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CROSSFERTILIZATION BETWEEN PLASMA, STELLAR 
DYNAMICS AND H Y D R O D Y N A M I C S 

M. R. F E I X 

Groupe de Recherches Ionospheriques, Universite d'Orleans, Orleans, France 

We present results on four different mediums characterised by their 'density conserva­
tion' in a two dimensional space (phase space for unidimensional plasma and self 
gravitating systems, configuration space for two dimensional Navier Stokes fluid and 
guiding center rod plasma). 

We review the different problems (purely collective versus individual) and introduce 
the distinction between Lagrangian schemes (superparticles) and Eulerian schemes. 

The steady states structures for these fluids and their open (plasma, hydrodynamic) 
versus closed (stellar system, accelerator beam, hydrodynamic) topologies are dis­
cussed. We then turn to their stability properties and show the condition for the pre­
sence of marginal adiabatic mode. The 'double water bag' system is fully studied and 
interesting analogies for completely trapped systems (accelerator beam and self 
gravitating systems) are pointed out. 

1. Introduction 

From the experimenter's point of view mediums like galaxies, plasmas and regular 
fluids look completely different. For the theoretician the problems look much more 
similar and the computational physicist can't resist to see what happens if he changes 
the sign of the density in Poisson law! The purpose of this paper is to compare the 
properties of different mediums, the mathematical structures of the problems and the 
different methods used to solve them. It is hoped that astronomers and plasma physi­
cist will look onto one each other problems and solutions and that some crossfertiliza-
tion will result. 

2. The Different Mediums 

There is no point here in describing the stellar dynamics systems! Plasma Physics 
systems are now well known by the astronomers. Let us point out that accelerator 
beams provide model of one species plasma with all particles trapped and boundaries 
limits quite similar to the stellar self gravitating systems. Of course there must be a 
focusing device to balance the space charge repulsion. Plasma and self gravitating 
systems form what we will call phase space fluids to remind that their evolution should 
be described in phase space. 

Now we consider two new mediums. The first is a regular, incompressible and in-
viscid fluid described by the Navier Stokes equation. Moreover we restrict our studies 
to bidimensionalfluids. We will see why in a moment. Navier Stokes equations can be 

Hayli (ed.J, Dynamics of Stellar Systems. 179-194. All Rights Reserved. 
Copyriqht ■<"' 1975 by the I AC. 

https://doi.org/10.1017/S0074180900015515 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900015515


180 M. R. FEIX 

written in the x, y space 

du 1 
—+(u-V)u + - V p = 0 
8t " (1) 

where Q is the constant density. We introduce the vorticity ©> = V x u. Due to the x, y 
space dependence of the problem <o has only the third (along z) component different 
from zero. We call £ that component. Taking the curl of (1) it is easily shown that 
£ obeys 

| + , . , W - | + . - V { - 0 . (2) 

Since V u = 0 we can deduce the two components of the velocity from a scalar 
potential <P with 

dy x dx 
u = — e*~— e y ( 3 ) 

where ex, ey, ez are the unit vectors along ox, oy, oz. Taking into account ^ z = Vxu 
and Equation (3) we get 

A<P + Z = 0. (4) 

Equations (2) and (4) are now the new 'model equation' for hydrodynamics. 
Equation (2) indicates that £ is a constant along the trajectory. This trajectory can be 
deduced from a fictious 'Electric field' E with Ex = - d<f)/dx and Ey = — d(f>/dy where <P 
satisfies the usual Poisson equation. The only difference is that the dynamics of the 
vortex elements is given by Ux= —Ey and Uy = Ex instead of the usual \J = (e/m) E. 
These properties have been extensively used by Zabusky and Deem (1971) and by 
Christiansen and Zabusky (1973) to compute the nonlinear evolution of bidimensional 
fluids and formation of'Vortex Streets'. In these calculations the Lagrangian point of 
view was used consisting in representing the vortex density £ by many points carrying 
each an elementary 'charge of vorticity' (eventually with a negative sign). One of the 
advantage of such a method is the possibility of using fast 'Poisson solver' algorithm 
developped for plasma and stellar dynamics studies. 

Another interesting bidimensional medium is a plasma immersed in a very strong 
magnetic field, homogeneous along the direction of this field. The transverse motion 
is studied. In that case the velocity of a particle is given by the so called 'drift approxi­
mation' with 

E x B 
« = T (5) 

which can be written Ux = Ey/B, Uy=-EJB. Except for the trivial factor {-l/B) 
these are exactly the motion equation of the vortex elements considered above. On the 
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other hand the continuity equation can be written 

- + V « « = 0 . (6) 

From the fact that E = — V4> and taking into account (5) we deduce that V • u = 0 and 
consequently 

dn 
- + u - V n = 0 (7) 

which is the equivalent of (2) with a conservation of the density along the trajectories 
in the x, y space. Of course # satisfies the Poisson equation 

A<P + en = 0 (8) 

in strict identity with the vorticity Poisson equation (4). 
The fundamental property of these 4 mediums (one dimensional plasma, one dimen­

sional stellar system, bidimensional fluid and plasma) is that in the two dimensional 
space describing the evolution we have conservation of the density {£(x, y) n(x, y) or 
f(x, v)}. The other fundamental property is that the dynamics is obtained through a 
potential <P obeying Poisson law. Both Eulerian or Lagrangian schemes can be used. 
By Langrangian scheme we mean representing the density by many 'elementary 
particles' each carrying a constant elementary 'charge' and 'mass'. We can also use 
Eulerian scheme. Although we will come back to the duality of these two schemes 
later on we point out a general discussion of the different models in Feix (1971). 

3. Problems 

3.1 . COLLISIONLESS VERSUS COLLISIONAL REGIME 

The first level of description for plasmas and stellar dynamics systems is obviously the 
Boltzmann 'collisionless' equation (called Vlasov by the plasma physicists). This 
equation describes the 'violent relaxation' of stellar systems. In plasma also it describes 
the fast evolution (especially the different instabilities) and more studies are needed 
in its nonlinear solution. The final state could be the one predicted on statistical 
argument by Lynden Bell although computer studies have shown that the mixing of 
the phase space elements is not always complete and that bunch of particles do not 
obey the Lynden Bell statistics. 

The next level of description i.e. the slow relaxation to thermodynamics equilibrium 
involving a small Fokker Planck term is treated by astronomers and plasma physicists 
with different philosophies. The plasma physicists consider mostly homogeneous 
plasma relaxing toward maxwellian distribution. The astronomers are specially 
interested in the evolution of the globular clusters; starting from a steady state solution 
of the Vlasov equation they let it change slowly through collisions. 

Let us point out that this last problem raises very difficult questions, one of them 
being the possibility of time scale separation. Besides the question of the exact ex­
pression for a Fokker Planck term in an inhomogeneous medium (solved only for 
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homogeneous neutral plasma through the Lenard Balescu operator) the solution of 
the problem implies an equation of the form 

^ + V / = fiF/, (9) 

where V and F are respectively the Vlasov and Fokker Planck operator (s in front of F 
indicates that this operator is in principle very small). In the neutral homogeneous 
plasma the term V( / ) is initially zero and remains zero although / is slowly changing 
through the Fokker Planck term. This is of course not true for the globular cluster and 
multiple time scale technique should be used to solve (9). See Cole (1968). 

Of course the direct integration of the AT-body dynamical equation takes care of all 
these problems in principle. Nevertheless the problem of 'graininess' is still there. In all 
calculations the graininess effects are very much enhanced with respect to reality since 
the physical systems contain much more particles than the number which can be 
treated on the computer. If we are not interested in these 'graininess effects' we can try 
to decrease them. An interesting solution was introduced in plasma physics by 
Dawson and Hsi (1968) with the concept of'cloud particles' i.e. of rigid structures of 
finite dimension larger than the interparticle distance but smaller than the wavelength 
of interest. On the other hand we can be interested in these graininess effects and we 
must know how they scale with N. This is a difficult question especially if we are 
interested in apparition of complex structures as the binaries stars where obviously 
triple correlation must play a role to allow the transition from open trajectories to 
close trajectories. These questions can be solved by careful comparison between 
computer simulation with different N and a better understanding of the hierarchy 
of time scale for different effects - a very difficult theoretical problem. 

Plasma physicists are actually very interested in 'graininess' effects since some 
astrophysical plasma and some of the laser created fusion plasma have a very high 
density. For some of these plasma nD3 the number of electrons in the Debye cube can 
be of the order of unity or smaller. Although this problem has no equivalent in the 
self gravitating AT-body problem it is worth mentioning the analytical and computer 
work on this question of one dimensional ('plane stars' with an uniform mass density) 
systems. The great advantage is the existence of analytical theory for canonical 
ensemble both for plasma (Lenard, 1961) and self gravitating system (Ribicky, 1972) 
and the possibility of performing exact computation (Feix, 1969) in the 2N dimen­
sional phase space for reasonably large time. It is the opinion of the author that such 
computations already initiated by Feix and Hohl (1968) will be extremely useful for a 
better understanding of foundations of statistical physics and its application to gravi­
tational system (presence of isolating integral of motion, time average vs. ensemble av­
erage, difference for small N between microcanonical and canonical ensemble, etc....). 

3.2. COLLISIONLESS EULERIAN MODELS 

After this lengthy discussion of 'graininess' effects (but this is a central issue) we must 
mention that plasma physicists have developped models where they work directly 
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with the Vlasov equation (representing a phase space fluid) although of course the 
Lagrangian superparticle model is still used to solve that equation with attempt to 
decrease the finite graininess effect through 'cloud particle' or filtering of high wave-
number structure of the electric field. 

Eulerian model are interesting if we want to study the stability properties of steady 
state equilibria solution of the Vlasov equation. Up to now most of the results deals 
with one dimensional plane geometry, a model obviously more realistic and more 
popular in plasma physics than in stellar dynamics. Among some of the advantages 
of the Eulerian method is the fact that it is easier to make comparison with analytical 
theory (by turning on or off different terms which are neglected in the theoretical 
treatment). A discussion of the Eulerian model can be found in Chapters 2 and 3 of 
Alder and Fernbach (1970). Among Eulerian models a special mention should be 
made of the Multiple Water Bag. In Alder and Fernbach (1970), p. 88 Water Bag 
model is described. In this paper the philosophy is that we study a phase space fluid 
described by two levels of the possible phase space density. These two levels phase 
space density cannot of course describe the complexity of all possible velocity distribu­
tion but are sufficient te describe some of the strong nonlinear effects of two counter-
streaming plasma While Alder arid Fernbach (1970) deals mainly with strong 
turbulence effects Doremus and Feix (1972) and Finzi et al (1974) respectively for a 
self gravitating gas and a plasma study the possible steady states and their stability 
properties for one dimensional plane geometry. 

Another point of view is introduced when we let the number of bags become large. 
Then we deal with a discrete element scheme for the Vlasov equation. Navet and 
Bert rand (1971) have shown that for finite time we recover all the properties of a 
continuous velocity distribution provided we take a sufficient number of bags. More­
over the time of validity increases linearly with this number. Very useful numerical 
properties are associated with this model, especially in the computation of properties 
of antennas immersed in an homogeneous plasma (a problem with no counterpart in 
stellar dynamics). 

Indeed the Multiple Water Bag model is an extremely organised one where all the 
poles can be easily located and followed as a function of the different parameters. 
Details for grids and antennas problems can be found in Noyer et al (1974). 

4. Results on Stability of Inhomogeneous Plasma Self Gravitating Gases 
and Vortex Equilibria 

4.1. STEADY STATES SOLUTION FOR PHASE SPACE FLUIDS 

We sketch briefly results given in more details in Doremus and Feix (1972) and Finzi 
et al (1974) and present the new analogy with the vortex problem. 

Considering plane one dimensional geometry we know that the phase space density 
for a steady state is a function of the total energy E 

f = f(E) = F^mV2 + <P) = F{E). 
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We will restrict our investigations to steady state of the double water bag type. 
Figure 1 precises the notation, it gives the velocity profile at point x = 0 (we will 
suppose a symmetry around that point). We consequently have Vt+ = — V{~ = Vx 

f ( v ) 

A i ! 
* _ ! _ _ A2 

vi 

Fig. 1. The double 'Water Bag' distribution function with negative phase density of the inner bag. 

V2+ = -V2~ = V2 and define 

P=Vi2/V2\ OL=-AJA2 (10) 

Moreover at x = 0 the potential energy is supposed to be minimum. For a self 
gravitating gas a and ft are the two parameters characterising the problem. We do 
not consider the case A1>0 which is just a peculiar case of a decreasing F(E) a case 
known to be always stable (Kulsrud and Mark, 1970; Feix et a/., 1971). Consequently 
the parameter space is the square 0< a, j8< 1. 

O 
Fig. 2. Plasma. Phase space representation of the three possible types of steady states: (a) 'type F solu­

tions (b) 'type T solutions, (c) 'type 3' solutions. 
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Besides a and /? a third parameter y is needed to characterise the plasma, y is the 
ratio of ion density to electron density at point x = 0. It can be shown that y must be 
bigger than 1. In this problem ions are considered as motionless and providing a fixed, 
homogeneous background. This is a less academic case than it looks at first sight 
since it corresponds to an accelerator beam with one species of repulsing particles 
with a focusing force linear in x. 

Figure 2 gives the three possibles type of steady states. Type 1 and 2 solutions are 
possible for a plasma only; type 3 for a plasma and a stellar gas. The existence of 
periodic nonlinear steady states is a characteristic of the plasma. 

0. .2 .4 .6 .8 a 1 

0. .2 .4 6 .8 a 1. 

Fig. 3. Plasma.The (a, /?) parameter space for y= 1.1 and y = 1.2. Locations of type 1, 2 and 3 solutions. 

Consequently any point of the square 0 < a, f$ < 1 is a possible steady state of type 3 
for a self gravitating system. For a plasma we must consider the a, f$ square for a given 
y. Figure 3 gives for y = 1.1 and y= 1.2 the limits of the three types solutions; when y 
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increases it can be shown that region 1 and 2 tend to disappear simultaneously through 
the corner a = /?= 1 and they do not exist any more for y > 2. 

4.2. STABILITY OF THE DIFFERENT STEADY STATES FOR PLASMA AND SELF 
GRAVITATING SYSTEM 

4.2.1. Marginal Adiabatic Mode Theory 

Let us consider a steady state characterised by values of the parameters a, /?, y. The 
question is to know if it is stable. If we consider type 1 solution we immediately 
recognize that we are in a case where two streams instability are likely to take place. 
From our knowledge of the homogeneous plasma case we guess that the instability 
will disappear through the point co = 0. (co being imaginary and changing sign if we 
vary one of the parameter around its critical value). Since, close to the critical value, 
both the real and imaginary part of co are small (for two streams the real part of co is 
strictly zero) we call such a mode a marginal adiabatic (i.e. slowly varying) mode. Of 
course other modes can cross the stability - instability border in the co plane around a 
finite value of co. Such modes called overstables must be also studied. 

The theory of the marginal adiabatic mode has been given by Bertrand et al (1972) 
and a detailed discussion is given in Doremus (1973) and Finzi (1973). If A} and Vj(x) 
are the characteristic of bag j the stability of the marginal adiabatic mode is given 
by the signs of the eigenvalues of the operator 

d 
dx2 

For a plasma with 

k2(x) = (e2/me0) £ 2AJ/VJ(X) (12) 
N 

at 

if all X are positive no marginal adiabatic mode is possible. If one is negative the system 
is unstable. 

For types 1 and 2 solutions the boundaries conditions are (dY/dx)x= ±oo=0. 
For type 3 solution the boundaries conditions are 

(d¥7dx)x = ± L = 0, (13) 

where ±L are the space boundaries of the most external (most energetic) contour. 
The interesting point is that (11) was recognized as already playing an important 

role in the solution of the steady state. Sticking to type 3 solution we can show that the 
steady electric field E0 satisfies 

k2(x)-~\Eo(x) = 0 (14) 
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with k2 (x) given by (12) as in (11). Boundaries conditions are now (N( ion density) 

dE0/dx=-eNi/e0. (15) 

The difference of boundaries conditions between (12) and (15) implies that none of 
the eigenvalues of (11) can be negative. To demonstrate this property we apply the 
Rayleigh Ritz method. 

In such a method we compute 

, ■ f cpAcp dx 

where (p is a trial function satisfying the same boundaries conditions as W and A is the 
operator k2(x) — d2/dx2. If we can find that for such trial function J cpAcp dx is always 
positive no marginal instability mode will appear. We introduce the trial function 

cp = oc(x)E0(x). (17) 

In (17) a(x) must be always defined. Indeed E0(x) for type 3 solution never cancels 
except for x = 0 where we are free to take q>=0 (since ¥ is a potential). Consequently 
a(x) has no discontinuity and we can integrate by part. Introducing (17) in j q>Acp dx 
and taking (14) into account we find 

cpAcp dx = 
/ d a \ 2 da ,~|L 

-L 

but for x = ±L we must have d(p/dx = 0. Differentiating (17) we get 

da d£ 0 , v 
— EO + OL-^ = 0 (19) dx dx 

and 
L 

J^dx-J^W^J. (20) 
-L 

From the configuration at points x=±L (where we find only ions since all the 
electrons are trapped inside this region) we see that E0 dE0(dx~\x=L is positive and 
E0 d£ 0 /dx] x = _L is negative; (20) is positive and no marginal adiabatic mode can be 
present in type 3 plasma equilibria 

For type 3 self gravitating system it has been shown by Feix et al. (1971) that a 
marginal adiabatic mode always exists but that this mode is a trivial displacement 
mode and consequently does not correspond to a possible instability. The complete 
trapping of electrons or stars in type 3 equilibria precludes the existence of marginal 
adiabatic instability. 

https://doi.org/10.1017/S0074180900015515 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900015515


188 M. R. FEIX 

4.2.2. Over stable Modes 
Overstability for type 3 equilibria can of course occur. Skipping all details given in 
Doremus and Feix (1972), Finzi et al. (1974), Doremus (1973), and Finzi (1973) we 
just show in the parameter square a, j8 the zone of stability for type 3 equilibria. It is 
quite interesting to notice on Figure 4 (self gravitating system) and Figure 5 (plasma 

Fig. 4. Self gravitating systems: regions of instability in the (a, p) parameter space. 

or accelerator beam) the similarity of the curves delineating the different unstable 
modes. Especially for the double water bag the region situated on the left of the curve 
Ti = T2 (where xx and z2 are the periods of oscillation of particles respectively on the 
inner and the outer bag) are stable although such a region corresponds to X1<T2 for 
self gravitating system and zx > t 2 for plasma In the lower part of the pictures the 
appearance of narrow bands of instability is a consequence of the two bags approxi­
mation and would 'disappear' in a completely continuous treatment. How such 
zones will evolve with a high bags number is an open question but preliminary results 
indicate that the filaments will become thinner and thinner and will in the limit 
constitute a nul measure set. 
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Fig. 5 Plasma. Regions of instability in the (a p) parameter space, y = 1.5. 

4.2.3. Type 1 and 2 Stability 

There is an interesting question since computer experiments (Finzi, 1972; Morse and 
Nielson, 1969) have shown that an initially homogeneous two stream unstable plasma 
evolves toward type 2 equilibrium and during sometimes such equilibrium were 
believed stable. But further computer run have exhibited a slow destruction of such 
equilibria through a coalescence of neighbouring holes. In this respect computer run 
involving both longer plasma and longer time are needed. For the two bags distribu­
tion we have shown (Feix, 1973) that all type 1 and most of type 2 equilibria are 
unstable. It is more than likely that all type 2 equilibria are in fact unstable but the 
considered trial functions of the Rayleigh Ritz methods are probably not general 
enough to treat all the cases. 

4.3. STABILITY OF VORTEX EQUILIBRIA 

We consider basically two kinds of equilibria corresponding to the following flows. 
First a plane counterstreaming flow with a velocity Uy(x, y) = 0 and Ux(x, y)= U(y), 

U(y) being an odd function in y. This corresponds to a vorticity profile which can be 

https://doi.org/10.1017/S0074180900015515 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900015515


190 M. R. FEIX 

approximated by N 'bags' 

i(y)=I Ajimy + yJ-Hto-yj)-]. (21) 
7 = 1 

In (21) H is the Heaviside function H(x)= 1 if x > 0 and H(x) = 0 if x<0 . A linearised 
analysis is carried on the motion of contours yj = y} + 6f (x, t) and yj = —yj + 8j (x, r); 
supposing a time space variation of 8j and <5j" in exp/(atf — kx). We finally end up 
with an eigenvalues equation of the following type (we give a 3 bags example the 
generalisation of which is pretty obvious). We introduce the velocity values. 

Ul=(A1 + A2 + A3)yl 

U2 = Aiyi+(A2 + A3)y2 (22) 

^3 = Aiy% + A2y2 + A3y3 

and suppose that the velocity profile is increasing monotonically from — U3 to f/3, 
i.e. that all A-} are positive. 

l-—(o) + ku1) [1 + 1] 
A\ 

[1 + 1] l+7-(o> 

[ 2 - 1 ] [2+1] 

[2+1] [ 2 - 1 ] 

[ 3 - 1 ] [3 + 1] 

[3 + 1] [ 3 - 1 ] 

where [i±j~\ are short notations to designate the functions exp( — k\yt±yj\). 
It can be shown that the poles go by pair co and -co and that their motions is 

described on Figure 6. 
For /c->oo phase velocities are + Uu ± U2 and ± U3; then all roots remain located 

between two neighbouring velocities except for the first one which goes through the 
value 0 for a given k = kc and becomes imaginary for k<kc introducing an instability 
through a marginal 'adiabatic mode' in close analogy with the type 1 and type 2 
equilibrium. 

It is now interesting to see what happens when we take instead of a plane flow a 
rotating one corresponding to a cylindrically symmetric equilibrium with a vorticity 

[2-1] [2 + 1] [3-1] [3 + 1] 

-kuj [2+1] [2-1] 

1 - — (co + ku2) [2 + 2] 

[3+1] 

[ 3 - 2 ] 

[2 + 2] 

[3-2] 

[3 + 2] 

1 + — (a>-ku2) [3 + 2] 

[3-1] 

[3 + 2] 

[3-2] 

[3 + 2] 

[3-2] 

1 - — (a) + ku3) [3 + 3] 

[3 + 3] 
2 , 

1 + — (to 
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distribution £ (r is the radial coordinate) 

£= I AjH(rj-r). 
j= 1 

The case N = 1 corresponding to the Rankine vortex. 

(24) 

Imog \u-. 

«0> 
1c PI lane 

/ 
/ / 

-Uj t >•* 
-Uz -U, 

\ 
\ 

\ 
\ 

\ 
\ 

«1 
.•♦-4: r— 
U2 lU3 R«* 

/ 
/ 

/ 
/ 

/ 
/ 

Fig. 6 Vortex Fluid. Plane geometry. Evolution of the phase velocities in the w/k plane. Illustration for 

3 bags with all Aj>0. 

Again we suppose all the Aj>0 and notice the corresponding velocity profile 

' - 1 A r2 N A 

Vi(r)=Iii+Z^r (25) 
j = i 2 r j=i 2 

for r (_1<r<r i . 
A linearized motion around the equilibrium is studied with 

r, (0, t) = ri + <5r, exp i (cot - md) (26) 
m taking an integer value. The eigenfrequencies matrix becomes 

1+ (0,-mfl,) [ l , 2 ] m [ 1 , 3 ] , 
Al 2 

[ l , 2 ] m 1+ _ ( a ) - i f i 0 2 ) [2,3]m (27) 
^ 2 2 

[ l , 3 ] m [2,3]m 1 + — co-m<23), 
Art 
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\vhere [ij^m stsiiids for (Ri/Rj)^ if Ri<Rj or (Rj/R^ml if R^RjQ^ Q2, ..., QNarethe 
angular frequency of the fluid element on contour 1, 2, etc.... We have 

2Q1=Al + A2 + A3 

2Q2 = AJ^-) + A2 + A3 

The positiveness of the At implies that Q1>Q2>Q3>->QN. Now in analogy 
with the plane flow case we study the behaviour of the eigenfrequencies when m goes 
from + oc to 1. Now all the poles can be shown to be on the real axis and if we look at 
the co/m axis the angular phase velocities can be shown to vary from Ql9 Q2 and Q3 for 
m = + oo to Q2, Q3 and 0 for m = 1. Figure 7. The marginal m = 1 a> = 0 mode is simply 

•< 1*< !• i !• ► , 
o -&3 sit iii ay 

Fig. 7 Vortex Fluid. Cylindrical geometry (Generalised Rankine Vortex). Evolution of the angular phase 
velocity on the co/m axis. Illustration for 3 bags with all Aj}0. 

a displacement mode for the total vortex and consequently no instability will occur 
through the point a> = 0. If all the Ai are positive the flow will be stable but if the 
vorticity profile exhibit a minimum, overstability can occur. In analogy with the 
plasma case the complete 'trapping' of the vorticity distribution has killed the marginal 
unstable adiabatic mode which just becomes in the limit m= 1 a trivial displacement 
mode. We notice here that the bidimensional vortex distribution present analogies 
both with the plasma and the stellar system. The infinite plane system with no stellar 
dynamic counterpart exhibiting unstable roots while the cylindrical one as the self 
gravitating gas exhibit a displacement mode (while the plasma case has a co=cop = 
:={nie1lrm0Y12 mode corresponding to a global oscillation of the electron population 
in the neutralising fixed ion background. 

5. Conclusion 

Plasma physicists and astronomers face the same N-body long range force problem. 
But while the plasma machines impose certain symmetry which can simplify the 
computations the astronomers attack the complete N-body problem taking into 
account both short range and long range interaction. As a consequence the plasma 
physicists should look more carefully into these binaries phenomena that he has a 
certain tendency to neglect (hydrodynamics is full of problems where the existence of a 
small viscosity coefficient brings very singular phenomena often presented as para­
dox). May be the Vlasov equation for some geometries (spherical particularly) will 
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also exhibit singular behaviour. Now that long confinement time machines are under 
construction methods to compute the long time behaviour of our plasma will be 
needed (including collision, recombination and... hopefully fusion). The astronomer's 
Monte-Carlo method is obviously a candidate. 

The plasma physicists on the other hand have developped Eulerian schemes very 
efficient for the stability studies (as the Multiple Water Bag and the various models 
involving Fourier, Hermite and Tchebycheff transforms on configuration and velocity 
spaces). The advantage of such models is that the analysis can be carried further on, 
simplifying the numerical work (the Multiple Water Bag model being a good example). 

May we invite the astronomers also to get out of the real world to play with one 
dimensional and two dimensional models (not to mention the ly)? Especially if one 
wishes to check a tricky hypothesis, sometimes the analytical computation and the 
numerical simulation can be very much simplified without modifying the essence of 
the approximation. A good example is the computation of correlation properties in 
plasma where concept as the test particle is completely independent of the dimension­
ality (but results do depend of it). 

To end this paper I will make some propaganda for a general study of models and 
especially of fully discretised models. The Multiple Water Bag is a first step but is not 
discretised in space neither, of course, in time. 

We should study what are the qualitative properties (for example stability proper­
ties) which are retained in the discretisation process. 

Many questions are still opened for mathematical physicists: numerical analytical 
method, multiple time scale system of differential equations, use of Formal algebraic 
manipulating language, etc 

After many years where new interesting results were rather easily obtained at the 
beginning of computational physics it may be time to get new and more powerful 
tools! 
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DISCUSSION 

Ipser: In the unstable case you talked about, involving the inverted distribution as a function of energy, 
are you dealing with spherical systems ? 

Feix: No. It is a plane problem and this is an overstable instability (which means that the instability 
appears through an co#0 mode). 

Severne: One could mention another domain of plasma physics which may prove very directly rele­
vant to stellar dynamics. In the study of laser induced fusion, one has to analyse spherical systems in strong 
fields and which are strongly inhomogeneous. 

A comprehensive theoretical program has been initiated at the Universite Libre de Bruxelles. 
Feix: O.K. Let us hope we will get money for such studies ! 
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