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Some Exact Solutions of the Equations of Magne-
tohydrodynamics when Both Self-Attraction 

and Magnetic Fields Are Present 
G. C. MCVITTIE 

University of Illinois Observatory, Urbana, Illinois 

THIS paper describes recent work on magneto-
hydrodynamics by M. H. Rogers and myself. It 

has seemed to us that the large-scale dynamics of 
cosmical gas clouds must take into account the fact that 
a gas is a compressible material, so that the hypothesis 
of a constant density must be avoided. Secondly, there 
must be present a pressure-gradient force. Thirdly, 
self-gravitation cannot be omitted. Fourthly, the 
motion should be adiabatic, in the first instance at 
least. T o these conditions we have now also added the 
effects of the presence of magnetic fields, but have 
assumed that the conductivity of the material is 
infinite and that it is of constant permeability. We 
have neglected the effects of turbulence, of viscosity, 
and of heat conduction. 

The fundamental equations of magnetohydro-
dynamics, with self-gravitation included, but with 
infinite conductivity assumed, are (in mks units) 

electric vector, E = M H X U , (1) 

current, J = V X H , (2) 

magnetic vector, ( d H / d / ) + V X ( H X u ) = 0 (3) 

a n d V - H = 0 , (4) 

equations of motion, p(du/dt)+p(wV)u+Vp 

+ μ Η X ( V X H) =AirGp νψ, (5) 

continuity equation, (dp/dt)+V · (pu)=0 , (6) 

Poisson's equation, Ψψ= — ρ, (7) 

and, without going here into discussion of the energy 
equation, the adiabatic condition 

(d/dt)(pP-y)=o. (8) 

In these equations, u is the gas-velocity, G the constant 
of gravitation, ψ the "rationalized" gravitational-force 
potential, and y the ratio of the specific heats of the gas. 

In seeking exact solutions we can consider situations 
possessing certain kinds of symmetry. Plane symmetry 
and cylindrical symmetry are the two simplest kinds in 
magnetohydrodynamics and these I shall concentrate 
on. As a second principle, it will be accepted that we can 
assign a functional form to one or more of the dependent 
variables. Usually the gravitational potential and/or 
the velocity of the gas are the ones best chosen for this 
purpose. 

As a first illustration consider an idealized thin 
interstellar gas cloud envisaged as a slab of gas with 
plane-parallel faces whose width is small compared 
with its lateral extent. For mathematical simplicity we 
shall suppose that the slab is of infinite lateral extent. 
We ask whether such a slab can move as a whole 
perpendicularly to its plane faces, the width of the 
slab preserving the constant value L. The material is 
regarded as held together by its self-gravitation plus 
the effect of the magnetic field. The symmetry condi-
tion is that, if the χ axis be drawn normal to the faces 
of the slab, then the density, pressure, velocity, mag-
netic vector, and gravitational potential are to be func-
tions of χ and / alone. The functional form conditions 
are that the gravitational potential and the component 
of velocity parallel to the faces shall be arbitrary 
functions of 

:=x- j v(t)dt, 

where ν is also an arbitrary function of t. I shall not go 
through the process of solving (1) to (8) under these 
circumstances. It suffices to say that the y and ζ axes 
can be chosen so that Η and u only have nonzero 
components Hx, Hy and ux, uy, respectively, in the χ 
and y directions, and that J only has one nonzero 
component, Jz. It turns out that the density is given in 
terms of an arbitrary function f(X) by p = df/dX; 
that X = x—at where α is a nonzero constant; that Hx is 
another nonzero constant h ; that u is a linear function 
of / and so does not depend on position; and that Hy 

and the pressure are determined as functions of / to 
within arbitrary additive constants k and Π, respec-
tively. Finally, it follows that the current J2 is propor-
tional to the density p. 

To introduce precision into our solutions boundary 
conditions must be imposed. The slab is presumed to be 
a recognizable independent entity and since it consists 
of a compressible gas, we can define its plane faces by 
the requirement that the pressure and density shall 
vanish at these faces and that outside the slab there 
shall be a vacuum. This can be secured by making 
df/dX vanish at X=0 and X=L and also by giving Π 
an appropriate value. But the electromagnetic boundary 
condition is more difficult. I believe that some experts 
hold that, at the surface of separation of a gas cloud 
and a vacuum, the current should vanish. In our case, 
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since the current and density are proportional, this 
condition is automatically satisfied. Other investigators 
hold that it is the Lorentz force that should vanish, 
a condition usually expressed by saying that J is pro-
portional to H. But J always vanishes at the boundary, 
whereas H does not since h is nonzero. Thus the propor-
tionality of J and H cannot hold there. The magnetic 
vector can be continued outside the faces by a constant 
field. If in addition the magnetic energy per unit volume 
in front of, and behind, the slab is to have the same 
value, it follows that Hy has equal and opposite values 
at the two faces and this fixes the constant of integra-
tion k. Thus the passage of the slab changes the direc-
tion of the magnetic vector outside the slab but not its 
magnitude. 

With these boundary conditions the solution is 
(only nonzero functions are listed) 

X=x—at, 

P=df(X)/dX, 

/ n2a2 1 \ 
> = - ( l + ) 

V 4TTG ah2/ 

{2TTG / (0) / (L) 

(9) 
4*Gßh2 

+af(X)+2wGf2(X)}, 

/ ( 0 ) + / ( L ) = - a / 2 * G , 

Hx=h=constant, 

Hu=(na/ßh){f(X)+a/2TlG}, 

J z = nap/ uh, 

where α, η are arbitrary constants and the slab extends 
from X = 0 to X = L at any instant /. Clearly the 
function / cannot be chosen entirely arbitrarily but 
must be selected so as to make the pressure positive. It 
can be shown that if η and h are both zero the solution 
reduces to that in which only gravitational self-
attraction and the pressure-gradient force act. Thus 
the corresponding magnetohydrodynamic solution im-
plies that there is an accelerated flow of gas within the 
slab parallel to its faces in addition to the accelerated 
motion perpendicular to the faces. An individual 
particle of gas thus proceeds with a side-wise motion in 
space, the supply of gas being kept up because the slab 
is of infinite extent. In nature, therefore, such a motion 
could be expected to be transient in contrast to what 
happens in the purely self-gravitational case. 

To demonstrate the squeezing effect of the magnetic 
field, I have worked out the expression for L when the 
density is pre-assigned to be 

P=4p w 

X(L-X) 

temperature and density in the slab, let U be the width 
in the purely gravitational case and L the width with 
the magnetic field. Then 

Λ » ν 1 \ * 
i+ ) , 

4rGuh2/ 

and thus L<L', the contraction factor depending on 
the ratio of the square of the acceleration parallel to 
the faces to twice the magnetic energy per unit volume 
due to the component of the magnetic vector perpen-
dicular to the faces. 

Dr. Rogers has considered the radial motions of 
an infinitely long cylinder of gas—an idealized spiral 
arm of a galaxy. The Eulerian method is used and 
cylindrical symmetry is assumed, all dependent 
variables being functions of r (distance from the axis) 
and of /. The functional form condition is now the 
assumption that the velocity (which is radial only) 
obeys the linear wave rule, viz., 

u=(r/R)dR/dt, 

where R is a function of t to be determined. It can be 
interpreted as the radius of the outer boundary of the 
cylinder. The solution of Eqs. (1) to (8) is then as 
follows: dependent variables are functions of l—r/R 
and of the nonzero components of the magnetic 
vector are the transverse (He) and the axial (Hz) where 

He = -
R 

1 Q(t) 

R2
 r ' 

P and Q being arbitrary functions of f ; the pressure 
and density are 

1 h'iS) 
p= , P=S(t)py, (h'=dh/dç), 

R2
 r 

where h and S are arbitrary functions of ξ ; and finally 
(PR/dt2, which is a function of t alone, is shown to be 
equal to three terms, each of which consists of a power 
of R multiplied by a function of f. Each of these three 
functions of ζ must therefore be equal to a constant 
and thus three equations are obtained; one of which 
gives 5, the other P, and the third Q in terms of the 
arbitrary density function h. By writing R=Rox and 
suitably adjusting the three constants, the differential 
equation for R can be written as 

<Ρχ X2 1 
= 0. (10) 

where pm is the central density. For given central 

dt2 x2^ 2 ( 7 - 1 ) χ 2 ( 2 - 7 ) χ 3 

Rogers then considers oscillatory motions, i.e., those 
in which d?x/dP = 0 when R = R0 or χ = 1, and in such 
cases λ 2 is determined in terms of σ 2 and κ2 from Eq. (10). 
It can be proved that, if He is to be real up to the axis 
of the cylinder, then 

σ 2 / ( 7 - 1 ) > 4 ^ ρ 0 , 
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where po is the central density when R=Ro. It also 
follows that simple harmonic oscillations of small 
amplitude are possible if 

as found by Chandrasekhar and Fermi in their treat-
ment of the small radial motions of such a cylinder of 
gas. The current has a transverse component involving 
Q and an axial component involving P, but both 
components are proportional to the density p. 

The application of the boundary conditions follows 
the same pattern as in the previous problem if the 
outer surface of the cylinder is defined by the condition 
that the density and pressure should both vanish there. 
This automatically satisfies the boundary condition 
that the current should be zero on the surface. Assum-
ing also that Η shall vanish at the surface of the 
cylinder, Rogers' oscillatory solutions are given by 

C=rRrl=rR<rl

x-\ 

d?X σ2 

— + - - D r ' - x - ^ ] 
d& 2 ( 7 - 1 ) 

[ Χ - 3 _ Χ - ( 2 Ύ - 1 ) ] = 0 > 

2 ( 2 - 7 ) 

p=R<T*h'tt)rlX-\ 

1Γ σ 2 κ2 Λ 
P=—\ \(Μ-ηι)χ-\ 

4 τ τ Ι _ 7 - 1 2 - 7 J 

dR/dt αχ/dt 

R 

4TTG h2 σ 2 

+ 

μΗ2 = -

Ro2 f2 7 - 1 f2 

κ2 M—m 

2 - 7 2ττ 

K2RO f Ρ 

2 ( 2 - 7 ) Ηζχ* 

a2R0 

2 ( 7 - 1 ) 

8TTG(7 -1) Η\ξ ρ 
1 . (11) 

a2R0

2 ξ2\Ηθχ 

Here m is the mass within radius r of unit length of 
the cylinder and M the corresponding mass to the outer 
boundary. The vanishing of He at the boundary places 
some slight restrictions on the function h(Ç), i.e., on the 
permissible internal density distributions. If Hz is to be 
real, κ2 must be positive; and for a positive pressure 
inside the cylinder we must have 

σ 2 κ2 

> 
7—1 2—7 

(12) 

This inequality can be interpreted by thinking of the 
transverse component of the magnetic vector as squeez-
ing the material of the cylinder together while the axial 
component tends to blow it apart. Now σ 2 is the constant 
that survives when the magnetic field is absent and 
self-gravitation is alone available to prevent the 
cylinder from flying apart. Thus the inequality (12) 
ensures that the disruptive effect of the axial component 
of the magnetic vector shall not be so great that only a 
state of internal tension could keep the cylinder 
together. 

The solutions for both plane and cylindrical sym-
metry leave the internal density distribution un-
specified except that the density must vanish at the 
boundaries. Thus they provide classes of exact solutions 
wherein no approximations have been made. They 
serve to emphasize the following points. (1) Compressi-
bility is important : a gas can have an edge at which the 
density is zero without thereby having a zero density 
everywhere. This throws light on the applicability of 
electromagnetic boundary conditions. (2) It is rash 
to try and guess what the effect of the magnetic field 
will be by considering the situation when the field is 
absent. Examples are : the sidewise motion in the plane 
slab problem and the wide variety of radial motions in 
the cylindrical case according as gravitation, the 
transverse magnetic field or the axial field plays the 
dominant role. (3) The importance of similarity 
solutions in gas dynamics. In both problems the space-
dependence enters essentially through the similarity 
variables x/t or r/R. Rogers and I have conjectured that 
linear-wave flows of this kind must play a very funda-
mental role in gas dynamics but why this should be 
so, we have not yet been able to show. I can only end 
by expressing my conviction that these and other 
problems will be solved as more classes of exact solutions 
in all branches of gas dynamics are discovered. 

DISCUSSION 

R. LANDSHOFF, Lockheed Aircraft Corporation, magnetic energies and Poynting vectors. Is it legitimate 
Sunnyvale, California: I wonder to what extent it is to simply write p<xpy? 
legitimate to write the energy equation in the form that 
the entropy is constant. We do not have Joule heat G. C. McVlTTIE, University of Illinois, Urbana, 
because the conductivity is infinite, but we do have Illinois: No, not without going through the arguments 
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and I said specifically that I would not go into them be-
cause they are rather complicated. The pressure is not 
simply proportional to py as you noticed. It is the ratio 
"following the motion" of Pp~y that is constant so that 
one can have an arbitrary function of zeta coming in. 

R. LANDSHOFF: That takes care of shocks, but 

what takes care of the magnetic energy? 

G. C. McVlTTIE: Various proofs have been given 

that the adiabatic equation is a good enough approxi-

mation. In fact, I merely followed Friedrich's work on 

magnetohydrodynamics in this matter. 

E. SCHATZMAN, Institut d'Astrophysique, Paris, 

France: I would like to draw the attention of Dr. 

McVittie to another kind of nonlinear hydrodynamics. 

In the case of the slab of interstellar matter, the tem-

perature inside the slab is not a constant because it's 

cooling. Then you have an equation of cooling which 

could be written (d/dt)(%kTHnH) = —ynH

2. If you add 

this to the equations of motion, you have another kind 

of nonlinear hydrodynamics which leads to a new 

eigenvalue problem. 

G. K. BATCHELOR, Trinity College, Cambridge, 
England: Does Schlüter feel a need to comment on the 
matter of the boundary conditions? 

A. SCHLÜTER, Max Planck Institut für Physik, 
Göttingen, Germany: The comment I should like to 
make about the boundary conditions is that one can 
assume either a slab of matter in vacuum, or one in 
a highly rarefied but conducting gas. In the first case, 
the normal component of the electric current has to 
vanish on the surface and one has to solve the usual 
Maxwell equations in the outer region. In the second 
case, current may flow across the interface between the 
dense and the rarified gas and, for the latter, one has to 
solve the equations for a free-force magnetic field. 

G. C. MCVITTIE : Then you would not object if 
there was a vacuum outside with J equal to zero on the 
boundary? 

A. SCHLÜTER : No, certainly not. 

D. L. LAYZER, Harvard College Observatory, Cam-
bridge, Massachusetts: I think your boundary conditions 
are determined by the equations inside the media and 
Maxwell's equations outside, and I believe one must 
take the continuity of the electric field as a condition. 
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