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1. Introduction

There are many ways to look at isolated hypersurface singularities, and many
different objects which are associated to singularities. It is natural to ask which
properties of the singularities they reflect and how they vary. Many are invariants
of the u-homotopy type singularity, like the Milnor lattice, the Coxeter Dynkin
diagrams, the topological type far# 2, but also the spectral pairs. Some others,
like the Tjurina number and Bernstein polynomial, are invariants of the contact
equivalence class, and can jump withip-aonstant family. Most of the invariants

are of a discrete nature.

Here we want to study two nondiscrete invariants of the right equivalence class,
which vary continuously within g-constant family. They are natural candidates
for Torelli type questions. The first is the isomorphism class of the mixed Hodge
structure of Steenbrink, the second comes from the Brieskorn lattice as a subspace of
the Gaul3B—Manin connection. We will give precise descriptions of these invariants,
define and analyse classifying spaces, discuss period mappings, and report on
known Torelli theorems.

If f:(C**1,0) — (C,0) is a holomorphic function germ with an isolated
singularity, then the middle cohomolod¥" (X, C) of the Milnor fibre carries a
mixed Hodge structure [St]. Withinaconstant family, the weight filtration and the
Hodge numbers are constant, and the Hodge filtration is varying holomorphically.
It turns out that the mixed Hodge structure is sensitive to some of the analytic
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moduli in thep-constant stratum, but not to all of them. For example, in the case
of semiquasihomogeneous singularities, the mixed Hodge structure depends only
on the quasihomogeneous part of the singularity.

A better invariant for Torelli type questions is the Brieskorn lattidg =
ngjl’o/ df /\ng;ll’0 [Br]. M. Saito showed that it varies holomorphically with-
in the u-constant stratum, and that it is sensitive to all of the analytic moduli
[SM1] [SM2]. So it satisfies some infinitesimal Torelli theorem. The author defined
an equivalence class BL of Brieskorn lattices, which is an invariant of the right
equivalence class of a singularity, and proved global Torelli theorems for several
pu-homotopy classes of singularities [Hel] [He2] [He3].

Following Varchenko [Val] (cf. [Ph2] [SchSt] [SM1]), the Hodge filtration can
be described in terms of the GauR—Manin connection and the Brieskorn lattice.
This shows that the Brieskorn lattice can be seen as an extension of the mixed
Hodge structure. For the analysis of Brieskorn lattice and invariant BL and for the
definition of a classifying space, it is necessary first to consider the mixed Hodge
structure.

For the classifying space of mixed Hodge structures, it is important to realize
that the mixed Hodge structure of Steenbrink is polarized. This is more or less
well known. It is reviewed in Section 3. There an explicit description is also given,
which is less well known, of the polarizing forsin terms of variation or Seifert
form.

There are several possibilities to define a polarized mixed Hodge structure
(PMHS). Steenbrink’s mixed Hodge structure is a PMHS in the sense of Schmid
([Schm] Sect. 6). In Section 2 such PMHS’s are defined and discussed from a
general viewpoint. Section 2 is of interest independently of the application to
singularities in the following chapters. A classifying spdggayns for the PMHS'’s
is constructed. It is a fibre bundle over a classifying spags, for pure polarized
Hodge structures. A discrete grodfy, acts onDpyys. The quotientDpyns/ Gz
is the moduli space for the isomorphism classes of PMHS’s. The main result of
Section 2 is the following.

THEOREM 1.1 (2.5+2.6)The spacé&puns is a complex manifold and a homo-
geneous space with respect to some real Lie group. The fibraigms — Dprim

is holomorphic and locally trivial, the fibres are isomorphic@?v+s for some
Npmus € N. The groupGy acts properly discontinuously aBpyys.

In the case of singularities, this grodgy, is the group of all automorphisms
of the Milnor lattice, which respect the Seifert form. Then they automatically also
respect monodromy and intersection form.

In Section 4 the properties of the Gaul3—Manin connection and the Brieskorn
lattice are reviewed. The presentation is as short and elementary as possible. Other,
more detailed expositions can be found in [Hel] [He2] [SM1] [SM2] [SchSt] [Ka]
(Sects. 1, 2 in [Ka], see [SMZ2] for a critical discussion of the statements in the
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following chapters of [Ka]). Just as the Brieskorn lattice can be seen as an extension
of the mixed Hodge structure, there is an extension of the polarizing ftm
the Gaul3—Manin connection. In Section 4 this extension is defined and identified
with K. Saito’s higher residue pairing. This gives a more concise description of this
pairing and the relation to intersection form and Seifert form than can be found in
the literature.

Section 5 is the center piece and the most technical part of this paper. There a
classifying spac®g, for Brieskorn lattices is constructed. It is a fibre bundle over

Dpuns.

THEOREM 1.2 (5.3-5.5)Dg, is a complex manifold. The bundl®s; — Dpmuys

is a holomorphic locally trivial bundle with fibres isomorphic @' for some
NpgL < %uz. There is a canonicat*-action with negative weights on the fibres of
this bundle. The groupr; acts onDg_ properly discontinuously, respecting the
fibration and theC*-action.

The quotientDg /G7 is the moduli space for the invariant BL. Although there
is some similarity between the fibratioh%, — Dpmns and Dpmus — Dprim,
the proofs are totally different. There is no transitive natural group actiabign
present. The analysis éfg; uses and extends the construction in [SM1] Section 3,
which leads there to the main result of that paper, the existence of baBgswth
very special properties. So one can see Section 5 as a continuation of the analysis
of the structure of the Brieskorn lattice, which M. Saito had undertaken in [SM1]
Section 3.

Section 6 contains a discussion of results from [SM1] [SM2] [Hel] [He2]
[He3] on the period mappings fromaconstant family toDg and Dpyps. For
example, in the case of a quasihomogeneous singularity,-tomstant stratum is
locally a fibre bundles = SO x §— = S0 x ¢dmS™ — 5O with aC*-action with
negative weights on the fibrés—. Then the period mappin§ — Dg, together
with S° — Dpuns is an embedding of bundles, which preserves the fibres and the
C*-action.

The main part of Section 6 is a short discussion of the most important features
of the period mappings and the global Torelli theorems, which the author had
obtained. They include the unimodal and bimodal singularities [Hel] [He2], the
Brieskorn—Pham singularities with coprime exponents, and the semiquasihomo-
geneous singularities with weight$, 3, 3, 1) [He3]. This last class is especially
nice, because there the results imply a global Torelli theorem for cubieim
terms of some pure polarized Hodge structure. This is remarkable, as the Hodge
structures on the cohomology of the cubics themselves are trivial.

2. Classifying Spaces for Polarized Mixed Hodge Structures

What is a polarized mixed Hodge structure? There are several possible definitions.
The simplest s to require that any quotien}'Gof the weight filtration is equipped
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with a bilinear form which gives a polarization of the pure Hodge structure S’n Gr
This is often called a graded polarized mixed Hodge structure. But Schmid’s limit
mixed Hodge structure [Schm] (Thm. 6.16) motivates another definition, which
is given in Definition 2.2. This is also the correct one for isolated hypersurface
singularities.

The main purpose of this section is to describe a classifying sPaggs and
a moduli spac&pmns/ Gz for these polarized mixed Hodge structures. Similar
results for graded polarized mixed Hodge structures are indicated in [Us] and
[SSU], but without proof. So this section might be of interest independently of the
following sections. In this paper the spalgyys is used only for the definition of
an even bigger classifying spafg, for Brieskorn lattices.

Definition 2.2 is based on the structure which is given in the following lemma
from [Schm] (Lemma 6.4, cf. also [Gr] 255-256).

LEMMA 2.1. Letm € N, Hy a finite-dimensional) vector spaceS a nonde-
generate bilinear form oy, S: Hy x Hy — Q, which is symmetric for even
m and skewsymmetric for odad (‘(—1)"-symmetric}, and N: Hy — Hg a
nilpotent endomorphism with+1 = 0, which is an infinitesimal isometry, i.e.
S(Na,b) + S(a, Nb) = 0fora,b € Hp.

(a) There exists a unique increasing filtration=W_1 Cc Wy C --- C Wo,,, =
Hg such thatN(W;) C W,_, and such thatN!: GV, — Gr}Y_, is an
isomorphism.

(b) SW,Wy) =0ifl +1" < 2m.

(c) A nondegeneraté¢—1)™*!-symmetric bilinear forms; is well-defined on
GnY,, for I > 0 by the requirementS;(a,b) = S(a, N'b) if a,b € W4y
represent, b € Gr,

(d) The primitive subspack,,;;(Hq) of Gr,,”{H is defined by

Py = ke N4 Gryyy = Gy o),
ifl>0andP,,;; =0if [ < 0. Then
Gy =P N'Poisa
i>0
and this decomposition is orthogonal with respec$taf [ > 0.

DEFINITION 2.2. A polarized mixed Hodge structure of weightabbreviation:
PMHS) is given by the following data: a latticH; with H, C Hy C Hg C
H¢ = Hz ® C, a bilinear formS on Hy and an endomorphisiV of Hgy such
thatm, Hg, S, N, W,, S;, P,4; satisfy all properties in Lemma 2.1, and a
decreasing Hodge filtratioR® on H¢ with the properties

(i) F*Gry gives a pure Hodge structure of weighton Gr”, i.e. G/ =

FrGrY @ Fk+1-rGrlY
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(i) N(FP) c FP~1 i.e.Nis a(—1, —1)-morphism of mixed Hodge structures,

(iiiy S(FP, Fmt+1l-r) =0,

(iv) the pure Hodge structurg® P, ; of weightm + [ on P,,, is polarized by
Sl, i.e.

() S)(FPPy,4, F"t+1-rp, ) =0,and
(B) P8 (u, @) > 0if u € FPP, ;N FmH=pP, . u #0.
Remarks.(a) P, carries a pure Hodge structure, because it is the kernel of

the morphism'*+1: GV, — Gr,"_,_, of pure Hodge structures. The strictness
of the(—1, —1)-morphismN also implies

FPGrY =P FPNIP,yp; and FPN’Py ;= N'FPH P ;.
§>0

(b) In Lemma 2.1 the number could be replaced by some bigger number, but
in Definition 2.2 the weightn is essential for condition (iii). Also the assumption
that S is (—1)™-symmetric is not important in Lemma 2.1, but essential for (iv)

(8).

(c) Condition (iii) implies (iv)(«), but in general it is not equivalent to ().
One can easily see the following. Under the assumption of all conditions except
for (i) and (iv), condition (iv)(«) for all p andl is equivalent to

S(FP N\ Wiy, F" 1PN W,,_;) =0 forallpandl.

(d) The definition of a polarized mixed Hodge structure in [CaKa] differs from
Definition 2.2 only by the omission of condition (iii).

Lemma 2.3 shows how Deligne’s Hodge decompositibhfor a mixed Hodge
structure as in Definition 2.2 fits together with the polarizing f&m

LEMMA 2.3. ForaPMHSas in Definition2.2 let
1P = (FP N Wyiq) N (Fq N Wy + 3 F'7 0 Wp+q_]-_1) :
§>0
Then

() F? = @12 1", Wy = @y gey I, N(IP1) € 172072
(b) (P9, I"*) =0 for (r,5) # (m —p.m =)

For p + ¢ > m let I be the primitive subspace 6f-¢,

129 = ker(NPHa—mHL ppa _y pr—g-lm—p-1y

Then
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(c) P4 = @j>0 Nj[g+j,q+j‘
(d) S(N'IE?,NiIy*) =0 for (r,s,i+ j) # (¢,p,p +q—m).

Proof. (a) [De2] (Lemma 1.2.8).
(b) From the definition we have

SW;,Wp)=0 ifl+1 <2m,
S(FP,F")=0 ifp+r>m,
S(F',F’Y)=0 ifq+s>m.
One has to show (179, I™*) = 0 in the following four cases.

Casel:p+1r > m.

Case2:p+r<m, g+ s<m.
Case3:p+r<m, g+s=m.
Cased:p+r<m, g+ s>m.

In case 1, it follows fromy?? C FP, I™5 C F". In cases 2 and 3, it follows from
P8 C Wyyg, I C W,yps. Casedisleft. Lep+r <m, g +5>m.

S(F'NW,yy, F°NW,,s) =0 because of + s > m,

SFI N Wy P NWyps_j_1) =0 and

SE A Wpigj 1, F NWyiy) =0
becauseof+s—j>morp+qg+r+s—35—1<2m,

SF N Wpigeict, F* P N Wigs_j1) =0

becauseof+s—i—j > morp+q+r+s—i—j—2 < 2m, thusS(I7,I™*) = 0.

(c) Forp + ¢ > m the mappingVP =™ [P:4 — [M~=9™m=P js an isomorphism
because of (a) and Lemma 2.1. This implies (c).

(d) (’)”,8,7: +]) = (q7p7p+ q _m) and(’l” _j,S _j,'f’ + S) = (m _p+
i,m—q+i,p+q) are equivalent. {r — j,s —j) # (m —p+i,m —q+1)
thenS(N15, N7 I3*) = 0 because of (a) and (b). So suppose- j,s — j) =
(m—p+i,m—q+i)andr + s # p+q. Then
either i+j>p+qg—m+1, thus N7 =0,

o i+j>r+s—m+1, thusN*H[* =0,

N is an infinitesimal isometry, therefo®( N* 157, N/ I>*) = 0. O

Remarks.(a) M. Saito shows [SM1](Lemma 2.8)

P17 =rF"n (Z Fin Wp+q> :
q

q
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(b) If we are not interested in the Hodge filtration, but just look for a decom-
position of the weight filtration which harmonizes withand NV, then Lemma 2.3
gives subspaces

Bi= P 13? and V=P N'Bo;
p+q=I Jj=0

fori € {0,1,..,2m}. In general these are not defined o¥ky, but they satisfy all
other properties in Lemma 2.3.

It is a tedious exercise in linear algebra to show that there exist such subspaces
over Hyp. One can start with a Jordan baserf for N, apply Lemma 2.1 and
refine the Jordan base inductively. The details of the proof of Lemma 2.3 are left
to the reader.

LEMMA 2.4, Letm, Hy C He, S, N, W,, P, C Gr)/ be as in Lemm&.1.
There exist subspacés, V; C H¢, which are defined ovellp, and which give a
decomposition of the weight filtration with the following properties.

Vi=@ N'Biy, Wi=EPW,

§=0 k<l
N(V) CVia, S(Vi,Vi)=0 if 1+1' #2m,
S(N'By,N'B)) =0 if (k,k —m) # (I,i + 7),
the mapping B; — B; + W,_1/W,_; c Gr¥’

is an isomorphism ont®).

In the following, a classifying spac®pmns for PMHS as in Definition 2.2 is
defined and studied, together with many other spaces and groups.

Letm, Hy C He, S, N, W,,P, ¢ GRY, S, be as in Definition 2.2. Also
let B, andV, be a fixed decomposition of the weight filtration as in Lemma
2.3. Finally, letF be a fixed Hodge filtration of a PMHS as in Definition 2.2,
which shall serve as a reference filtratidig. (can and) shall be chosen such that
F§ = @, ; F§ N N7 By, i.e. it respects the given decomposition of the weight
filtration.

ff=dimF} P,

D, := {filtrations F*P, on P, | forallp dimFPP, = f},
Si—m(FP Py, F'=PH1P) = 0},

D, := {filtrations F*P, on P, | forallp dimF?P, = f},
F'* P, gives a polarized Hodge structure of weiglon P, },

Dprim = HDZ’ Dpiim = HDla
l l
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Dpwmns := {filtrations F* on H | for all p andl dim FPP, = 17,
FPNIP, = NIFPY P, FPGRY = @50 FP NI Py,
N(FP) c FP~1 S(FP, Fm+1i—r) =0},

#: Dpmus — Dprim IS the canonical projection

Dpwns = {filtrations F'* on He. | for all pandl dimF?PP, = [},
F* is the Hodge filtration of a PMHS of weight on Hc},

7. Dpmus — Dprim IS the canonical projection

Gy = {automg: H; — Hz|go N =Nog, So(g xg) =S},

analogoushGr, Gg,

GL:={g€Gc|GMg=id}, Gi:=GLNGx,

Gl :={g€ G| foralll ¢g(B)) = B}, G :=G{NGg,

GL = {autom.g: B, — B; | Si_mo (9 X g) = Si_m},

GL = {autom.g: BiNHy — BN Hg | S; mo(gxg) =S _m},

Be = Stal{Fg) = {g € Gc | g(Fg) = Fg '},

B{. = G- N Be, Bl := G, N B¢, By == G{ N Be.

The next eight statements are well known or follow from the definitions.

(A) GZ is canonically isomorphic tdl;GL and semisimpleGL is unipotent
and a normal subgroup @f. The semidirect productc = G- x G is a Levi
decomposition of7¢.

(B) Bc = B{. x B{ because of the special choice of the reference filtrafipn

(C) Dy andD; are the classifying spaces for Hodge filtrations, which are defined
in [Schm] and [Gr].G acts onD;, andGY, acts onD;. Both actions are transitive.

Djis a projective manifoldD; is a complex manifold and an open subsebpf
(D) Dpnm is a projective manifold and a complex homogeneous space,

Dypim = [[ D1 = G¥/B{ = G¢ /G x BL.

(E) Dprim is a complex manifold and a real homogeneous spBgg, is an
open subset aDprim,

Dyim = [[ D1 = G%/Bj, = G¢. x G /G x BY.

(F) The canonical projectiofic/ B — G¢/GE: x B 2 Dpyim, is alocally triv-
ial holomorphic fibre bundle with fibres isomorphic@./ B.. As G. is unipotent,
the fibres are isomorphic (as complex manifoldstevHs for someNpyns € N,
[Bo] (11.13).

(G) The restriction of the fibre bundle in (F) to the open sulbkgt, of the base
Dprim is canonically isomorphic to

Gt x Gy /B x By = G x Gy /G x B = Diim.
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(H) Dpmus = ﬁ_l(Pprim) C Dpurs.

Proof. Dpyus € Dpmus holds becausév is a strict morphism (Remark (a)
after Definition 2.2). IfF'* ¢ fr—l(Dprim) it remains to show property (i) of Defini-
tion 2.2. This follows from¥® P, € D; and the formulafoF'Gr}” in the definition
of DPMHS- O

So is the restriction ofr to Dpmus = 7~ (Dprim)-
PROPOSITION 2.5.

() G acts transitively onDpyns. The fibre bundler is isomorphic to the fibre
bundle in(F'), G¢/Bc — Gc¢ /G - Be. The groupGr. acts transitively on
each fibre ofr.

(i) The fibre bundler is the restriction ofr to Dpyns = ir—l(Dprim). It is
isomorphic to the fibre bundle &), G. - G/ Bt - By — G- G3/Gr - By.

The groupGy. - G acts transitively onDpyns. The total spacépyus is a
complex manifold and a real homogeneous space, the fibres are isomorphic to
CNewis for someNppHs € N

Proof. It remains to show thaf- acts transitively opuns. Let F* € Dpyus.
As G{ acts transitively orﬁprim, there exists @; € G{ such thatt(g1(F*)) =
7(Fg) andg1(F*) € Dpmus. For g1(F*) and for F§ there exist unique Hodge
decompositions with the properties in Lemma 2.3. Obviously one can findca
G which maps one Hodge decomposition to the other. Kaén (F*)) = F§. O

PROPOSITION 2.6G7 acts properly discontinuously oPpyys. Therefore the
quotient spac&pmns/Gz is a normal complex space and has at most quotient
singularities

Proof. In general By is compact, butZr does not act transitively oPpyns;
andG¢. - G§ acts transitively, buB(. - Bf is not compact. So the proof is not as
easy as in the case of a pure Hodge structure. The central piece of the following
proofis the

OBSERVATION. G4 N gBeg~! = {id} for anyg € GL - G%.

Proof. g(F§) € Dpwns for suchg. Any h € G, N gBcg~* respectg(F3) and
Hy C Hg, soh respects the Hodge decompositiong¢f;) in Lemma 2.3. But
h € GY acts as identity on G, soh = id. 0

Let K C Gi - G%/B¢ - By = Dpuus be a compact subset arill := {g €
Gr | gK N K # (}. Itis enough to show thak is compact. Thetiz N R is finite,
andG acts properly discontinuously ddpyys.

Let; and, be the canonical projections

G- G % Gl - Gi/BL % G- G4/ BL. - BY.
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1) IS proper, becausBy, is compact. Thus;z‘l(K) is compact. The set
P = {(g1Bt, 92B¢) € 3 (K) x 31 (K) | 195" € Gr}
C oy H(K) x 9, H(K)

is compact and satisfies
R = {919, " | (q1BL, 92BL) € P, g19;* € Gg}.

CLAIM. If g1, 92 € G - G% andby, b, € B(. are given such that
(91BL, 92BE) € P, g195" € G, (g1b1)(g2b2) ! € Gr.

Thengig; ™ = (g1b1)(g2b2) .
Proof. There exist (uniquey € G, p € G such thay, = v - p.

p~t (91951) " Hgrb1) (g2b2) - p € Gr  and
= (p ) (babz ) (p typ) Tt € GL.

The observation above impliégh, * = id. 0

The claim shows that there is a canonical well-defined surjective and continuous
mappingP — R. ThusR is compact. O

Remark. Often the situation is more complicated than the one which is discussed
above. For example, in the case of isolated hypersurface singularities, there is a
semisimple automorphism difi; which commutes witlivV and respectS. One can
modify all the statements and constructions starting from Lemma 2.3 to Proposition
2.6 to include this semisimple automorphism. A more detailed discussion for the
case of isolated hypersurface singularities is given in Section 3.

3. Hypersurface Singularities and Polarized Mixed Hodge Structures

In Section 3 we will fix notations for the classical topological data of a hyper-
surface singularity. We will describe the polarizing form for Steenbrink’s mixed
Hodge structure [St] on the cohomology* (X ., C) of the Milnor fibre. Thisis a
canonical, but less well known nondegenerate bilinear fornil6X ., Q). The
construction of Section 2 will be applied to yield a classifying spBggins for
such polarized mixed Hodge structures.

Let f: (C**1,0) — (C,0) be a holomorphic function with an isolated singular-
ity at 0 and Milnor number.. If we choose a sufficiently small open ballaround
0in C"*! and a sufficiently small punctured dig¢ around 0 inC, then

X' =fYrnB->T
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is aC* fibre bundle, the Milnor fibration. The fibre¥;, = f~1(t) N B,t € T",
have the homotopy type of a bouquetofn-spheres [Mi]. Ifu: T, — T’ is
the universal covering andl,, = X' x7 Ty, then for anyr € T, the natural
inclusion X,,;) — X is a homotopy equivalenceél, (X«,%) = Z" is the
Milnor lattice.

We have the monodromy/, the intersection forng and the Seifert fornd on
H, (X, %) [AGV] (Ch. 2). The variation VarH" (X, Z) — Hp(Xs,Z) is an
isomorphism. Seifert formhand Variation Var determine one another by

I(a,b) = (Var 1(a),b) fora,be H,(Xu,Z).
The Seifert forml determines monodromy/ and intersection form by
[(Ma,b) = (—1)"*Y(b,a) and q(a,b) = —i(a,b) + (—=1)" (b, a).

Thus any automorphism of the Milnor latticH,, (X, Z), which respects the
Seifert form, also respects monodromy and intersection form. The group of all
automorphisms of the Milnor lattice, which respect the Seifert form, will be denoted
by G7.

Theintersection formis (—1)™-symmetric, i.e. symmetric for even skewsym-
metric for oddn. The radical of the intersection form is k&f — id).

We have the monodromy/ = M, - M, = M, - M, with unipotent part
M, and semisimple pat/; on the cohomologyi"™ (X ., Q). The nilpotent part
N = log M, satisfiesN"*1 = 0. We set

H™(Xoo,C)x = ker(M, — A -id) € H™(X s, ©),

Hn(XOOa(C)#l = @ Hn(XOOa (C)/\a
A#£L

H"(Xoo,Z) 41 = H" (X0, Z) N H"(X oo, C) 21,

and SImIIarIyHn(Xooa Z)b Hn(X007 Q);éla Hn(Xooa Q)l

The mixed Hodge structure oH" (X, C) was defined by Steenbrink [St],
using resolutions of singularities. Varchenko [Val] found a construction, which
uses the Gauli—Manin connection, of a slightly different Hodge filtration. His
construction was modified [Ph2] [SchSt] [SM1] to obtain Steenbrink’s Hodge
filtration. This is reproduced in Section 3. Hodge filtration and weight filtration are
invariant with respect td/,;. The mixed Hodge structure splits into a PMHS of
weightn on H"(X ., C)x1 and a PMHS of weight. + 1 on H" (X, C)1. This
determines the weight filtration. To explain this shift of the index and the polarizing
form S for the PMHS, we will combine a result of Scherk [Sche] with the results
of Schmid [Schm] and Steenbrink [St] (cf. [SchSt] for the following).

With a suitable coordinate change one can obtain [Br]
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() fis apolynomial of arbitrary high degree,
(i) O is the only singular point of the closui of f~1(0) in P"*C.
(iii) the closureY; of f~1(t) in P"*1C is smooth fort € 77 = Tj if § is small

enough.
Analogously to the Milnor fibration, we get a locally trivi@P-fibrationz¢: Y’ —
T’ with
d =degf, Fl(z,...,2 =z .. (zo,..., Zn),
af (20 ntl) = Zpaq - f — —

Y ={(z,t) EP"TICXx T | F(z) —t- 28,1 =0} = {(2,t) | z € Vi, t € T},
T Y =T, (2,t) = t, Y =7, 5(T).

The monodromyMy on the primitive partP™(Y;,Q), t € T', of the middle
cohomology of a regular fibre is quasiunipote¥f , andAfy-, are the semisimple
and unipotent part ak/y-. The nilpotent parfVy- = log My, satisfiesZ\f;}+1 =0.
There is 8 —1)"-symmetric nondegenerate intersection fagron P" (Y;, Q); we
setSy = (—1)"( /2. g5 V. = Y’ xp Ty is defined analogously t& .. For
anyt € T' the embeddind’, ;) — Y is @a homotopy equivalence.

Ny determines a weight filtratiof/, on P"(Y,,, Q) with indexm = n as
in Lemma 2.1. The pure Hodge structures on the primitive cohomology groups
P"(Y;,Q), t € T', are polarized bysy and give a variation of Hodge structures
in the sense of [Schm]. This induces a holomorphic mappinrg FJ(T) from the
universal covefl,,, of T" to a classifying space for Hodge filtrations & (Y),
which satisfied”y ;) = M;lF;(T). Following Schmid, the limit filtration

00
Imr—o0

on P (Y, C) is well-defined.

THEOREM 3.1 ([Schm], (6.16))Sy, Ny, W, and F3, give aPMHS of weight
n on P"(Yy). Itis invariant with respect td//y ;.

Following Steenbrink, there is an exact sequence
0— H"(Yy) = H"(Ys) = H" (X)) = H" (Yp) —» H" (V) — 0.
The result of Scherk simplifies the situation.
THEOREM 3.2 ([Sche))If f is a polynomial of sufficiently high degree with the
properties(ii) and (iii) from above, then the mappintg P"(Yoo) — H™"(X o) IS

surjective and the kernel leeri* = ker(My — id).

THEOREM 3.3 ([St]).Let f be as in Theorem 3.2. The sequence
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CLASSIFYING SPACES FOR HODGE STRUCTURES AND BRIESKORN LATTICES 13
0 — ker(My —id) — P"(Yo) & H"(X») — 0

is an exact sequence of mixed Hodge structures. i#&(@,,) carries Schmid’s
mixed Hodge structurd/" (X, ) carries Steenbrink’s mixed Hodge structure. The
mixed Hodge structures are invariant with respect to the semisimple parts of the
monodromies

Theorem 3.3 explains the shift of the index of the weight filtratiod B X ) 1. It
also shows, how one has to define a nondegenerate bilineasfomi ™ (X ., Q),
which is invariant with respect td/;, and which leads to a PMHS of weighton
H"(X4,C)£1 and a PMHS of weight + 1 on H" (X, C)1.

The restriction*: P"(Yy )41 — H™ (X )1 is an isomorphismSy induces
S on H"(X)+1. One can express this part 6fin terms of the intersection
form¢. The intersection form on H, (X, Q)1 is nondegenerate and induces an
isomorphismH" (X, C) 1 = Hy, (X, C),1 and a nondegenerate bilinear form
¢* on H™(X s, C) 1. ThenS = (=1)»(n=1/2. ¢*,

The restriction ofS to H"(X,)1 is defined byS(a,b) = Sy (@, Nyb) for
a,b € H"(X)1, a,b € P"(Yy)1 such that*a = a,i*b = b. This S is well-
defined and nondegenerate because of*ker kerNy N P"(Y,,)1 and Lemma
2.1 for Ny andSy on P™ (Y4 )1. If one compares the pairings in Definition 2.2
with Theorem 2.5, one sees, that tRiss the right one for a PMHS of weight+ 1
onH™(Xo)1.

The following lemma shows thaf is determined by the variation and the
monodromy and is independent of the choice of the projective fibratior 7".
We define a monodromy invariant isomorphistmH"™ (X, Q) — H"(X~, Q)

by
v = (M_ id)il Oan(XooaQ);éla

>

I>1

N
M —id

(—1)! (M — id)! 2 (‘: ) on H" (X, Q)1

LEMMA 3.4. The bilinear formS on H" (X »,, Q) is nondegenerate and invariant
with respect to the monodromy. It is given Bya,b) = (—1)*"~Y/2(q, Var o
v(b)) for a,b € H"(X,Q). The restriction ofS to H" (X, Q)1 is equal to
(=1)»(»=1/2. ¢* and (—1)"-symmetric. The restriction & to H" (X, Q)1 is
(—1)"*+l-symmetric.

Proof. The formula for the restriction t&/"” (X, Q)1 follows from the defi-
nition of Var. The formula for the restriction t8" (X, Q)1 follows from

I>1

Ny = (My,, —id) (Z%(—QH(MY’U — id)”)
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14 CLAUS HERTLING

and

isoVar oi* =PD o (My —id),
where

i Hy(Xoo) = Po(Yoo),
and

PD: P"(Ya) —> Po(Ys) is Poincaé duality. O

Remark.S induces an isomorphisii™ (X »,, Q) = H, (X, Q) and a nonde-
generate bilinear forns,, on H, (X, Q). The restriction ofS, to H, (X, Q) £1
is S, = (—=1)*=D/2. 4 It is not difficult to compute the restriction &, to
H, (X, Q)1 in terms of the Seifert form:

S.(a,b) = (=)D ( (Z %Nll> a, b)

>1"
fora,b € Hy(Xoo,Q)1. Thus
S, (N a,b) = (—1)"™= D2 (M, —id)a,b) = (=1)"""V/2¢(a,b).
From the definition of5 and the previous theorems follows:

THEOREM 3.5.Steenbrink’s mixed Hodge structure adyield a PMHS of
weightn on H" (X, Z)£1 and aPMHS of weightn + 1 on H™ (X, Z)1.

This sum of two PMHS’s will also be called a PMHS. It is invariant with respect
to the semisimple pam/, of the monodromy. To obtain a classifying space for
such PMHS'’s, one has to includd, and modify all definitions, statements and
proofs in Section 2 from Lemma 2.3 to Proposition 2.6. This is not difficult, so
only a few comments are necessary.

The space#”? andI}*? of the Hodge decomposition in Lemma 2.3 are invariant
underM;. One has to show that the subspaBg#n Lemma 2.4 can be chosen as
invariant spaces with respectad;. Let P, = @, P, ; be the decomposition af,
into generalized eigenspaces with respecttp The conditions din¥”? P, = f/
have to be replaced by dif¥ Py ; = ff\”l. Now Dyrim is the product of classifying
spaces for those pure polarized Hodge structures on the primitive subghaces
Py ., Which respect the decomposition into the eigenspékgsand P ;. In the
same manner, we can define the other classifying spaces. From now on the fibration
Dpnpns — Dprim is denoted byrpyvns.
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All the groups have to respetf,. The groupG is the group of automorphisms
of the Milnor lattice, which respect the Seifert form. It is canonically isomorphic
to the group of automorphisms df"(X,,7Z), which respectM;, N andS.
The quotientDpyns/ Gz parametrizes the isomorphism classes of PMHS’s on
H"(X,Z). All the statements of Propositions 2.5 and 2.6 carry over to the
situation which is considered here. The next proposition summarizes some of
them.

PROPOSITION 3.6Let f be an isolated hypersurface singularity with Hodge
filtration Fy on H" (X, C). The spaceDpyns is the classifying space of all
Hodge filtrations o " (X -, C) which have the same Hodge numbﬁ§‘§ asky,
and which give #MHSwith the same properties with respectto .S and M.

(a) Dpuusis a complex manifold and a homogeneous space with respectto a real
Lie group.mpmus: Dpmus — Dprim is a locally trivial fibre bundle with fibres
isomorphic taCNPvHS | Npyps € N.

(b) The groupGz acts properly discontinuously oPpyvns. The moduli space
Dpmns/ Gz for the isomorphism classes of polarized mixed Hodge structures
on H"(X ) is a normal complex space and has only quotient singularities.

Remark.Varchenko [Va2] proved that the spectral numbers and spectral pairs
(cf. Section 4) are constant withingaconstant family of singularities. Thus also
the Hodge numberﬂj’l are constant. We have a period mapping from the parameter
space of the-constant family to the moduli spaé&uns/ Gz. This period mapping
is locally liftable to Dppus.

4. GaufR—Manin Connection and Brieskorn Lattice

As in Section 3 letf: (C**1,0) — (C,0) be a hypersurface singularity and
f: X" — T'" a Milnor fibration. The Brieskorn lattice of is H) = Hy(f) =
¥/ df A dy 3 [Br]. Brieskorn lattice and GauR—-Manin connection determine
Steenbrink’s Hodge filtration oA (X »,, C) [Val] [Ph2] [SchSt]. The Brieskorn
lattice induces an invariant of the right equivalence clasp, afhich is finer than
the polarized mixed Hodge structure &f"(X,). A classifying space for this
invariant will be studied in Section 5.

Here, in Section 4, we will summarize the properties of the Gaul3—Manin con-
nection and the Brieskorn lattice. There are other presentations of these properties
[Hel] [He2] [SM1] [SM2] [SchSt]. The summary here is as elementary and short
as possible. There is a new, explicit description of the relation between the pairing
S and K. Saito’s higher residue pairing (4.1 and 4.4).

The cohomology bundlgi™ = |J,c» H"(X;,C) is a flat complex vector
bundle.H" (X ,, C) can be identified with the space of the global flat many-valued
sections inH™. If A € H"(X, C), anda € Q such that 2@ = ), then
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S(A, a)(t) = t* exp (Iogt;—:D A(t)

isaunique holomorphic sectioni”. LetH™ be the sheaf of germs of holomorphic
sectionsinH™ andi: 7' — T the inclusion. The germg A, a)o € (i.H™)oin O of
the sections (A4, )(t) span &{¢}[t~]-vector spac€, of dimensioru. This space
Go is invariant with respect to the differential operatr (i.H")o — (i+H")o,
which is induced by the covariant derivativg, is a regular singula€{#}[t1]-
module; it is called the Gaul3—Manin connection [Ph1]. The mapping

Yo H"(Xoo,C)x — Go,%a(A) = s(A, )0
is injective, the image, (H" (X, C)y) is
Cy = ker(td; — o)™+ C Go.

These subspacéy, are the key to understand the structurg@fThe mapping),,
satisfies

—N
(t0p — ) 0 1hg = Pq © <%> and to, = Par1.

t: Co — Cyy1 is bijective, andg,: C, — C,_1 is bijective if « # 0. The
eigenspace§, induce the decreasirig®-filtration on Gy,

=Y citics= P citicy,

Bz agpf<a+l
= Z C{t}Cg = @ (C{t}Cg.
B>a a<fB<a+l

The ring

R=C{{g;}} = {Zalat

>0

z:czltZ il € C{t} }

>0

is the ring of microdifferential operators with constant coefficients [Ph1]. It is easy
to see that the subspacét} - C, is a freeR-module of rank dima C,, if « &€ Z 0.
The subspac¥> ! is a freeR-module of rank,

vel= @ R-Co= P cit}-C..

—1<a<0 —1<a<0

The mapping®., —1 < a < 0, are put together to give an isomorphism

v= P ot H'(Xx,0) = P Ca

—1<a<0 —1<a<0

of vector spaces. We use the structurd’af-* as R-module, the isomorphism,
and the bilinear fornf on H" (X, C) to define a pairing oy >—1,
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DEFINITION 4.1. The pairingPs: V"1 x V>-1 5 R. 8t |s deflned by the
following properties. Lety, 8 € (=1,0],a € Cy, b € Cs, g1(3;1), 92(0;%) € R,
and

Ps(a,b) =0 ifa+p8¢z,

Ps(a,b) = oS ) 0) 0t fa g -1
Ps(a,b) = sy S @072 0) 02 = =0,

Ps(91(07 Y a, g2(071)b) = g1(0; M) g2(—0; 1) Ps(a,b).

Pé_ )isthe part ofPg in <C-8; ,i.6.Ps(a,b) = 30/5q Pé_l)(a,b) andPé_l)(a, b) €
c-o7.
LEMMA 4.2.
() Ps:Coy xCz = 0 ifa+p8 ¢ 7Z, o, > -1, Ps:Cy xCsz — C-
8{0‘_/3_2 is a perfect pairingifc + 8 € Z, o, 8 > —1.
(ii) Péfl) is (—1)"+1*+-symmetric.
(iii) [t, Ps(a,b)] = Ps(ta,b) — Ps(a,tb),i.e

(1= )PV (a,b) - 07 = P (ta,0) — S (a, th).
Proof. (i) and (ii) follow from Definition 4.1; (iii) follows with an easy calcu-
lation from (t0; — a) 0 ¥ = 1 © (—N/2m1). O

Remark.Ps is the restriction of K. Saito’s higher residue pairing [SK1] [SK2]
to V>~1. This follows, because the residue pairing satisfies analogous properties to
4.1,4.2,and 4.4 and also induces a polarization of the mixed Hodge structure [SM1]
Section 2. This residue pairing is defined on the Gauf3—Manin s;(gfy%ﬁ]l Ox)o
[SM1] Section 2. The spacé> ! is canonically embedded in the GauR—Manin
system. But we prefer the more elementary approach with Gauf3—Manin connection
Go, Definition 4.1, Lemma 4.2, and Proposition 4.4.

If w € Q% is a holomorphig(n + 1)-form, then the Gelfand—Leray form
w/df]|x, gives a holomorphic sectiofjw](t) in the cohomology bundI&™,

4ﬂm={%

For anyw € Q”“ the germs|w]o € (1. H")o of the sections|w](¢) is in Go [Br]
and even in/ >~ g [Ma]. The kernel of the mappin@}Jrl V>l w r—) s[wo
is df A dQ% 4 [Ma]. The Brieskorn latticefly Q”YJrol/ df A dQ% - will be
identified with its image i/ > 1.

Xt] € H"(X;,C), te T
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PROPOSITION 4.3.
() C{t}[t™1] - Hf = Go, H{ V>t
(i) tHy C Hy, Hy is afreeC{t}-module of ranku.
(i) oy *HY c HY, HY is afreeR-module of rank..
Proof.
(i) [Br] and [Ma].

(i) follows from (i) andt - s[w]o = s[fw]o.
(iii) follows from (i) and 9;*s[ dnlo = s[df A no for n € Q% , [Br]. O

The Grothendieck residue on the Jacobi algebra induces a nondegenerate pairing
Res on Q) / df A Q% o = Hy /0, *Hg [SK1] [SK2] [Vad].

PROPOSITION 4.4.

() Ps(HY HY) C R-0;7" Y ie. PCD(HY, HY) = 0if 1 <1 < .
(i) Pé._n_l)(s[wl]o, S[u)z]o) = Re%(wl,wz) . 8,5_”_1 if wy,wy € Qi{,—j—ol.
Proof. Statements of this type can be found in [SM1] 2.7. But they are not
specific about the constants in the Definition 4.Pgf Explicit calculations which
take into account all the constants can be found in [Va4] Section 3.3. Varchenko
uses a projective fibratiolr’ — 7" like the one which we used to defirfein
Section 3. He gives results on the sections in the bupigle, P"(Y;) and on the

pairinggy- in P™(Y:). One has to translate these results into statementgjcand
Pg and calculate all the constants in [Va4] Section 3.3. That gives (i) and ().

COROLLARY 4.5.

(i) Hy isisotropic of maximal size with respect to the antisymmetric bilinear form
P, e P (h, HY) =0 <= h e H}.
(i) HY > vl dmHAY/V* L = Ldimv>-1/yn-L

Proof.

(i) This follows easily fromP$ ™™ (HY, HY) = 0 (4.4(i)) and from the fact that
Pé_”_l) = Reg - 9, "' is well-defined and nondegenerate B/, * HY.

(i) P (V> vnel) = 0 (4.2()), HY ¢ V>~ (4.3()), and (i) implyHY >
vm~1and

HY = (Hgm P Ca) oVt

—1<a<n—1
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Now P;") is nondegenerate orP_;.nc,_1Ca (4.2()), and H{ N
@D _1<a<n—1Ca is a maximal isotropic subspace. O

Varchenko [Val] used the Gaul3B—Manin connection and the Brieskorn lattice to
construct a mixed Hodge structure 8% (X, C). His construction was modified
later [Ph2] [SchSt] (cf. [SM1]) to obtain Steenbrink’s [St] mixed Hodge structure.
The modified version can be given as follows.

If a subspacé c V>~1satisfiesC{t}[t~1]- K = Goandd; 'K c K, thenkK
induces a decreasing filtratidrf, on H" (X, C), which is invariant with respect
to Mg, by

FRH" (Xoo, O = 9 (VMO K + V70 /V>),
o € (_1, 0]’ e 2Zmio — )

PROPOSITION 4'6F.6’ is Steenbrink’s Hodge filtratiof™.

Remark.Now N (F?) C FP~followsfromtH{ C HJ,andS(FP, Fr+l-r) =
00NH"(X )21 andS(FP, F*+27P) = 0onH"™(X )1 follow from Ps(H{, HY) C
R-o7" L.

Proposition 4.6 motivates the definition of the spectral pairs [St] [AGV]. These
are equivalentto the Hodge numb¢f§ ofthe PMHS o™ (X ), but they reflect

better the embedding{ C Go. They areu pairs(«, ) € Q x Z with multiplicities
d(a,1), SO

Spp(f) = Zd(e, 1) (e, 1) € Z[Q x Z],
d(a,1) = dim GGV H" (X, C),  fore 2me = \ X # 1,
d(a,1) = dimGry “GrY H" (X, C)1  for e 2™ =1,

They satisfy the symmetries (any two of the symmetries determine the third)

d(a,l) = d(n—1—a,2n —1),
dla,l) = d2n—1—-1—a,l),
dla,l) = dla—n+1,2n —1).

This follows from the PMHS. But, in fact, the first symmetry follows already from
Proposition 4.4, in the spirit and as an extension of Corollary 4.5. Together with
V>"1 5 HY, itimpliesd(a,l) = 0if a ¢ (—1,n), so (again)iy > V"1, and
Frtl = 0, F"H"(X,C); = 0. The factN"*! = 0 impliesd(a,l) = O if

[ ¢ [0, 2n]. If one forgets the second entries and the weight filtration, one obtains
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the spectral numberg,rational numbers: with multiplicities d(«),
Sp(f) = Zd(a)(e) € Z[d,
d(a) =dimGH M H" (X ), if A =e 2mio
= dim G H{ — dim G0, *H{.
They satisfy the symmet(a) = d(n — 1 — «).

PROPOSITION 4.7 ([Va2])The spectral pairs are constant withinzaconstant
family of singularities.

Thus the PMHS’s of the singularities ingaconstant family are contained in
the same classifying spaé®yys. We have a period mapping from the parameter
space of the,-constant family to the quotiedpyns/ Gz, which is locally liftable
to Dpymus. But the discussion in Section 6 will show that this period mapping
often is not good enough for Torelli type questions. One loses information if one
considers only;, and GV HY instead offf}.

5. Classifying Spaces for Brieskorn Lattices

In this section, a classifying spad®s; for Brieskorn lattices with fixed spectral
pairs will be constructed. This is the technical center piece of the paper.

The canonical projectio®g. — Dpmus Will turn out to be a locally trivial
bundle with fibresc™et just as the bundl®pyHs — Dyyrim. The similarity with
Dpwmus is quite strong:Dpwns is the classifying space for the Hodge filtrations,
Dyrim can be seen as the classifying space for the Hodge filtrafid@s!" on the
guotients of the weight filtratio)g_ will be the classifying space for the Brieskorn
lattices inGo, Dpmus can be seen as the classifying space for the quotiemt&fgr
with respect to thé’ *-filtration.

But there is no transitive group action @, present. The conditions for the
Brieskorn lattices, which have to be controlled, are more involved than those for
the PMHS's.

The following results can be seen as a continuation of the discussion of the
structure of the Brieskorn lattice in [SM1] Section 3. The existence of basé§ of
with very special properties is one of the main results of that paper. A more explicit
and refined version of the construction of such bases is given in Proposition 5.1
and Lemma 5.2, the analysis in 5.3-5.6 goes beyond [SM1].

We fix several data of a singularity, which were considered in Sections 3 and 4
and which are locally constant or canonically isomorphiginonstant families:
the cohomologyH™ (X, Z) with M, N, S on H" (X, Q), the Gaul3—Manin
connectiorgo O V>"twith ¢, 9, V', V>, C,, Ps, and the spectral pairs. These
data determine classifying spacBsmus and Dpuns. The 1 spectral numbers
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will be indexed such that; < az < --- < «y. Because of the symmetry, they
satisfya; + o,+1-; = n — 1. Recall from Section 4 that any subspace- V> 1
satisfyingd; 'K C K induces a decreasing filtratidf. on H" (X, C), which

is invariant with respect td/,, by

F[p}Hn(Xoo,(C))\ = w;l(Gr%/atnpr), a € (-1,0], g2mio _

A classifying space for Brieskorn lattices should consist of subspaocesy > 1
having the following properties:

() 0, 'K C K,
(i) Fi € Dpmns,
(i) Ff € Dpwhs,
(i) tK C K,
(v) P\ K x K »0fori<l<n
(i) and (i) (resp. (i) and (iij) imply thatK is a freeR-module (respC{t¢}-module)
of rank .. We define classifying spaces for Brieskorn lattices,

Dg. = {K c V>~ | K satisfieqi), (ii), (iii ), (iv)},
Dg. = {K c V>1| K satisfie(i), (i)', (i), (iv)},

the canonical projectiong,: Dg. — Dpmns isS the restriction of the projection
BL: DL — Dpmusto Dpi = 7g (DpmHs)-

Remarks(a) The following remark is clear from the definition, but useful: If
K1, K, ¢ V>~ are subspaces such th‘iﬁlKi C K;, i =1,2, then GfF K1 =
Gy Ky forany a <= F' —F'

(b) M. Saito [SM2] (2. 9) con5|ders two larger classifying spaces

L(G) = {K c V>71| K > V"1} (a union of Grassmann manifolds)
L(G) = {K c V>~ | Gr¢ has the right dimension for afl,

andK satisfieq(i) and(iii ) },

soDg. C L(G) C L(G)'. HereL(G) is not only a locally closed analytic subspace
of the manifoldL(G)’ [SM2] (2.9), but satisfies properties similar to thoselig
in Theorem 5.6. It is a holomorphic locally trivial fibre bundle with affine fibres
and smooth basgFy | K € L(G)}. But, as condition (iv) is not used, this base is
larger thanDpmus and the dimension of the fibres is larger thsg, .

The choice of elements, ..., 5, as in Proposition 5.1 is essential for the whole
Section 5.

PROPOSITION 5.1Let F'* € Dpyps. There existelements € Cy, i = 1, ..., 1
with the properties
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(@) s1,...,s, project onto aC-basis of ;_,., G K/Gre9; 1K for (one or
equivalently) any such thaw, 'K ¢ K andFj, = F*.
(B) su+1:=0; thereexistsamap: {1,...,u} — {1,..., pu, px+ 1} with

(t— (i + 107 )si = s,5)-

() There exists an involutior: {1,...,u} — {1,..., u} with x(i
if ; # 2(n — 1) and k(i) = p+1—iork(i) =iif o =
Ps(siy85) = 6(i)j - 0, "

=pn+1-
(n—1) and

r\)ll—\\-/

Remarks(i) Condition(«) is the most simple to obtain and the mostimportant.
It implies

GOl K = @ C-s;.
ai—p;};,psc}

Condition(a) corresponds to the notion of an opposite filtration in [SM1] Section 3.
(i) Condition (3) is the next important. But without loosing too much, one
could replace it by the weaker condition

t—(i+10, Nsie P C-sy

; =a;+1

Together with(«), that corresponds to the notion of an opposite (B)-filtration in
[SM1] Section 3. With the weaker condition instead 8§, the involutions in ()
can be chosen aqi) = p + 1 — i for anys.

Proof of Proposition 5.1t will suffice to prove the existence of, ..., s, for
one filtration F'* € Dpyus: anyg € G induces an automorphism @h, which
mapssy, . . . , s, to elements with the same propert{g$ and(-y) and the analogous
property(a ) for g(F*) € Dpwmus. The groupGe acts transitively oDpyys.

So, letF* € Dpyus. The proof uses Deligne’s Hodge Decompositiéd and
a version of Lemma 2.3, which takes into account the semisimpleMpadf the
monodromy.

Some notationlf X is an eigenvalue oM/, thena denotes the number such
thate?2me = )\ o € (—1,0,andm :=nif A#1,m:=n+1if A = 1.

Let 15 = @,(f5)» be the decomposition into eigenspacesif. The
cohomologyH™ (X, C) decomposes intll ™ (X, C) = @, , , » N'(I?)r. We

define a mapping: H"(X,C) — @_KknGr‘ﬁ/K for K asin(«) by

E|N(IEY s =0 0 gpa | NU(IE),.
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The composition oE with the canonical projection

P Gk P GnK/GHI K

—1<8<n —1<f8<n

is an isomorphism. Any union of bases of the subspaﬁéig’q)A maps undeg
to a set of elements which satisfy conditign). Now observe
~1 —k —k-1 -N
(= (a4 k+ 20 00 0 ga =0 oo (5 )
to see that any union of bases of the primitive subspa&g9 , together with all
nonvanishing images undér N/2wi) maps undeE to a set of elements which
satisfy(«) and(3).

To also obtair{~), we will choose bases of the primitive subspa@g¥'), with
good properties with respect t® and apply= to them and to all nonvanishing
images undef—N/27i).

In the decomposition off*(X ,, C), all subspaces except one are orthogonal
to N*(I57) with respect to5; the subspace¥*(15*), and NP4~ ([¢ 7)1 are
dual (Lemma 2.3). The pairing

1. (—1)p-(mmg <0, <_N)p+qm 0> (I x (I§7)x = C

(2mi)™ 2mi

is a perfect pairing. Because of

—-N p+qg—m
(_1)p_(m_n)5 (UL (2—m> Uz)

—N\Pta—m
— (_1)(1—(m—n)S (Uz, (2—7m> vl>

for vy € (IF7)», vo € (I§")x, we obtain the same pairing if we exchar(dg”?)
and(Ig")x. If (15%)x # (1) we choose any two bases @f?) and (13")x
which are dual with respect to this pairingpl= ¢ and\ € {+1} we can choose
either an orthonormal basis Of)"”) .1 with respect to this (symmetric) pairing, or

a basis of(I{") 11 such that each element of the basis is dual to another element
of the basis — except for one, which is selfdual, if di§t’) .1 is odd.

The union of such bases of the subspd¢g$) , together with all nonvanishing
images under N/2wi maps undeE to a set of elements, which satisly), (3),
and(+y) if they are indexed properly. This follows from the definition of the pairing
PsonV>~1 Here it is useful to observe that

Ps(a, (t — (8+ 1)9; Y)b)
= Ps((t — (@ + 197 Ha,b) if a € Cy,b € Cp,
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which follows from Lemma 4.2(iii) and which is a translationf®e of the fact that
N is an infinitesimal isometry with respect f O

The next lemma is essentially a translation of part of [SM1] 3.4 into the more
explicit data which are used here.

LEMMA 5.2. SupposeF® € Dpynsand elementsy, . .. , 5, Satisfying condition
(a) of 5.1are given. Then forank c V>~1suchthav, 'K c K andF}, = F*
and for anyi € {1,...,u}, the intersectior(si +> i»  C- afsj> NK

p2laj—p>a;

consists of a single elemefn,

.. (p) .
h; = s; + E Cij - s;.
J.p
p?l,aj—p>ai

The elements;, i = 1, ..., u, form anR-basis ofK .

_ Proof. We start with elementd; € (s; + V>%) N K. Any such elements
ha,...,h, form anR-basis ofK. Condition(«) implies

GryK= P C-dHsiCC=CGKa P s

i,p i,p
p<0,a; —p=«a p>la;,—p=a

For anyi, we can add a suitable finite linear combination{6fh; | o;; — p >
o, p < 0} to h; such that the sur; is

f:ZiE S; + EB (C-aij-f—Vn_l NnK.

J»p
p2laj—p>a;

As K D V"1 (because of’s- = F*), there exists an elemeht as claimed. The
uniqueness can be seen atonce if one looks at the difference of two such elements.

In the situation of Lemma 5.2 we seg-’) =0fori,j € {1,...,u}t,p > 1,if

a; —p < ;. We obtain an infinite sequence ofx u-matrices(cg.’))ij of which
only the firstn can have entrieg: 0, because;; — p > «; impliesp < n.
There is a canonicdl™*-action ongGg, given by

c* Zaa = ZcordM'(*a) coq ifoq€C,, ceC,

ordy := min (I | M! = id) = gcd denominators ofiy, . . ., o).
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In generalcx is not an automorphism of the Gaulz—Manin connec@ignbut it
satisfies

(%) 0 9y = O . G, 0 (ex),

(cx) ot = ¢ N . {0 (cx),

Ps(*_l) (cxa, cxb) = (Ordr(=1+2) 'Ps(“_l) (a,b), ifa,beV>h
The induced action

+K ={cxo |0 €K}, ceC, KcV>1
on the set of subsets &> ! satisfies

e = Fr 0, Y (exK) = ex(9; 1K), t - (exK) = ex(t K),
P{ Y (esK,exK) =0 if PUY(K,K) = 0.

The sets{K c V>~1| 97K C K,Fj = F*} andig(F*) for fixed F* €
Dpnmns are invariant under thi€* -action.

COROLLARY 5.3.SupposeF® € Dpuysand elementsy, . . ., s, satisfying con-
dition («) of 5.1 are given, and

Nl = Ii{(zajap) | 1< 'La] W, pz 17 a4 —-p> a’i}'

Lemmab.2 yields a mapping
{(KcV> ok CK, Ff =F'} - C™ K s (¢ aj —p > ).

This mapping is bijective. It induces a canonical affine algebraic structure on the
set{ K c V>~1| 9, 'K c K, F§, = F*}. TheC*-action on this affine algebraic
space has negative weighisdy, - (o; — (o; — p)).

Proof. Because of conditiofr), the elements; +Ej,pcg.’) Osji=1,..., 1,

generate a fre&k-module of ranky for any choice of(cg-’)|1 <47 <y, p >
1, aj —p > o) € CNr. With Lemma 5.2, this yields the isomorphisma: . This
isomorphism induces @ -action onC¥* with weight ordy - (c; — (a; — p)) < O

for the coordinateg-’ ). O

By Corollary 5.3 the spaceK c V>~19, 'K C K, Fy = F*} for fixed F* €
Dpwus is equipped with a system of coordinates. The equations for the conditions
tK C K andPs(K,K) C R-9;" in these coordinates are not independent of
one another. The equations foK C K will be given in Proposition 5.4 and in
Proposition 5.5 additional independent equationg. fir ¢ K and Ps(K, K) C

R - 97" Y will be given.
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PROPOSITION 5.4Suppose, the following are given: A subspateC y>-1
with 0, 1K C K, F. € Dpyns; elementssy, ..., s, andamap: {1,...,u} —

{1,..., ¢ + 1}, which satisfy condition&x) and(3) of 5.1, coefﬁcients:z(-;’) and
elements; as in 5.2. Thert K C K holds if and only if fopp > 2

A on =) ==l + i+ oy~ )i

(Here the first summanelc( _1() 5 is meaningful only it € v({1, ..., x}) and has
to be omitted otherwise.) Hence, #fK C K, then the coefﬁment&,@ determine
all the higher coefﬁuents(J),p 2, recursively. Furthermore, then

thi = (i + D07 hi + by + 3 7 (0 — 1= aq)hy.

Proof. K = @, R h;. The conditiont K C K is equivalentta h; € K for
alli=1,...,pu

thi = (0 + D7 si + s, + Y el (0 —p + D s + 0 s,5)
= ( + 18, i + gy + 3 7 (0 — 1— )by +
j
+ e oy —p— @) sy + D A sy —
i Jp

p>2
Zc 8’03] ch)(aj—l—ai)-z:cﬁ)afsk
J k.p

Jp
The sum of the last four terms vanishes if and only/if € K. This yields the
recursive formulas for the coefﬁciemg),p > 2, and the formula fot h;. O

Remark.The core of [SM1] Section 3 consists of the choice of elements
51,...,8u, Which satisfy condition$a) and (3) of 5.1 (or («) and the weaker
condition (t — (c; + 1)9;71)s; € Da;—a; +1C - 55, see the remark after 5.1), the
existence and uniqueness of eleméntas in 5.2, and the identity

thi € (o + 1) thi+ > C-hy

Ctj*l}Oéi
for K suchthat’y = F*, 0, 'K C K, tK C K.

PROPOSITION 5.5Suppose, the following are given: A subspdtec V>—1
such thatd; 'K c K, Fy. € Dpups, t K C K; elementssy, ..., s, and maps

v, k Which satisfy(«), (5), and(vy) of 5.1; coeff|C|ent9cEj) and elements; as in
5.2. Then
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(i) PS™(hi, hy) =Oforall i,j < P{Y(K,K)=0forall 1<I<n
(i) PS )(hz,hj) =0 = Y =¥

iw(j) — Tik(E)
Proof. (i)

CLAIM. Letl < n. ThenP{™ (hy, hy) = Ofor all i, j impliesPS™ Y (b, hj) =
0 for all 4, j.

The claim and the assumptiﬂ_")(hi, h;) = 0 for all4, j yield inductively
PS Y (hiyhj) =0 forall i,j € {1,...,u}, L€ {1,...,n}.
This impIiesPS(fl) (K,K) =0forl € {1,...,n} because of th&-sesquilinearity.

Proof of the claim.If o; + a; > 1 -3, thenPs(f”l)(hi,hj) = 0 because
of Ps: Co x Cg = C- 0772 If a; + o = 1 — 3, thenP{™ D (g, 1) =
Pé‘“l)(si, s;) = 0, becaus®s(s;, s;) = Pé_"_l)(si, sj) € C-9; ™1 (condition
) If o + j <1 — 3, then

(1= )07 P Y (i 1j)
= [t. PY Y (i 1))
= P (t iy hy) — PSD (hayt hy)
= P (0 + 107 i, hy) — PSV (hay (0 + 107 hy)
= ( + oy + 207 PV (i hy),

so, also in this casé’é_”l)(hi, h;) = 0. Here we have used the formula; €
(o +1)0; h; + Y aj—13qa; C - hj from 5.4 and the hypotheslgﬁ*l)(hi, hj) = 0.

Proof. (ii)
P§ ™ (hi, hi)

= Pé_n) (si +> cg-))afsj Skt Y c,(fﬁagsl)

Jp lq

=0 - PS (Zc” s],sk> (=0;) - Pg "~ b (sZ,chl sl>
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(L 1
=0, (an)(k) - Cgm)(i))' O

THEOREM 5.6.7g,: Dg. — Dpmusis a locally trivial holomorphic bundle with
fibres isomorphic ta@Vet |

NeL = #{(4,) [1<i<j<p, o +a; <n-—2}
- Y de )+ > Sd(e)(d(a) +1) < 242,
at+pf<n—2,a<p 2a<n—2

hered(«) is the multiplicity ofa. as spectral number. There is a canonicl-
action on the fibres with negative weighitsda; - (o; + a; —n+2) | 1 < i@ <
j < pya; + a; < n—2). Thus there is a canonical zero section. Ttieaction
commutes with the action 6f- on Dg, .

meL: DpL — Dpmusis the restriction ofig to Dg. = ﬁgl_l(DpMHs).

Proof. For fixed F'®* € Dpuns, 5.4 and 5.5 show that a coordinate system of
g (F*) is given by thosegi)(j) suchthat < j anday;) —1> «;. Thusig (F*)
is isomorphic tacMet |

NgL = ﬂ{(Z .7) |1<Z<] < My an(])_l>az}
= #{(6,7) [1<i<j<p, ot aj <n—2}
= Yoo da)-dB)+ Y zd()(de) +1)
at+pf<n—2,a<3 2a<n—2
1,2
< K

here we usedv, ;) + a; = n—1 3, d(a) = p, dla) = dn—-1- a).
With respect to these coordinates, te-action on7g'(F*) has the weights
ordys - (a; — (a(jy — 1)) = ordy - (; + a; —n +2) < 0. The groupGc acts
onGo O V>1, on Dg, and onDpyns. By definition, theC*-action onDg.
commutes with the action @ on Dg, .

If s1,...,s, satisfy (a),(8),(y) of 5.1 for F*, then for anyg € G the
imageSg(sl) ..,g(s”) satisfy(«), (8), (y) of 5.1 forg(F*). Thus the bijection
g: gt (F*) — g (g(F*)) respects the affine algebraic and the holomorphic
structure of these fibres é@f, . Any local section of the bundl€¢c — G¢ - F* =
Dpmus induces a local trivialisation of the bundig, aroundF®. O

COROLLARY 5.7.The groupG acts properly discontinuously dbg, . The quo-
tient Dg /Gz is a normal complex space and has at most quotient singularities.
Proof. Proposition 3.6(b) and Theorem 5.6. O

Remark.If F* € Dpyus then the grougZr N Stab(F'*) is compact because
of Lemma 2.3, and the grou; N Stab(F*) is finite. The projectioDg /G7z —
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Dpmns/ Gz is alocally trivial bundle if and only if the images 6f,N Stab(F*) —
Aut(rg(F*)) are isomorphic for alF’* € Dpyns. For example, this is satisfied
for E30, Z10,W1,0,U1p, but not fOI’Q27o, S1,0 (Sect. 6).

6. Period Mappings, Examples

The elements aDg| /G are equivalence classes of subspacé€p ofith respect to

the operation o&7z on Gp. The equivalence class ibg_ /G of a Brieskorn lattice

H{ = H{(f)isaninvariant of the right equivalence clasg o#Ve call this invariant
BL(f). The spacég/Gz is a moduli space for such invariants. There is another
description of the elements @fg_/G7: We can considef as the automorphism
group of the tupld H" (X, Z), Ms, N, S, 1, Go) and Dg_/G7 as the set of
isomorphism classes of tupléB™ (X, %), M,, N, S, ¥, Go, K C Go).

The invariant BL was defined and studied first in [Hel] [He2], under the name
LBL and together with two weaker invariants, one of which is the Picard—Fuchs
singularity [AGV]. It contains very fine analytic information and is a good can-
didate for Torelli theorems for hypersurface singularities. In [He2] the following
conjecture is formulated.

CONJECTURE.The invariantBL ( f) of a hypersurface singularity determines
the right equivalence class ¢t

In [He2] [He3] global Torelli theorems for several families of singularities are
proved, which confirm this conjecture.

THEOREM 6.1 ([He2] [He3]).The invariantB L determines the right equivalence
class for

(i) all unimodal singularities,
(i) all bimodal singularities, possibly with the exception of the subsefigs;,
S1,10k> Sg,lok (k > 1) (these cases are opgn
(iii) all semiquasihomogeneous singularities with weigBtst, 1, £),
(iv) all semiquasihomogeneous singularities with weigitsi, ..., 1/a,) and
pairwise coprimeu;.

After some general remarks about the period mapping, these families will be
discussed in some detail.

Apart from these global Torelli theorems, the conjecture is confirmed by an
infinitesimal Torelli theorem for all hypersurface singularities [SM2] (3.1 and 3.2).
Let fo be a hypersurface singularity agda sufficiently small open subset of the
pu-constant stratum in some semiuniversal unfoldinggfWithin this p-constant
stratum, the topological data like Milnor lattice and Seifert form and also the
spectral pairs are constant. We obtain a period mapping§ — Dg,, s — H{(f)
for sufficiently smallS. The period mappin@ is holomorphic.
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THEOREM 6.2 ([SM2]).

(a) If S'is smooth the®: S — Dg_ is an immersion.
(b) Even ifS is not smooth any fibre @# is finite.

In the case of semiquasihomogeneous singularities, we know more Siznd
the period mapping. Let fo be a quasihomogeneous singularity with weights
(wo,...,wy) and degree 1. TheWpmys = Dprim and Npuus = 0, because
the monodromy is finite. Th@-constant stratun$ in a suitable semiuniversal
unfolding is a producs = S° x S~ with S~ = Cc4M S~ Here

fs = f(soyo) + ZS;dl y S = (80,3_) — (SO’ (S;)l) c SO % S_,

f(s0,0) Is quasihomogeneous, thigare the monomials of degreel in a monomial
basis of the Jacobi algebra, and [Va2]

dimS® =d(ea +1), dimS™ = > d(a),
a>a1+1

here a1 = —1 4 > w; is the smallest spectral number. Setting
degs, = ordy - (1 — degd;) € Z o,
ordy; = min (I | M' = id) = gcd (denominators ofu, . . ., wy,),

we obtain aC*-action with negative weights on the fibr8s of the trivial bundle
59 x S~ — S9. We also have @&*-action with negative weights on the fibres of
the bundlerg,: Dg. — Dpmus (Prop. 5.5). In Proposition 6.3° is supposed to
be sufficiently small.

PROPOSITION 6.3In the case of semiquasihomogeneous singularities, the peri-
od mappingd: S — Dg is a fibre preserving*-equivariant embedding of the
bundleS — SY into the bundleDg, — Dpuns.

The proposition follows from [He2] (2.4). There a monomial differential form
w = ( monomial inzo, ...,z,) - dzg A ... A dz, and its values

s[wlo(s% s7) € HY (frs0,5-)) = Q" /df 0 -y A dQ* T C V>
for fixed s° and varyings~ are considered. Then (cf. [Br])
s[w]o(s%,0) € Co, Wherea = deg,(monomia) — 1+ Sw;;

s[w]o(s% s7) has only eigenvalue parts itz for 3 > «; the eigenvalue part in
C, is constant= s[w]o(s°, 0); the coefficients of the higher eigenvalue parts are
quasihomogeneous polynomials(i] ); such that

slwlo(s%, cxs ™) = @M. ek s[w]o(s%,57).
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The proof uses formulas for the derivativso, - in the GauR—Manin connection

and a power series ansatz for the holomorphlic coefficients of the eigenvalue parts.
We obtainHg (f(s0,c4s-)) = c* Hg(f(s0,,-)) and (together with 6.2) Proposition
6.3.

This shows that very often the PMHS of a singularity is not good enough
for Torelli theorems. All the semiquasihomogeneous singularities with the same
guasihomogeneous part have the same PMHS. Probably, the simple elliptic and the
hyperbolic singularities are the only singularities where the PMHS determines the
right equivalence class.

Now we come to the discussion of the families of singularities which are listed
in Theorem 6.1. The following table gives the dimensions Hirfrmodality),

dim Dyyrim, Npmus, and Vg . In the case of semiquasihomogeneous singularities,
we write dimS = dim S° 4 dim 5.

Table I.

Singularities dimS dim Dprim NpmHs — NaL

Fs, Eq, Eg 1=1+0 1 0 0

Tpgry 3 +2+7>1 1 0 1 0

14 exceptional unimodal £0+1 O 0 1

E30, Z1,0, Q2,0, W1,0, 51,0, Ut,0 2=1+1 1 0 1

14 exceptional bimodal 2042 O 0 2

8 bimodal series 2 Oorl 0 =2
semigh. with weight¢1, 2, 1, 1) 5=4+1 4 0 1
semigh. with weight¢1/ao, . ..,1/a,) dimS=0+dimS~|0 O > dimS~™

and pairwise coprime;

Table | shows that any level of the double fibratibg. — DpmHs — Dprim €an
contain geometric information. disi = dim Dg_ for 6 of the 8 listed classes.
That is not typical. In general, one can expect that Bign is much bigger than
the dimension of th@-constant stratum, and that difyim, NpmHs, and N are
not 0.

With the exception of the semiquasihomogeneous singularities with weights
(3, 3,1, 2), the proof of the global Torelli theorems proceeds in the following
way. First, from Arnold’s lists families are chosen which contain representatives
of each right equivalence class in tpehomotopy class. The base spaceare
not small. Then the (in most cases) many-valued period mappirg Dg_ IS
computed. Finally the action affz on Dg is determined and compared with
the right equivalence relation i§, with the result that the induced mapping
S/right equivalence— Dg /G is injective. Often, controlling the action ¢f,
is most difficult. But also the computation of the period mapping is easy only for
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semiquasihomogeneous parameters. In the following the most remarkable features
of the single families are discussed.

6.1. THE SIMPLE SINGULARITIES Ay, Dy, Ex

Here the differencer, — a3 = n + 1 — 237" qw; of the largest and the smallest
spectral number is smaller than 1. THti§ = V' andDg. = DpmHs = Dprim =
{pt}. In view of Theorem 6.2, this implies that these singularities are simple.

6.2. THE SIMPLE ELLIPTIC SINGULARITIESFs, E7, Fs

[Hel] [He2], DgL = Dpmus = Dprim is isomorphic to the upper half plaie
The groupGz acts onDyyim asPSL(2, Z) acts onH. There exist Legendre normal
forms with parameter space= C — {0; 1} andS/right equivalence= S/S3,

1 1 A-1
ng{A—>>\,1—>\,— A A }

ANA=1"1-X" A

The period mapping/right equivalence— Dg| /G is an isomorphism. Every-
thing is as in the case of elliptic curves. In the case of surface singularities, the
invariant BL can be identified with the pure Hodge structure of the elliptic curve
in the minimal resolution of the singularity.

6.3. THE HYPERBOLIC SINGULARITIEST g/, = + 2+ 1 <1

[Hel] [He2], Dyrim = {pt}, Dpmms = DeL = C, Dg/Gz = C/Z = C — {0}.
There exist normal forms witly = C — {0} and S/right equivalence= C —
{0} /(e?mi/kgV(p-a.1)y The period mapping/right equivalence— Dg_ /G is an
isomorphism.

6.4. THE 14 EXCEPTIONAL UNIMODAL SINGULARITIES

[Hel] [He2], Dprim = DppHs = {pt}, Dg. = C, DBL/GZ i (C/(ezm/m> for
somem € N. There exist normal forms witl§y = C andS/right equivalence=
C — {0}/(e?™/™). The period mapping§ — Dg_ andS/right equivalence—
DgL /G, are isomorphisms.

6.5. THE 6 BIMODAL SINGULARITIES E3,0, Z1,0, @2,0, W1,0, S1,0, U1,0

[Hel] [He2], Dprim = Dpmus = H, Dp. = H x C. There exist normal forms
foos— = feoo+ s -dwith § = S%x S5~ = (C—{0;1}) x C. Here fq is
guasihomogeneous arntlis a monomial of degree- 1. Dg. and .S are vector
bundles.
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Letm be the number 9,7,6,9,6,5 fér, Z, Q, W, S, U respectively. There exist
groupsG(S), G(S°), G(Dg.), G(Dpmnus) of automorphisms of (as vector
bundle),S°, Dg, (as vector bundle), anBpyns With the properties:

S/right equivalence= S/G(S),

DgL/G7 = DgL/G(DgL),

G(S) and G(Dg_) are central extensions af(S°) and G(Dpwns) by the
cyclic group(e?™/™), which acts on the fibres of the vector bundles by multi-
plication.

The period mapping — Dg is many-valued, locally it is an isomorphism of
vector bundles, the image is the wholelof, with the exception of the fibres over
a discrete set of points dpppys.

The period mapping/right equivalence— Dg_/G7 is injective. The moduli
spaceS/right equivalences isomorphic to

C? for E,Z,U

(C—{0}) xC for W

C?/{£id} for Q

(C—{1,-1}) x C)/{£id} for S.

It is smooth forE, Z,U,W. In the case of) and S, it has anA;-singularity
at the right equivalence class gff%yo. The projectionS/right equivalence—

SO /right equivalencés a locally trivial bundle forE, Z, U, W, but not for@Q and

S. In the case of) andS, the groupGz N Stab(F*) is isomorphic to(e?/™) for
genericF*® € Dpyys, but this group has the double size for the Hodge filtration of
f%p (compare the remark atthe end of Section 5). In the case of surface singularities,

the four branches of the minimal resolution fif ; intersect the central curve in

four points with double rati(%.

For the reader who wants to check the statements on the moduli Spaglet
equivalencer who wants to know the grou@(Dg, ), here are some more details
on the group€ (Dpwns), G(S9), G(S):

G(Dpwmns) is atriangle group of typ€2, 3, 2m) for E, Z, Q, U and a triangle group
of type (2, 2m, 2m) for W, S.

G(S%) =8S3={A = N\1-X\1/\A/A-11/1-\\A-1/\} forE, ZQ,U,
GO =S ={N—=X\1-)} forWw,S.

There exists a holomorphic functien G(S°) x S° — C — {0} such that
Jv € G(S) such thais?, s7) = v(s3,55)

— 3JgeG(SY suchthat) = gs3 and(s])™ = (g, s3) - (55)™.

comp4198.tex; 7/08/1995; 8:16; v.7; p.33

https://doi.org/10.1023/A:1000638508890 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000638508890

34 CLAUS HERTLING

The groupG(S) is uniquely determined b (S°) ands.

In [He2] for some of the classds, 7, Q, U, W, S, the monomiall was badly
chosen, because it was an element of the Jacobi idefal gfor special values of
s, A better choice ofl is z%y*, z%y*, z22, y*z, 2%y*, 2%y for E,Z,Q,U,W, S
respectively, if one uses the sarfig, as in [He2] (Table I). Ther is determined

by
s \18 s \14
m()\l—>1—)\,s):<8_1> ’(s—l) ,—1,1,1, -1

for E,Z,Q,U,W,S, respectively, and

1 .
o <)\ -5 S) =712 5710 3 521 for E, Z,Q, U, respectively

6.6. THE 14 EXCEPTIONAL BIMODAL SINGULARITIES

[Hel] [He2], Dprim = Dpmus = {pt}, DeL = C?, the quotientDg, /G has a
cyclic quotient singularity,

e27riwr 0
Dg /Gy = <c2/<< 0 erive >> for somew,, ws € Q.

The period mapping§ = S~ — Dg_ andS/right equivalence— Dg /G are
isomorphisms.

6.7. THE 8 BIMODAL SERIES

[Hel] [He2], here letn = 18,14,12,12,12,10,10,9 for E3p, Z1p, Q2.p, Wip,
Wﬂp, S1.p, Sip, Uiy (p > 1), respectively.

Dprim = Dpwmus = {pt}, Dg. = ClP/™+2 for the singularities withp #
O(modm),

Dprim = Dpwns = H, Dgi = Hx CP/™+2 for the subseries with = 0(modm).

There exist normal forms with = (C — {0}) x C.

Forp # 0( modm) the following holds: The image of the (many-valued) period
mappingS — Dg_ is invariant underGz. The period mapping/right equi-
valence— Dg/Gz is injective.S/right equivalenceés the quotient of5 by some
finite group, which acts on the factoes— {0} andC of S = (C — {0}) x C by
multiplication with unit roots. This group is cyclic for all series with the exception
of the subserie,.
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Forp = 0(mod m) the following holds: The image of the (many-valued) period
mappingS — Dg is contained in one fibregl_l(F(;) of mg.: DL — Dpmus and
is invariant undelG; N Stab(Fy). Gz acts onDpuns = H like a triangle group
and onDg_ like a central extension of this triangle group by some finite cyclic
group, which acts on the fibres o, . For nearly all fibresrgl_l(F'), the stabilizer
groupGz N Stab(F'*) is isomorphic to this finite group, but for some exceptional
fibres the groupgsz N Stab(F*) might be larger. Unfortunately, it is not clear,
in which fibre the imageb(S) of the period mapping is contained. The period
mappingS/right equivalence— Dg /G is injective only if this fibre is not one
of the exceptional fibres with larger stabilizer group. This is the reason for the
uncertainty, whether the invariant BL determines the right equivalence class for
some of the subseries with= 0(modm).

6.8. THE SEMIQUASIHOMOGENEOUS SINGULARITIES WITH WEIGHTS$:, 3,2, 2)
[He3], the spac@yim = Dpuns = {2z € C* | |2| < 1} is isomorphic to the
classifying space of polarized pure Hodge structure&/80X ., €)1, which are
invariant under the monodromy.

Any homogeneous singularity with weiglfts 2, 1, ) is the cone overasmooth
cubic in P3. The coarse moduli spack!cuics for smooth cubics irP? is four
dimensional, an affine variety, and it coincides with the coarse moduli space for the
homogeneous singularities with weigltts 1, £, 1) up to right equivalence. The
period mappingM ubics = Dpmns/ Gz is an open embedding. It yields a Torelli
theorem for smooth cubics iP® in terms of some pure Hodge structure. This is
remarkable, because the Hodge structures on the cohomology groups of the smooth
cubics are trivial.

The proof of this Torelli theorem for the homogeneous singularities does not
use some global family and a many-valued period mapping as in all other cases.
The ingredients are [He3] a projective closur@frof the Milnor fibres of a homo-
geneous singularity, an exact sequence of mixed Hodge structures of Steenbrink,
the global Torelli theorem for cubics iPf* of Tjurin, Clemens and Griffiths, and
the cancellation property of space germs of Hauser ailiieki

There also exist semihomogeneous singularities with weights, 3, 1). As
before Proposition 6.3, locally one can choose-eonstant stratum of the form
S = S%x 8~ = 8% x ¢, whereS~ = C gives the one semihomogeneous
parameter. The classifying spabg,. = Dpmns x C is a vector bundle with one
dimensional fibre, too. For sufficiently smaiP the period mapping — Dg_
is an open embedding of vector bundles. The proof of the global Torelli theorem
for semihomogeneous singularities uses that for homogeneous singularities, this
period mapping, and some statement on the actigryain the fibres of the bundle
DgL — DpmHs.
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6.9. BRIESKORN-PHAM SINGULARITIES WITH PAIRWISE COPRIME EXPONENTS

[He3], any singularity which ig;-homotopic to a Brieskorn—Pham singularity is
right equivalent to a semiguasihomogeneous singularity with weidhts, . . .,
1/ay,). If the exponents, ..., a, are pairwise coprime, there exists a normal
form with parameter spacé = S— = C9™S and aC*-action with negative
weights onS' such thatS/right equivalence= S/(€#/%), a = ag - ... a,. All
eigenspaces of the monodromy are one-dimensiondlpg@ = DpmHs = {pt}.
Also the classifying spac®g, = CMeL is equipped with som&*-action with
negative weights. The period mappifg— Dg_ is aC*-equivariant embedding.
The induced period mappiryright equivalence— Dg| /G is injective, because
Dg /Gz = Dg/(€27/). To prove this, one has to sha, = (M), which is a
consequence of the very special properties of the integral monodtériay these
singularities.

References

[AGV] Arnold, V. I, Gusein—-Zade, S. M., and Varchenko, A.I&ingularities of Differentiable
Maps Vol. Il, Birkhauser, Basle, 1988.

[Bo] Borel, A.: Introduction aux groupes arithatiques Hermann, Paris, 1969.

[Br] Brieskorn, E.: Die Monodromie der isolierten Singulati#n von HyperichenManuscrip-
ta Math.2 (1970), 103-161.

[CaKa] Cattani, E. and Kaplan, A.: Polarized mixed Hodge structures and the local monodromy of
a variation of Hodge structurvent. Math67 (1982), 101-115.

[Del] Deligne, P.Equations diférentiellesa points singuliers&guliers Lecture Notes in Math.
163, Springer, New York, 1970.

[De2] Deligne, P.: Tkorie de Hodge, IIPubl. Math. I.H.E.S40(1971), 5-57.

[Gr] Griffiths, P.: Periods of integrals on algebraic manifolds: summary of main results and open
problemsBull. Amer. Math. Socz6 (1970), 228-296.

[Hel] Hertling, C.: Analytische Invarianten bei den unimodularen und bimodularen Hyper-
flachensingulariten. Dissertation, Bonner Math. Schriften 250, Bonn, 1992.

[He2] Hertling, C.: Ein Torellisatz ifr die unimodalen und bimodularen Hypéadhen-
singulariiten,Math. Ann.302(1995), 359-394.

[He3]  Hertling. C.: Brieskorn lattices and Torelli type theorems for cubi@iand for Brieskorn-
Pham singularities with coprime exponents, will appearSmgularities, Festband in
honour to E. BrieskornBirkhauser, Basle.

[Ka] Karpishpan, Y.: Torelli theorems for singularitidayent. Math.100(1990), 97-141.

[Ma] Malgrange, B.: Inkgrales asymptotiques et monodromAan. Sci.Ecole Norm. Sup?
(1974), 405-430.

[Mi] Milnor, J.: Singular Points of Complex Hypersurface®snn. Math. Stud. 61, Princeton
University Press, 1968.

[Ph1]  Pham, F.:Singularies des systmes diférentielles de Gauss-ManirProg. Math. 2,
Birkhauser, Boston, 1979.

[Ph2]  Pham, F.: Structure de Hodge mixte asseai point critique is@, Aserisque101-102
(1983), 268-285.

[SK1] Saito, K.: The higher residue pairingég“) for a family of hypersurface singular points,
in: Singularities Proc. Sympos. Pure Math. 40.2 Amer. Math. Soc., Providence, 1983,
pp. 441-463.

comp4198.tex; 7/08/1995; 8:16; v.7; p.36

https://doi.org/10.1023/A:1000638508890 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000638508890

CLASSIFYING SPACES FOR HODGE STRUCTURES AND BRIESKORN LATTICES 37

[SK2]
[SM1]
[SM2]

[SSU]

[Schst]
[Sche]
[Schm]

[St]

[Us]

[Vai]
[Va2]
[Va3]

[Va4]

Saito, K.: Period mapping associated to a primitive foPabl. Res. Inst. Math. Sci. Kyoto
Univ. 19 (1983), 1231-1264.

Saito, Mo.: On the structure of Brieskorn latticdgn. Inst. Fourier Grenobl&9 (1989),
27-72.

Saito, Mo.: Period mapping via Brieskorn modulBsill. Soc. Math. Francd 19 (1991),
141-171.

Saito, Ma., Shimizu, Y., and Usui, S.: Supplement to “Variation of mixed Hodge structure
arising from family of logarithmic deformations II: classifying spacByke Math. J52
(1985), 529-534.

Scherk, J., and Steenbrink, J. H. M.: On the mixed Hodge structure on the cohomology of
the Milnor fibre,Math. Ann.271(1985), 641—-665.

Scherk, J.: On the monodromy theorem for isolated hypersurface singuldnitiest.
Math. 58 (1980), 289-301.

Schmid, W.: Variation of Hodge structure: The singularities of the period magdpirent.

Math. 22 (1973), 211-319.

Steenbrink, J. H. M.: Mixed Hodge structure on the vanishing cohomology, in: P. Holm
(ed.),Real and Complex Singularities (Oslo 1976jjthoff and Noordhoff, Alphen a/d
Rijn, 1977, pp. 525-562.

Usui, S.: Variation of mixed Hodge structure arising from family of logarithmic deforma-
tions II: classifying spaceuke Math. J51 (1984), 851-875.

Varchenko, A.N.: The asymptotics of holomorphic forms determine a mixed Hodge struc-
ture,Soviet Math. Dokl22 (1980), 772—-775.

Varchenko, A.N.: The complex singular index does not change along the stratum
1 =constantFunctional Anal. Appl16(1982), 1-9.

Varchenko, A.N.: A lower bound for the codimension of the strajumconstant in terms

of the mixed Hodge structur&oscow Univ. Math. Bull37 (1982), 30—33.

Varchenko, A.N.: On the local residue and the intersection form on the vanishing cohomol-
ogy, Math. USSR 12\26 (1986), 31-52.

comp4198.tex; 7/08/1995; 8:16; v.7; p.37

https://doi.org/10.1023/A:1000638508890 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000638508890

