
fields. As we move forwards to the analysis of particle ensemble behaviour and loss
fractions, we expect to improve our understanding of the collective behaviour of particles,
providing a more holistic view of the confinement process.

5. Particle ensembles

We now change the focus from single-particle trajectories to high-energy particle
ensembles. The analysis of these groups gives us a more comprehensive look at how well
particles are confined and can reveal patterns that might not be evident when examining
single-particle dynamics. In this part of our study, we focus on calculating loss fractions,
which are the percentage of particles that leave the magnetic equilibrium over a certain
time frame. These are crucial for assessing how effective the magnetic fields are at
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FIGURE 13. Comparison of computed with estimated orbital radial amplitude �s in a QH
configuration as a function of λ = μBi/E for different initial poloidal and radial coordinates.
Vertical lines indicate the average passing–trapped separatrix for each θi, where the two
quantities start to diverge : (a) si = 0.25 ; (b) si = 0.5 ; (c) si = 0.75.

keeping particles in place, making them a helpful metric to inform improvements in our
confinement techniques.

To determine loss fractions, large groups of particles are initialized for a given duration
and the percentage of these particles that cross the last closed flux surface is accounted
for. It is important to acknowledge that the real values of loss fractions in an actual device
are multifactorial, and the computations performed in this work only take into account
some of the relevant physical factors. For a thorough analysis of non-collisional loss
fractions, simulations should account for a wide range of random starting conditions and
incorporate a density distribution for alpha particles. A realistic account of losses in a
given configuration should also take into account that not all of the particles crossing the
set boundary would be lost, as some could later reenter the plasma, in addition to taking
into account the effects of collisions and turbulence. The former effect was estimated
to affect the losses up to ∼10 % in the LHD (Miyazawa et al. 2014). However, for a
comparison between the losses in different fields, we are less concerned with the realistic
global loss values than we are with having similar results between the obtained values,
so we compute the loss fractions for different initial radial positions, and we have linearly
spaced initial poloidal and toroidal VMEC coordinates and λ in the following ranges:
[0, 2π], [0, 2π/nfp] and [0, 1], respectively. For every set of these initial conditions, sv‖
is set as −1 and +1, so our number of particles np is equal to two times the product of
nθ , nφ and nλ, where nx is the number of different possible initial values of the initial
quantity x. To ensure the initial positions matched in the VMEC and pyQSC equilibria, a
root finder was designed to compute the corresponding φ0 for every φ, with ϕ calculated
subsequently. The remaining NAE coordinates were calculated following the reverse of
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FIGURE 14. Comparison between alpha particle ensemble loss fractions in pyQSC (NA) and
VMEC (VMEC) with np = 9000, and linearly spaced initial conditions θi and φi in VMEC
coordinates as well as λ for the aspect ratio A = 9.1 QA equilibria with initial radial positions
(a) si = 0.25, (b) si = 0.5 and (c) si = 0.75.

the procedure described in § 2. This strategy was employed to minimize the arguments
passed to the VMEC loss fraction algorithm, as this was the computational bottleneck in
the workflow. Additionally, as discussed above, the time frame where the NAE seems to be
more relevant is the prompt loss one, and so we will simulate the orbits up until 5 × 10−3 s.
We note that for all the results obtained in this work, the computation of loss fractions is
two orders of magnitude faster for the pyQSC magnetic fields when compared with the
VMEC calculations, mainly due to the simple closed form solutions available of the first
fields.

In the forthcoming discussions, we will connect our earlier findings on individual
particle behaviour to this larger-scale evaluation. By doing so, we aim to better understand
the level of particle confinement in MHD and NAE systems, and their differences.

5.1. Quasi-axisymmetry
For the calculation of the loss fractions on a QA stellarator, we recur to the same baseline
equilibrium precise QA, as in the last section, with an aspect ratio of A = 9.1. We then
trace ensembles of particles with initial radial positions si = 0.25, 0.5 and 0.75, facilitating
an investigation into the dependence of result correspondence upon the radial distance
from the equilibrium axis.

In figure 14, we present the results of the aforementioned ensembles, where we can see
an overall agreement over all initial radial positions. The fact that this agreement is present
despite differences in the radial oscillations of particles may be attributed to the averaging
out of VMEC orbits that go slightly above and below the NAE orbits for different values
of φ. This conclusion is supported by the fact that increasing the value of nφ improves the
agreement of the loss fraction.

There is an uncanny agreement for all presented flux surfaces up until the time mark of
t = 5 × 10−4 s, where the values for the two equilibria start to diverge. This is most likely
where other effects start being relevant for this stellarator other than first-orbit losses.
The relative difference in loss fractions is the highest for si = 0.25, where the pyQSC
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equilibrium has no prompt losses, but the percentage on the VMEC losses stays below
1 % on the analysed time frame. For the ensemble most distant from the axis in figure 14,
the amount of lost particles appears to match for the entire measured time, indicating the
loss cone particles are the most important loss mechanism at that flux surface.

These results seem to indicate that the computation of loss fractions for initial time
intervals could be performed with NAE fields with a low loss in performance and a
reduction of the computation time of two orders of magnitude. Each of the np = 9000
ensembles took approximately four hours to compute in the VMEC field and two minutes
in an openMP-only parallelized code running on eight cores.

5.2. Quasi-helical symmetry
A similar procedure as in the preceding subsection was followed for the 9.1 aspect ratio
QH stellarator used in the single-particle tracing. As the orbit amplitude is significantly
narrower in this equilibrium, first-orbit losses are only seen in its outer regions. For
this reason, we present only the results of the ensembles with initial radial positions
up from si = 0.5, as results for inner radial starting points do not vary qualitatively,
only quantitatively. As the frequency of oscillation in this magnetic field was higher, the
divergence between equilibria arose sooner too. Therefore, the integration only goes up to
t = 5 × 10−4 s.

Although, as shown in figure 15, the behaviour of the first few orbits is well captured
by the NAE, in the present case, there are no first-orbit losses and, therefore, the loss
fraction remains zero until t = 1 × 10−4 s for the cases of si = 0.5 and 0.75, and later
diverges when particles start exhibiting an average radial drift outwards in the VMEC
equilibrium. In the case of the ensemble generated with initial radial position si = 0.9,
there is a region of time where the losses in the VMEC magnetic field are emulated by the
ones in the pyQSC field. However, they start to diverge before the t = 1 × 10−4 mark. The
fact that the convergence is limited in time and space makes the argument for optimization
in this case more limited. However, the fact that the QH VMEC equilibrium exhibited
a larger deviation from quasi-symmetry may also be responsible for the accelerated
divergence between the loss fraction results, as non-vanishing average radial drifts can be
a consequence of local loss of symmetry. It can also be a result of particles transitioning
from the passing to the trapped regime in VMEC without doing so in pyQSC fields such
as in figure 9.

Although the effectiveness of the tool explored throughout this work appears to be
limited to prompt losses, it is important to relate our findings to the results of LeViness
et al. (2022) and Velasco et al. (2023). The fact that these results point to some
correlation between prompt losses and proxies for losses suggests that addressing the
mechanisms responsible for these kinds of losses may also lead to a reduction of other
loss mechanisms that happen at later times. This way, increasing the efficiency for
prompt losses optimization can be beneficial beyond the initially expected time frames.
Additionally, we note that the application of the followed methodology is more insightful
than simply pursuing QS in a stellarator, providing a direct loss measurement, and more
accurate than the aforementioned proxies for initial losses as it includes finite banana width
effects. Although lacking in accuracy when compared with direct GC simulations in MHD
equilibria (Paul et al. 2022), it benefits from increased computational speed as expressed
in this work.

6. Conclusions

In this work, we started by comparing GC orbits computed by the Euler–Lagrange
equations of motion implemented in the gyromotion library gyronimo with those obtained
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(a) (b)

(c)

FIGURE 15. Comparison between alpha particle ensemble loss fractions in pyQSC (NA) and
VMEC (VMEC) with np = 9000, and linearly spaced initial conditions θi and φi in VMEC
coordinates as well as λ for the aspect ratio A = 9.1 QH equilibria with initial radial positions
(a) si = 0.5, (b) si = 0.75 and (c) si = 0.9.

by the symplectic formulation implemented in the loss-fraction assessment code SIMPLE.
The explicit methods in gyronimo compared well with the implicit symplectic one,
showing good levels of numerical agreement. Subsequently, single-particle tracing was
performed in different aspect ratio reactor scale stellarators. The discrepancy between
the NAE fields and the MHD ones such as the VMEC and BOOZ_XFORM did not
have a noticeable first-order effect on the passing particles independently of the aspect
ratio and stellarator, with growing deviations for lower aspect ratios especially in the
QH equilibrium. More noticeable disparities were found for the trapped particles, where
passing–trapped transitioning particles, radially drifting particles and other effects were
observed for the MHD equilibria in contrast with the NAE ones, where no such phenomena
were identified. Once more, these effects were more prominent in the QH magnetic fields.
These discrepancies were expected due to the decreased levels of quasi-symmetry in
the MHD fields. Additionally, effective expressions for estimating the radial amplitude
of particles’ orbits and the passing–trapped separatrix were found for both QA and QH
stellarators in the NAE.

Following the tendencies of the single-particle tracing orbits, for each equilibrium
studied, the loss fractions of large groups of particles at different initial radial positions
agree only for losses of orbits whose radial amplitude is larger than their distance to
the edge of the magnetic field. For the QA stellarator, this agreement lasts up until
t = 5 × 10−4, which could be used to do a first optimization of stellarators or at least
eliminate classes of stellarators with too many first-orbit losses. Unfortunately, for the
QH stellarator, these kinds of losses do not seem to be relevant for the majority of
initial positions, as radial amplitudes tend to be smaller, which is concordant with the
expectation for a larger value of ι. It is important to emphasize the loss fraction results
are obtained up to two orders of magnitude faster for the NAE particle tracing. Although
faster performance could be attained in the different tracings by specializing the code to a
given field, this is outside the scope of this work.
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Future work with loss fractions using the NAE should encompass a larger diversity
of equilibria, including equilibria generated from relevant MHD fields by fitting them
to near-axis fields to compare with established results. The implementation of the loss
fraction estimations in the optimization of directly constructed equilibria could also be
studied as a way of producing a good initial configuration for conventional optimization.
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