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Abstract

For G a finite non-Abelian group we write ¢(G) for the probability that two randomly chosen elements
commute and k(G) for the largest integer such that any k(G)-colouring of G is guaranteed to contain a
monochromatic quadruple (x, y, xy, yx) with xy # yx. We show that ¢(G) — 0 if and only if k(G) — oo.
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1. Introduction

Our starting point is Schur’s theorem [18, Hilfsatz], the proof of which adapts to give
the following result.

TueorEM 1.1. Suppose that G is a finite group and C is a cover of G of size k. Then
there is a set A € C with at least ci|G|* triples (x,y, xy) € A3 where ¢ is a constant
depending only on k.

The proof is a routine adaptation, but we shall not give it as the result as stated also
follows from our next theorem.

If G is non-Abelian then we might like to ask for quadruples (x,y, xy, yx) € A*
instead of triples. Establishing the following result (which we do in Section 2) is the
main purpose of the paper.

TueEOREM 1.2. Suppose that G is a finite group and C is a cover of G of size k. Then
there is a set A € C with c;|G|* quadruples (x,y, xy, yx) € A* where ¢ is a constant
depending only on k.

When G is non-Abelian we should like to ensure that at least one of the quadruples
found in Theorem 1.2 has xy # yx, and to this end we define the commuting probability
of a finite group G to be
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in words, it is the probability that a pair (x,y) € G* chosen uniformly at random
has xy = yx. There are many nice results about the commuting probability (see the
introduction to [10] for details) and it is an instructive exercise (see [9]) to check that
if ¢(G) < 1 then ¢(G) < %, so that if a group is non-Abelian there are ‘many’ pairs that
do not commute. Despite this we prove the following result in Section 3.

ProposiTioN 1.3. Suppose that G is a finite group and c¢(G) > €. Then there is a cover
C of G of size exp((2 + 0c—o(1))e " log ) such that if A € C and (x,y, xy, yx) € A*
then xy = yx.

If G is non-Abelian we write k(G) for the noncommuting Schur number of G, that
is, the largest natural number such that for any cover C of G of size k(G) there is some
A € C and (x,y, xy, yx) € A* with xy # yx. (Note that since G is assumed non-Abelian
we certainly have k(G) > 1.)

The number k(G) has been studied for a range of specific groups by McCutcheon
in [12] and we direct the interested reader there for examples and further questions.

TueOREM 1.4. Let (Gy), be a sequence of non-Abelian groups. Then c¢(G,) — 0 if and
only if k(G,) — oo.

Proor. The right to left implication follows immediately from Proposition 1.3. We can
assume that ¢ is monotonically decreasing. Suppose that ¢(G,) — 0 and there is a kg
and an infinite set S of natural numbers such that k(G,)) < ky forallne S. Letne S
be such that ¢(G,) < ¢k, which can be done since ¢(G,) — 0 and ¢, > 0.

Since k(G,) < ko there is a cover C of G, of size kg such that if A € C and
(x,y, xy, yx) € A* then xy = yx. By Theorem 1.2 there is an A € C such that
(x,y, xy, yx) € A* for at least ¢, |G,|* quadruples. But then by design xy = yx for all
these pairs and so ¢(G,) > ci,, a contradiction which proves the result. O

Before closing this section we need to acknowledge our debt to previous work.
In [13] McCutcheon proves that k(S,) — oo as n — oo. A short calculation shows that
c(S,;) — 0 as n — oo, and the possibility of showing that k(G,) — oo as ¢(G,) — 0 is
identified by Bergelson and Tao in the remarks after [5, Theorem 11]. Earlier, in [5,
Footnote 4], they also observe the significance of Neumann’s work [14] which is the
main idea behind the proof of Proposition 1.3.

Write D(G) for the smallest dimension of a nontrivial unitary representation of G.
(This is called the quasirandomness of G in [5, Definition 1] following the work of
Gowers [8].) In [5, Corollary 8] the authors show that k(G,) — oo as D(G,) — oo, and
in fact go further proving a density result. For general finite groups there can be no
density result; we refer the reader to the discussion after [5, Theorem 11] for more
details.

2. Proof of Theorem 1.2

The proof of Theorem 1.2 is inspired by an attempt to translate the proof of
[3, Theorem 3.4] into a combinatorial setting. There the authors use a recurrence
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theorem [4, Theorem 5.2]; in its place we use a version of the Ajtai—-Szemerédi corners
theorem [1] for finite groups. This was proved by Solymosi [22, Theorem 2.1] using
the triangle removal lemma.

THeOrREM 2.1. There is a function f : (0, 1] — (0, 1] such that if G is a finite group and
A C G? has size at least &|G|* then

1

SA) = GP

D Late)1a@xn»latcy?) = fa@).
x,y,2€G

Proor. Following the proof of [22, Theorem 2.1], form a tripartite graph with three
copies of G as the vertex sets (call them Vi, V,, V3) and joining (x,y) € V| X V; if and
only if (x,y) € A; (y,w) € Vo x V3 if and only if (y"'w,y) € A; and (x,w) € V| x V3 if
and only if (x, wx™!) € A. The map G° — G°; (x,y,w) = (x,y,y 'wx~!) is a bijection
and (x,y,w) is a triangle in this graph if and only if (x,y), (zx,y), (x, yz) € A where
7=y lwx .

It follows from [23, Theorem 1.1] that one can remove at most

3 - 05 )-0(IGP?) = 05(-0(IG*)

elements from A to make the graph triangle-free. On the other hand if (x,y) € A then
(x,y, xy) is a triangle in the above graph and hence we must have removed all elements
from A and a|G[* < 05(a)-0(G|*) from which the result follows. o

There are a number of subtleties around the extent to which one can replace, say,
(zx,y) with (xz,y), and we refer the reader to the papers of Solymosi [22] and Austin [2]
for some discussion.

We take the convention, as we can, that the function f, is monotonically increasing
and fa(x) < x for all x € (0, 1]. Even with Fox’s work [7], in general we only have
fa(@)™! < T(O(loga™')). However, when G is Abelian much better bounds are known
as a result of the beautiful arguments of Shkredov [19-21]. It seems likely that these
could be adapted to give a bound with a tower of bounded height if the Fourier analysis
is adapted to the non-Abelian setting in the same way as it is for Roth’s theorem in [17].
Doing so would give a quantitative version of [5, Theorem 10] (see [5, Remark 44]),
but the improvement to Theorem 1.2 would only be to replace a wowzer-type function
with a tower as we shall see shortly.

We shall prove the following proposition from which Theorem 1.2 follows
immediately on inserting the bound for f) given by Theorem 2.1.

PropositioN 2.2. Suppose G is a finite group and C is a cover of G of size k. Then
there is a set A € C with (§%*V(1))?|GI> quadruples (x,y, xy, yx) € A*, where g*+V is
the (k + 1)-fold composition of g with itself and g : (0,1] — (0, 1]; @ — (3k)™" fa(ab).

Proor. Write Ay, ..., Ay for the sets in C ordered so that their respective densities are
ay = --- > ay; since C is a cover we have ay > 1/k. Let r € {1, ..., k} be minimal such
that

Lalar ) 2 apy + - + g, @.1)
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which is possible since the sum on the right is empty and so O when r = k. From
minimality and the order of the «;s,

1
7] >3—]€fA(al---a[) foralll<i<r-1.

The function f is monotonically increasing and fa(x) < x for all x € (0, 1] so it follows
from the above that e, > g”(1) > g®(1).
Now, suppose that s1,..., s, € G and write

A ={(x,y) €G*:xs;ye A} forl<i<r

Then
Egecla(x,y)=a; forallx,yeGand1<i<r,

ﬁ@=2ﬁwﬁumwwwamﬁ
i=1 1

x,yeG i=

and so

]EsEG'
By averaging we can pick some s € G" such that A := (,_; A; has |A| > a; - - -a,|G?.
By the definition of f, (from Theorem 2.1),

Eryzeclale, ) 1a(zx, y)1a(x,yz) = S(A) > fala; - a,);

write
Z :={z € G : Exyec la(x, ) alex, Y)la(x, y2) > 3 fla - ).
Then

P(Z) + %fA(al cay) 2 Byyreclzue\z)(@1alx, ) La(zx, y)1a(x, yz)
=S(A) = falay - ap),

and hence P(Z) > %fA(al ---a,). But then
P(Z\ (App1 U=+ UAY) > 2 falar ) = (@1 + -+ ap)
> 3 falar - ay)

by (2.1). Since Ué‘: 1 Ai = G, we conclude that there is some i with 1 <i < k such that

1
P((Z\N (A U---UA))NA) > ng(Oll Ce ).

Of course (Z\ (A1 U---UAY)NA;=0forr < j<kandsowemay assume i < 7.
Write Z :=(Z\ (A,;,1 U---UA))NA;. Since Z' C Z,

Byl (6, )1, (22, )1, (x, y2) > By La(x, W 1azx, Y 1a(x, y2) > 3 faley -+ @)

for all z € Z’. On the other hand, every z € Z’ has z € A; and so we conclude that there
are at least

1 1
=falar - a)IGP - —fala; - )G
3 3r
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triples (x,y,z) € G* such that
z€A;,, xs;yeA;, zxsiyeA; and xs;yz€A;.

The map (x,y,7) — (xs;y, z) has all fibres of size |G| and so there are at least

1
oy e -,)’IGF = (g(@))’IGI®

pairs (a, b) € G? such that a, b, ab, ba € A;. This gives the result. O

3. Proof of Proposition 1.3

The key idea comes from Neumann’s theorem [14, Theorem 1] which is already
identified in [5, Footnote 4]. Neumann’s theorem describes the structure of groups G
for which ¢(G) > €; they are the groups containing normal subgroups K < H < G such
that K and G/H have size O.(1) and H/K is Abelian. Neumann’s theorem was further
developed in [6, Theorem 2.4], but both arguments provide a more detailed structure
than we require.

We have made some effort to control the exponent; results such as [6, Lemma 2.1]
or [15, Theorem 2.2] could be used in place of Kemperman’s theorem in what follows
at the possible expense of the 2 becoming slightly larger. Moving the 2 + 0.0(1)
below 1 would require a slightly different approach as we normalise a subgroup of
index around €~ at a certain point which costs us a term of size € '!.

PropositioN (Proposition 1.3). Suppose that G is a finite group and c(G) > €. Then
there is a cover C of G of size exp((2 + 0co(1))e™ " log €') such that if A € C and
(x,y, xy, yx) € A* then xy = yx.

Proor. We work with the conjugation action of G on itself (that is, (g, x) — g~ 'xg) and
write x© for the conjugacy class of x (the orbit of x under this action) and Cg(x) for
the centre of x in G (the stabiliser of x under this action).

Let n,v € (0, 1] be parameters (we shall take v = % and n=¢€/loge!) to be
optimised later and put

X:={xeG:|x% <y}
Then
1
2 2 _ _ —
€lGI” < |GI"P(xy = yx) = E |Ce(x)| = |G E o] ;EX G| + xzx nGl.

Writing « := |X|/|G| we can rearrange the above to see that « > (e —n)/(1 — 7).
Suppose that s € N is maximal such that

s times

[ X X[> 1+ (1 =v)(s— D)X

There is some s € N since the inequality certainly holds for s = 1, and there is a
maximal such s with s < (k! = v)/(1 — v) since |X| > «|G].
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Since lg ={lg} we have 15 € X and 15 € X---X for any s-fold product. By
Kemperman’s theorem [11, Theorem 5] (also recorded on [16, page 111], and which
despite the additive notation does not assume commutativity) it follows that there is
some H < G such that

s+1 times s times s+1 times

— —— —
IX--X|>|X--X|+|X|-|H and HcX ---X.

By the maximality of s,

s+1 times

——
A+ =mX|>|X---X|=2+{1-v)(s-1)X|+|X| - |H|

Consequently |[H| > v|X| and so |G/H| < v '«x71.

Let K be the kernel of the action of left multiplication by G on G/H, that is,
K :={xe G : xgH = gH for all g € G}. The action induces a homomorphism from G
to Sym(G/H) so that by the First Isomorphism Theorem

K<G and |G/K|<|Sym(G/H)| <|G/H|\.

Each x € H (and hence each x € K since xH = H for such x) can be written as a product
of s + 1 elements of X. Moreover, the function x — [x“| is submultiplicative, that is
[(xy)¢] < |x%]ly°], and so it follows that

|XG| < n(S+1) <R:= I-n—(K_]+1—2v)/(1—V)J

for all x € X**! and in particular for all x € K. Thus for each x € K there is an injection
¢ : x5 — {1,..., R}. With this notation we can define our covering; let

S={{xeK:¢(x)=i}:1<i<R} and C:=({(G/K)\{KHUS,
so that S is a cover of K and C is a cover of G. Now

ICI<IG/K|-1+ISI<|v«']'=1+R

T+1-2
< exp (max {v‘lk_l logv'«7!, K;-fv log n’l} + 0(1)).

Optimise this by taking v = % and 1 =€/ loge! as mentioned before so that
k> €1 —0.0(1)) and log™! = (1 + 0c_,0(1)) log e ".

Suppose that A € C and x,y, xy,yx € A. If A € (G/K) \ {K} then xK = yK = xyK =
yxK = A. Since K <G we have xK = xyK = (xK)(yK) and so yK = K which is a
contradiction. It follows that A € S and hence x,y, xy,yx € K. We conclude that
Bay)o (XY) = Pya(yx) but xy = y~'(yx)y and so (xy)¢ = (yx)°. Since Py is an
injection, xy = yx as required.

The result is proved. O
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