DENOMINATOR SEQUENCES FOR CONTINUED FRACTIONS, III

R. T. WORLEY

To Professor K. Mahler on his seventy-fifth birthday

(Received 25 August 1977)

Communicated by J. H. Coates

Abstract

It is shown that for every irrational α the set of α' , for which α and α' have infinitely many convergents with the same denominator, has the cardinality of the continuum.

Subject classification (Amer. Math. Soc. (MOS), 1970): 10 A 30.

For given real irrational α , let the sequence of the denominators of the convergents of the simple continued fraction for α be called the denominator sequence of α . By a result of Schmidt (1967) it follows that if α and α' are two algebraic irrationals whose denominator sequences have a common subsequence then α , α' and 1 are linearly dependent over the rationals. In a recent paper (Worley, 1973) it was shown that the same conclusion held for α and α' not restricted to be algebraic provided that the common subsequence (B_n) is the denominator sequence for a third number α'' and $B_n^2 > \frac{1}{2}B_{n+1}$ for infinitely many n. The main result of this paper is in the opposite direction, namely:

THEOREM. For every real irrational α the set of α' for which α and α' have a common denominator subsequence has the cardinality of the continuum.

From this result it trivially follows that there is an α' such that α' , α and 1 are not linearly dependent over the rationals. The proof of the theorem is based on the following lemma which in itself is of interest.

LEMMA 1. Let a and b be natural numbers with (a,b) = 1. Then there exists an integer $n_0 = n_0(a,b)$ such that every integer $n > n_0$ can be written as n = ax + by with x, y integers such that x > y > 0 and (x, y) = 1.

PROOF. Considering the congruence classes mod a of yb for $0 \le y < a$ it is clear that $n = ax_0 + by_0$ where $0 \le y_0 < a$. We let r denote the greatest integer less than $(x_0 - y_0)/(a + b)$, and take the representations $n = ax_l + by_l$ for l = 1, 2, ..., r, where $x_l = x_0 - lb$, $y_l = y_0 + la$. The lemma is equivalent to the statement that if n is sufficiently large the sum

$$N = \sum_{\substack{1 \leqslant l \leqslant r \\ \delta_l = 1}} 1,$$

where $\delta_l = (x_l, y_l)$, is non-zero. We show by a simple sieve argument that N > 0 for $n > c[a(a+b)]^{1+\epsilon}$, where c is a constant depending on the choice of $\epsilon > 0$.

We have

$$N = \sum_{1 \le l \le r} \sum_{d \mid \delta_l} \mu(d)$$

$$= \sum_{d \mid n} \mu(d) \sum_{\substack{1 \le l \le r \\ d \mid \delta_l}}$$

$$= \sum_{d \mid n} \mu(d) (rd^{-1} + O(1))$$

since the *l* for which $d \mid \delta_l$ form a unique congruence class mod *d*. The main term is clearly $r\varphi(n)/n$ and the error term is certainly less than $d(n) = \sum_{d \mid n} 1$.

Take an arbitrary $\varepsilon > 0$ and let ρ be such that $1/(1-2\rho) = 1+\varepsilon$. By well-known estimates for $\varphi(n)$ and d(n) we know there exist constants c' and c'' such that $\varphi(n) > c'n^{1-\rho}$ and $d(n) < c''n^{\rho}$. Furthermore, if we assume n > 4a(a+b) we have r > n/2a(a+b). Hence

$$N > c' n^{1-\rho}/2a(a+b) - c'' n^{\rho}$$

and so N>0 provided $n^{1-2\rho}>2c''a(a+b)/c'$, that is, $n>c[a(a+b)]^{1+\epsilon}$ for a suitable constant c. It should be noted that this is compatible with our assumption n>4a(a+b) providing c>4.

LEMMA 2. Let S denote an infinite subset of the natural numbers, containing at least two relatively prime integers. Then there exist uncountably many distinct real numbers β for which the denominator sequence contains infinitely many elements of S.

PROOF. We first note that if (a, b) = 1 and a > b > 0 then there exists a rational number $r(a, b) = \langle 0, c_1, ..., c_m \rangle$ which has b and a as its final two denominators,

where $\langle c_0, ..., c_m \rangle$ denotes the simple continued fraction

$$c_0 + \frac{1}{c_1} + \frac{1}{c_2} + \dots + \frac{1}{c_m}$$
.

Secondly we note that if n can be expressed as xa+yb where (x, y) = 1 and x>y>0 and if $r(x, y) = \langle 0, d_1, ..., d_p \rangle$ then n is the final convergent of

$$\langle 0, c_1, ..., c_m, d_1, ..., d_p \rangle$$
.

The proof is basically just the following procedure. Take two relatively prime elements $a, b \in S$. Using Lemma 1 there exists $n_3 \in S$ with $n_3 = ax + yb$ where (x, y) = 1 and x > y > 0. Hence there is a rational number $r_3 = r(a, b, n_3)$ with a, b and n_3 included among its denominators. Now let b_2 , a_2 denote the final two denominators of $r(a, b, n_3)$, and repeat the above procedure to get $r_4 = r(a, b, n_3, n_4)$ a rational number for which the continued fraction is an extension of the continued fraction for $r(a, b, n_3)$ and such that $r(a, b, n_3, n_4)$ has four elements a, b, n_3 and n_4 of S among its denominators. If this procedure is repeated indefinitely the sequence r_3, r_4, \ldots clearly converges to a number β which has the desired property. A slight modification of this procedure ensures a choice at each step, so leading to uncountably many β with the desired property. The exact details are as follows.

Let $a, b \in S$ be such that (a, b) = 1 and a > b. We choose from S a sequence s_0, s_1, \ldots with the property $s_0 = a$, $s_{m+1} > \max\{n_0(c, d): c < d \le s_m + 1\}$ for $m \ge 1$.

Choose an arbitrary sequence $(\varepsilon_i)_{i \in N}$ with the following properties.

- (i) $\varepsilon_1 = \varepsilon_2 = 1$,
- (ii) $\varepsilon_i = 0$ for infinitely many i, and
- (iii) for each $i, \varepsilon_i = 0$ or 1.

The set of such sequences clearly has the cardinality of the continuum. For each such sequence we construct a number β such that s_i is a denominator of β if $\varepsilon_i = 0$ and $s_i + 1$ is a denominator of β if $\varepsilon_i = 1$. This ensures that for $i \ge 3$, s_i is a denominator of β if and only if $\varepsilon_i = 0$ and so the β corresponding to distinct sequences are distinct. To see that s_i is not a denominator of β if $\varepsilon_i = 1$ and $i \ge 3$ it is necessary to observe that consecutive integers are denominators only for $\beta = \langle 0, 2, ... \rangle$ which has consecutive denominators 1,2 and for $\beta = \langle 0, 1, q, ... \rangle$ which has consecutive denominators q, q+1.

We define β to be the limit of the sequence r_0, r_1, r_2, \ldots of rationals constructed inductively as follows. Firstly, we set $r_0 = b/a$. Secondly, if r_j has been constructed we let $r_j = \langle 0, c_1, \ldots, c_q \rangle$ have last two convergents e and f, where $f \leq s_j + 1$. If $\varepsilon_{j+1} = 0$ we set $v_{j+1} = s_{j+1}$, while if $\varepsilon_{j+1} = 1$ we set $v_{j+1} = s_{j+1} + 1$. By the choice of s_{j+1} we can write

$$v_{i+1} = fy + ex$$

where x>y>0 and (x,y)=1. We now set

$$r_{i+1} = \langle 0, c_1, ..., c_q, d_1, ..., d_k \rangle$$

where $y/x = \langle 0, d_1, ..., d_k \rangle$, so that the final denominator of r_{j+1} is v_{j+1} . Plainly the sequence (r_j) converges to a number β with the desired property. As noted above, the numbers β corresponding to different sequences (ε_i) are distinct and so there are uncountably many such β .

PROOF OF THE THEOREM. The theorem follows from Lemma 2 on taking S to be the denominator sequence of the given number α .

It will be noted that if (B_n) denotes the common denominator sequence to α , and α' is constructed as in Lemma 2, then we have $B_{n+1} > c[B_n(B_n+b)]^{1+\varepsilon}$ where $b < B_n$. Hence, regardless of the values chosen for ε and c, we must have $B_{n+1} \ge 2B_n^2$ for all but finitely many n. In other words, the condition $B_n^2 > \frac{1}{2}B_{n+1}$ for finitely many n cannot hold.

It will also be noted that the exact choice of r_0 in the proof of Lemma 2 is not critical to the conclusion of the theorem. Hence we can modify the proofs to show the existence of uncountably many α' , satisfying the conditions of the theorem, within any internal of the form (a/b, (a+1)/b).

References

- W. M. Schmidt (1967), "On simultaneous approximations of two algebraic numbers by rationals", Acta Math. 119, 27-50.
- R. T. Worley (1973), "Denominator sequences of continued fractions.', J. Austral. Math. Soc. 15, 112-116.

Department of Mathematics Monash University Clayton, Victoria 3168 Australia