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Abstract

It is shown that for every irrational a the set of a', for which a and a.' have infinitely many
convergents with the same denominator, has the cardinality of the continuum.

Subject classification (Amer. Math. Soc. (MOS), 1970): 10 A 30.

For given real irrational a, let the sequence of the denominators of the convergents
of the simple continued fraction for a be called the denominator sequence of a.
By a result of Schmidt (1967) it follows that if a and a.' are two algebraic irrationals
whose denominator sequences have a common subsequence then a, a.' and 1 are
linearly dependent over the rationals. In a recent paper (Worley, 1973) it was
shown that the same conclusion held for a and a.' not restricted to be algebraic
provided that the common subsequence (Bn) is the denominator sequence for a
third number a" and B\ > \Bn+1 for infinitely many n. The main result of this
paper is in the opposite direction, namely:

THEOREM. For every real irrational <x the set of a for which a. and <x' have a
common denominator subsequence has the cardinality of the continuum.

From this result it trivially follows that there is an a' such that a', a and 1 are
not linearly dependent over the rationals. The proof of the theorem is based on
the following lemma which in itself is of interest.

53

https://doi.org/10.1017/S1446788700011496 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011496


54 R. T. Worley [2]

LEMMA 1. Let a and b be natural numbers with (a,b) = 1. Then there exists an
integer no = no(a,b) such that every integer n>n0 can be written as n = ax + by
with x,y integers such that x>y>0 and (x,y) = 1.

PROOF. Considering the congruence classes mod a of yb for 0^y<a it is clear
that n = axo+byo where 0<_y0<a. We let r denote the greatest integer less than
(x0—yo)/(a+b), and take the representations n = axl+by{ for / = 1,2, ...,r, where
xi = x0—lb, yt = y0+la. The lemma is equivalent to the statement that if n is
sufficiently large the sum

where 8, = (xt,yt), is non-zero. We show by a simple sieve argument that N>0
for n>c[a(a+b)]1+e, where c is a constant depending on the choice of e>0.

We have

-HOO))

since the / for which d\ S( form a unique congruence class mod d. The main term
is clearly r<p(n)/n and the error term is certainly less than d(n) — 2<*in 1.

Take an arbitrary e > 0 and let p be such that 1/(1 - 2 p ) = 1 + E. By well-known
estimates for <p(n) and d(n) we know there exist constants c' and c" such that
<p(ri) > c'n1~P and d(n)<c"nP. Furthermore, if we assume n>4a(a+b) we have
r>n/2a(a + b). Hence

N> c'ri-~i>\2a{a+b) - c"nf

and so JV>0 provided n1-2P>2c"a(a+b)/c', that is, n>c[a(a+b)]1+e for a suitable
constant c. It should be noted that this is compatible with our assumption
n>4a(a+b) providing c>4.

LEMMA 2. Let S denote an infinite subset of the natural numbers, containing at
least two relatively prime integers. Then there exist uncountably many distinct real
numbers fifor which the denominator sequence contains infinitely many elements ofS.

PROOF. We first note that if (a, b) = 1 and a > b > 0 then there exists a rational
number r(a,b) = {O,^, ...,cOT> which has b and a as its final two denominators,
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where <c0, •••,cm) denotes the simple continued fraction

j J

Secondly we note that if n can be expressed as xa+yb where (x,y) = 1 and x>y>0
and if r(x,y) = {O,^, ...,dp} then n is the final convergent of

The proof is basically just the following procedure. Take two relatively prime
elements a,beS. Using Lemma 1 there exists nseS with n3 = ax+yb where
(x,y) = 1 and x>y>0. Hence there is a rational number r3 = r(a,b,n^) with
a, b and n3 included among its denominators. Now let b2, a^ denote the final two
denominators of r(a,b,%), and repeat the above procedure to get r4 = r(a,b,n3,n^
a rational number for which the continued fraction is an extension of the continued
fraction for r(a,b,n3) and such that r(a, £>, n3, wj has four elements a, b, Wg and n4

of S among its denominators. If this procedure is repeated indefinitely the sequence
r3,rt,... clearly converges to a number /? which has the desired property. A slight
modification of this procedure ensures a choice at each step, so leading to
uncountably many /? with the desired property. The exact details are as follows.

Let a,beS be such that (a,b) = 1 and a>b. We choose from S a sequence
s0,sv... with the property s0 = a, sm+1 >max{«o(c,d): c<rf<sTO+1} for w> 1.

Choose an arbitrary sequence (£i)i6jv with the following properties,
(i) e1 = e 2 = i ,

(ii) ei = 0 for infinitely many i, and
(iii) for each 1, et = 0 or 1.

The set of such sequences clearly has the cardinality of the continuum. For each
such sequence we construct a number /? such that st is a denominator of ]8 if
et = 0 and st +1 is a denominator of j8 if st = 1. This ensures that for 1 > 3, st is a
denominator of /? if and only if et = 0 and so the j8 corresponding to distinct
sequences are distinct. To see that st is not a denominator of j8 if et = 1 and / ^3
it is necessary to observe that consecutive integers are denominators only for
/J = <0,2,...) which has consecutive denominators 1,2 and for /? = <0, \,q, ...>
which has consecutive denominators q,q+1.

We define /J to be the limit of the sequence r0, rlt r2,... of rationals constructed
inductively as follows. Firstly, we set r0 = b/a. Secondly, if r} has been constructed
we let r̂  = <0,cx, ...,cg) have last two convergents e and/, where /<^+ l . If
si+1 = 0 we set vi+1 = Sj+1, while if si+1 = 1 we set vi+1 = si+1+l. By the choice of
sj+1 we can write
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where x>y>0 and (x,y) = 1. We now set

ri+1 = <0, clf ...,cp dx, ...,dk>

where y/x = <0,dx,...,dky, so that the final denominator of ri+1 is vi+l. Plainly the
sequence (r}) converges to a number 8 with the desired property. As noted above,
the numbers B corresponding to different sequences (£<) are distinct and so there
are uncountably many such B.

PROOF OF THE THEOREM. The theorem follows from Lemma 2 on taking S to be
the denominator sequence of the given number a.

It will be noted that if (Bn) denotes the common denominator sequence to a,
and a is constructed as in Lemma 2, then we have Bn+1> c[Bn(Bn+b)]1+e where
b < Bn. Hence, regardless of the values chosen for e and c, we must have Bn+1 ^ 2B\
for all but finitely many n. In other words, the condition B\>\Bn+1 for finitely
many n cannot hold.

It will also be noted that the exact choice of r0 in the proof of Lemma 2 is not
critical to the conclusion of the theorem. Hence we can modify the proofs to show
the existence of uncountably many a', satisfying the conditions of the theorem,
within any internal of the form {alb, (a+ l)/b).
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