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1. Introduction

There are many ways to look at isolated hypersurface singularities, and many
different objects which are associated to singularities. It is natural to ask which
properties of the singularities they reflect and how they vary. Many are invariants
of the �-homotopy type singularity, like the Milnor lattice, the Coxeter Dynkin
diagrams, the topological type forn 6= 2, but also the spectral pairs. Some others,
like the Tjurina number and Bernstein polynomial, are invariants of the contact
equivalence class, and can jump within a�-constant family. Most of the invariants
are of a discrete nature.

Here we want to study two nondiscrete invariants of the right equivalence class,
which vary continuously within a�-constant family. They are natural candidates
for Torelli type questions. The first is the isomorphism class of the mixed Hodge
structure of Steenbrink, the second comes from the Brieskorn lattice as a subspace of
the Gauß–Manin connection. We will give precise descriptions of these invariants,
define and analyse classifying spaces, discuss period mappings, and report on
known Torelli theorems.

If f : (C n+1;0) ! (C ;0) is a holomorphic function germ with an isolated
singularity, then the middle cohomologyHn(X1; C ) of the Milnor fibre carries a
mixed Hodge structure [St]. Within a�-constant family, the weight filtration and the
Hodge numbers are constant, and the Hodge filtration is varying holomorphically.
It turns out that the mixed Hodge structure is sensitive to some of the analytic
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2 CLAUS HERTLING

moduli in the�-constant stratum, but not to all of them. For example, in the case
of semiquasihomogeneous singularities, the mixed Hodge structure depends only
on the quasihomogeneous part of the singularity.

A better invariant for Torelli type questions is the Brieskorn latticeH 00
0 =


n+1
Cn+1 ;0=df ^d
n�1

Cn+1 ;0 [Br]. M. Saito showed that it varies holomorphically with-
in the �-constant stratum, and that it is sensitive to all of the analytic moduli
[SM1] [SM2]. So it satisfies some infinitesimal Torelli theorem. The author defined
an equivalence class BL of Brieskorn lattices, which is an invariant of the right
equivalence class of a singularity, and proved global Torelli theorems for several
�-homotopy classes of singularities [He1] [He2] [He3].

Following Varchenko [Va1] (cf. [Ph2] [SchSt] [SM1]), the Hodge filtration can
be described in terms of the Gauß–Manin connection and the Brieskorn lattice.
This shows that the Brieskorn lattice can be seen as an extension of the mixed
Hodge structure. For the analysis of Brieskorn lattice and invariant BL and for the
definition of a classifying space, it is necessary first to consider the mixed Hodge
structure.

For the classifying space of mixed Hodge structures, it is important to realize
that the mixed Hodge structure of Steenbrink is polarized. This is more or less
well known. It is reviewed in Section 3. There an explicit description is also given,
which is less well known, of the polarizing formS in terms of variation or Seifert
form.

There are several possibilities to define a polarized mixed Hodge structure
(PMHS). Steenbrink’s mixed Hodge structure is a PMHS in the sense of Schmid
([Schm] Sect. 6). In Section 2 such PMHS’s are defined and discussed from a
general viewpoint. Section 2 is of interest independently of the application to
singularities in the following chapters. A classifying spaceDPMHS for the PMHS’s
is constructed. It is a fibre bundle over a classifying spaceDprim for pure polarized
Hodge structures. A discrete groupGZ acts onDPMHS. The quotientDPMHS=GZ

is the moduli space for the isomorphism classes of PMHS’s. The main result of
Section 2 is the following.

THEOREM 1.1 (2.5+2.6).The spaceDPMHS is a complex manifold and a homo-
geneous space with respect to some real Lie group. The fibrationDPMHS! Dprim

is holomorphic and locally trivial, the fibres are isomorphic toCNPMHS for some
NPMHS2 N. The groupGZacts properly discontinuously onDPMHS.

In the case of singularities, this groupGZ is the group of all automorphisms
of the Milnor lattice, which respect the Seifert form. Then they automatically also
respect monodromy and intersection form.

In Section 4 the properties of the Gauß–Manin connection and the Brieskorn
lattice are reviewed. The presentation is as short and elementary as possible. Other,
more detailed expositions can be found in [He1] [He2] [SM1] [SM2] [SchSt] [Ka]
(Sects. 1, 2 in [Ka], see [SM2] for a critical discussion of the statements in the
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CLASSIFYING SPACES FOR HODGE STRUCTURES AND BRIESKORN LATTICES 3

following chapters of [Ka]). Just as the Brieskorn lattice can be seen as an extension
of the mixed Hodge structure, there is an extension of the polarizing formS to
the Gauß–Manin connection. In Section 4 this extension is defined and identified
with K. Saito’s higher residue pairing. This gives a more concise description of this
pairing and the relation to intersection form and Seifert form than can be found in
the literature.

Section 5 is the center piece and the most technical part of this paper. There a
classifying spaceDBL for Brieskorn lattices is constructed. It is a fibre bundle over
DPMHS.

THEOREM 1.2 (5.3–5.5).DBL is a complex manifold. The bundleDBL ! DPMHS

is a holomorphic locally trivial bundle with fibres isomorphic toCNBL for some
NBL <

1
4�

2. There is a canonicalC � -action with negative weights on the fibres of
this bundle. The groupGZ acts onDBL properly discontinuously, respecting the
fibration and theC � -action.

The quotientDBL=GZ is the moduli space for the invariant BL. Although there
is some similarity between the fibrationsDBL ! DPMHS andDPMHS ! Dprim,
the proofs are totally different. There is no transitive natural group action onDBL

present. The analysis ofDBL uses and extends the construction in [SM1] Section 3,
which leads there to the main result of that paper, the existence of bases ofH 00

0 with
very special properties. So one can see Section 5 as a continuation of the analysis
of the structure of the Brieskorn lattice, which M. Saito had undertaken in [SM1]
Section 3.

Section 6 contains a discussion of results from [SM1] [SM2] [He1] [He2]
[He3] on the period mappings from a�-constant family toDBL andDPMHS. For
example, in the case of a quasihomogeneous singularity, the�-constant stratum is
locally a fibre bundleS = S0 � S� = S0 � C dim S� ! S0 with a C � -action with
negative weights on the fibresS�. Then the period mappingS ! DBL together
with S0 ! DPMHS is an embedding of bundles, which preserves the fibres and the
C � -action.

The main part of Section 6 is a short discussion of the most important features
of the period mappings and the global Torelli theorems, which the author had
obtained. They include the unimodal and bimodal singularities [He1] [He2], the
Brieskorn–Pham singularities with coprime exponents, and the semiquasihomo-
geneous singularities with weights(1

3;
1
3;

1
3;

1
3) [He3]. This last class is especially

nice, because there the results imply a global Torelli theorem for cubics inP3 in
terms of some pure polarized Hodge structure. This is remarkable, as the Hodge
structures on the cohomology of the cubics themselves are trivial.

2. Classifying Spaces for Polarized Mixed Hodge Structures

What is a polarized mixed Hodge structure? There are several possible definitions.
The simplest is to require that any quotient GrW

l of the weight filtration is equipped
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4 CLAUS HERTLING

with a bilinear form which gives a polarization of the pure Hodge structure on GrW
l .

This is often called a graded polarized mixed Hodge structure. But Schmid’s limit
mixed Hodge structure [Schm] (Thm. 6.16) motivates another definition, which
is given in Definition 2.2. This is also the correct one for isolated hypersurface
singularities.

The main purpose of this section is to describe a classifying spaceDPMHS and
a moduli spaceDPMHS=GZ for these polarized mixed Hodge structures. Similar
results for graded polarized mixed Hodge structures are indicated in [Us] and
[SSU], but without proof. So this section might be of interest independently of the
following sections. In this paper the spaceDPMHS is used only for the definition of
an even bigger classifying spaceDBL for Brieskorn lattices.

Definition 2.2 is based on the structure which is given in the following lemma
from [Schm] (Lemma 6.4, cf. also [Gr] 255–256).

LEMMA 2.1. Let m 2 N; HQ a finite-dimensionalQ vector space,S a nonde-
generate bilinear form onHQ; S: HQ � HQ ! Q; which is symmetric for even
m and skewsymmetric for oddm (‘(�1)m-symmetric’), andN : HQ ! HQ a
nilpotent endomorphism withNm+1 = 0, which is an infinitesimal isometry, i.e.
S(Na; b) + S(a;Nb) = 0 for a; b 2 HQ.

(a) There exists a unique increasing filtration0 = W�1 � W0 � � � � � W2m =
HQ such thatN(Wl) � Wl�2 and such thatN l: GrWm+l ! GrWm�l is an
isomorphism.

(b) S(Wl;Wl0) = 0 if l + l0 < 2m.
(c) A nondegenerate(�1)m+l-symmetric bilinear formSl is well-defined on

GrWm+l for l > 0 by the requirement:Sl(a; b) = S(~a;N l~b) if ~a;~b 2 Wm+l

representa; b 2 GrWm+l.
(d) The primitive subspacePm+l(HQ) of GrWm+l is defined by

Pm+l = ker(N l+1: GrWm+l ! GrWm�l�2);

if l > 0 andPm+l = 0 if l < 0. Then

GrWm+l =
M
i>0

N iPm+l+2i;

and this decomposition is orthogonal with respect toSl if l > 0:

DEFINITION 2.2. A polarized mixed Hodge structure of weightm (abbreviation:
PMHS) is given by the following data: a latticeHZ with HZ � HQ � HR �
HC = HZ
 C , a bilinear formS onHQ and an endomorphismN of HQ such
thatm; HQ; S; N; W�; Sl; Pm+l satisfy all properties in Lemma 2.1, and a
decreasing Hodge filtrationF � onHC with the properties

(i) F �GrWk gives a pure Hodge structure of weightk on GrWk , i.e. GrWk =

F pGrWk � F k+1�pGrWk ,
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CLASSIFYING SPACES FOR HODGE STRUCTURES AND BRIESKORN LATTICES 5

(ii) N(F p) � F p�1, i.e.N is a(�1;�1)-morphism of mixed Hodge structures,
(iii) S(F p; Fm+1�p) = 0,
(iv) the pure Hodge structureF �Pm+l of weightm + l onPm+l is polarized by

Sl, i.e.

(�) Sl(F
pPm+l; F

m+l+1�pPm+l) = 0, and

(�) i2p�m�lSl(u; �u) > 0 if u 2 F pPm+l \ Fm+l�pPm+l; u 6= 0.

Remarks.(a)Pm+l carries a pure Hodge structure, because it is the kernel of
the morphismN l+1: GrWm+l ! GrWm�l�2 of pure Hodge structures. The strictness
of the(�1;�1)-morphismN also implies

F pGrwk =
M
j>0

F pN jPk+2j and F pN jPk+2j = N jF p+jPk+2j :

(b) In Lemma 2.1 the numberm could be replaced by some bigger number, but
in Definition 2.2 the weightm is essential for condition (iii). Also the assumption
thatS is (�1)m-symmetric is not important in Lemma 2.1, but essential for (iv)
(�).

(c) Condition (iii) implies (iv)(�), but in general it is not equivalent to (iv)(�).
One can easily see the following. Under the assumption of all conditions except
for (iii) and (iv), condition (iv)(�) for all p andl is equivalent to

S(F p \Wm+l; F
m+1�p \Wm�l) = 0 for all p andl:

(d) The definition of a polarized mixed Hodge structure in [CaKa] differs from
Definition 2.2 only by the omission of condition (iii).

Lemma 2.3 shows how Deligne’s Hodge decompositionIp;q for a mixed Hodge
structure as in Definition 2.2 fits together with the polarizing formS.

LEMMA 2.3. For a PMHSas in Definition2:2 let

Ip;q := (F p \Wp+q) \

0
@F q \Wp+q +

X
j>0

F
q�j

\Wp+q�j�1

1
A :

Then

(a) F p =
L
i;q: i>p I

i;q;Wl =
L

p+q6l I
p;q; N(Ip;q) � Ip�1;q�1:

(b) S(Ip;q; Ir;s) = 0 for (r; s) 6= (m� p;m� q):

For p+ q > m let Ip;q0 be the primitive subspace ofIp;q,

Ip;q0 = ker(Np+q�m+1: Ip;q ! Im�q�1;m�p�1):

Then
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6 CLAUS HERTLING

(c) Ip;q =
L

j>0N
jIp+j;q+j0 :

(d) S(N iIp;q0 ; N jIr;s0 ) = 0 for (r; s; i+ j) 6= (q; p; p+ q �m):

Proof. (a) [De2] (Lemma 1.2.8).
(b) From the definition we have

S(Wl;Wl0) = 0 if l + l0 < 2m;

S(F p; F r) = 0 if p+ r > m;

S(F
q
; F

s
) = 0 if q + s > m:

One has to showS(Ip;q; Ir;s) = 0 in the following four cases.

Case1: p+ r > m:
Case2: p+ r 6m; q + s < m:
Case3: p+ r < m; q + s =m:
Case4: p+ r 6m; q + s > m:

In case 1, it follows fromIp;q � F p; Ir;s � F r: In cases 2 and 3, it follows from
Ip;q �Wp+q; I

r;s �Wr+s: Case 4 is left: Letp+ r 6m; q + s > m.

S(F
q
\Wp+q; F

s
\Wr+s) = 0 because ofq + s > m;

S(F
q
\Wp+q; F

s�j
\Wr+s�j�1) = 0 and

S(F
q�j

\Wp+q�j�1; F
s
\Wr+s) = 0

because ofq + s� j > m or p+ q + r + s� j � 1< 2m,

S(F
q�i

\Wp+q�i�1; F
s�j

\Wr+s�j�1) = 0

because ofq+s�i�j > m orp+q+r+s�i�j�2< 2m, thusS(Ip;q; Ir;s) = 0:
(c) Forp+ q > m the mappingNp+q�m: Ip;q ! Im�q;m�p is an isomorphism

because of (a) and Lemma 2.1. This implies (c).
(d) (r; s; i + j) = (q; p; p + q � m) and (r � j; s � j; r + s) = (m � p +

i;m � q + i; p + q) are equivalent. If(r � j; s � j) 6= (m � p + i;m � q + i)
thenS(N iIp;q0 ; N jIr;s0 ) = 0 because of (a) and (b). So suppose(r � j; s � j) =
(m� p+ i;m� q + i) andr + s 6= p+ q. Then

either i+ j > p+ q �m+ 1, thusN i+jIp;q0 = 0,
or i+ j > r + s�m+ 1, thusN i+jIr;s0 = 0.

N is an infinitesimal isometry, thereforeS(N iIp;q0 ; N jIr;s0 ) = 0: 2

Remarks.(a) M. Saito shows [SM1](Lemma 2.8)

M
q

Ip;q = F p \

 X
q

F
q
\Wp+q

!
:
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CLASSIFYING SPACES FOR HODGE STRUCTURES AND BRIESKORN LATTICES 7

(b) If we are not interested in the Hodge filtration, but just look for a decom-
position of the weight filtration which harmonizes withS andN , then Lemma 2.3
gives subspaces

Bl =
M
p+q=l

Ip;q0 and Vl =
M
j>0

N jBl+2j

for l 2 f0;1; ::;2mg. In general these are not defined overHQ, but they satisfy all
other properties in Lemma 2.3.

It is a tedious exercise in linear algebra to show that there exist such subspaces
overHQ. One can start with a Jordan base ofHQ for N , apply Lemma 2.1 and
refine the Jordan base inductively. The details of the proof of Lemma 2.3 are left
to the reader.

LEMMA 2.4. Let m; HQ � HC ; S; N; W�; P� � GrW� be as in Lemma2:1:
There exist subspacesBl; Vl � HC , which are defined overHQ, and which give a
decomposition of the weight filtration with the following properties.

Vl =
M
j>0

N jBl+2j; Wl =
M
k6l

Vk;

N(Vl) � Vl�2; S(Vl; Vl0) = 0 if l + l0 6= 2m;

S(N iBk; N
jBl) = 0 if (k; k �m) 6= (l; i+ j);

the mapping Bl ! Bl +Wl�1=Wl�1 � GrWl

is an isomorphism ontoPl.

In the following, a classifying spaceDPMHS for PMHS as in Definition 2.2 is
defined and studied, together with many other spaces and groups.

Let m; HQ � HC ; S; N; W�; P� � GRW� ; Sl be as in Definition 2.2. Also
let Bl and Vl be a fixed decomposition of the weight filtration as in Lemma
2.3. Finally, letF �0 be a fixed Hodge filtration of a PMHS as in Definition 2.2,
which shall serve as a reference filtration.F �0 (can and) shall be chosen such that
F p0 =

L
l;j F

p
0 \ N

jBl+2j; i.e. it respects the given decomposition of the weight
filtration.

fpl := dimF p0Pl;

�Dl := ffiltrationsF �Pl onPl j for all p dimF pPl = fpl ;

Sl�m(F
pPl; F

l�p+1Pl) = 0g;

Dl := ffiltrationsF �Pl onPl j for all p dimF pPl = fpl ;

F �Pl gives a polarized Hodge structure of weightl onPlg;

�Dprim :=
Y
l

�Dl; Dprim :=
Y
l

Dl;
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8 CLAUS HERTLING

�DPMHS := ffiltrationsF � onHC j for all p andl dimF pPl = fpl ;

F pN jPl = N jF p+jPl; F
pGrWl =

L
j>0F

pN jPl+2j ;

N(F p) � F p�1; S(F p; Fm+1�p) = 0g;

��: �DPMHS! �Dprim is the canonical projection;

DPMHS := ffiltrationsF � onHC j for all p andl dimF pPl = fpl ;

F � is the Hodge filtration of a PMHS of weightm onHC g;

�: DPMHS! Dprim is the canonical projection;

GZ := fautom.g: HZ! HZ j g �N = N � g; S � (g � g) = Sg;

analogouslyGR; GC ;

G0C := fg 2 GC j GrW g = idg; G0R := G0C \GR;

G00C := fg 2 GC j for all l g(Bl) = Blg; G00R := G00C \GR;

GlC := fautom.g: Bl ! Bl j Sl�m � (g � g) = Sl�mg;

GlR := fautom.g: Bl \HR! Bl \HR j Sl�m � (g � g) = Sl�mg;

BC := Stab(F �0 ) = fg 2 GC j g(F �0 ) = F �0 g;

B0
C := G0C \BC ; B

00
C := G00C \BC ; B

00
R := G00R \BC :

The next eight statements are well known or follow from the definitions.

(A) G00C is canonically isomorphic to�lGlC and semisimple.G0C is unipotent
and a normal subgroup ofGC . The semidirect productGC = G0C o G00C is a Levi
decomposition ofGC .

(B) BC = B0
C oB

00
C because of the special choice of the reference filtrationF �0 .

(C) �Dl andDl are the classifying spaces for Hodge filtrations, which are defined
in [Schm] and [Gr].GlC acts on�Dl, andGlR acts onDl. Both actions are transitive.
�Dl is a projective manifold,Dl is a complex manifold and an open subset of�Dl.

(D) �Dprim is a projective manifold and a complex homogeneous space,

�Dprim =
Y

�Dl
�= G00C=B

00
C
�= GC =G

0
C oB

00
C :

(E) Dprim is a complex manifold and a real homogeneous space,Dprim is an
open subset of�Dprim,

Dprim =
Y

Dl
�= G00R=B

00
R
�= G0C oG

00
R=G

0
C oB

00
R:

(F) The canonical projectionGC =BC ! GC=G
0
C oB

00
C
�= �Dprim; is a locally triv-

ial holomorphic fibre bundle with fibres isomorphic toG0C =B
0
C . AsG0C is unipotent,

the fibres are isomorphic (as complex manifolds) toCNPMHS for someNPMHS2 N,
[Bo] (11.13).

(G) The restriction of the fibre bundle in (F) to the open subsetDprim of the base
�Dprim is canonically isomorphic to

G0C oG
00
R=B

0
C oB

00
R! G0C oG

00
R=G

0
C oB

00
R
�= Dprim:
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CLASSIFYING SPACES FOR HODGE STRUCTURES AND BRIESKORN LATTICES 9

(H) DPMHS = ���1(Dprim) � �DPMHS.
Proof. DPMHS � �DPMHS holds becauseN is a strict morphism (Remark (a)

after Definition 2.2). IfF � 2 ���1(Dprim) it remains to show property (i) of Defini-
tion 2.2. This follows fromF �Pl 2 Dl and the formula forF �GrWl in the definition
of �DPMHS. 2

So� is the restriction of�� toDPMHS = ���1(Dprim).

PROPOSITION 2.5.

(i) GC acts transitively on�DPMHS. The fibre bundle�� is isomorphic to the fibre
bundle in(F ), GC=BC ! GC =G

0
C � BC : The groupG0C acts transitively on

each fibre of��.
(ii) The fibre bundle� is the restriction of�� to DPMHS = ���1(Dprim). It is

isomorphic to the fibre bundle in(G),G0C �G
00
R=B

0
C �B

00
R! G0C �G

00
R=G

0
C �B

00
R:

The groupG0C � G
00
R acts transitively onDPMHS. The total spaceDPMHS is a

complex manifold and a real homogeneous space, the fibres are isomorphic to
CNPMHS for someNPMHS 2 N.

Proof. It remains to show thatGC acts transitively on�DPMHS. LetF � 2 �DPMHS.
As G00C acts transitively on�Dprim, there exists ag1 2 G00C such that��(g1(F

�)) =
��(F �0 ) andg1(F

�) 2 DPMHS. For g1(F
�) and forF �0 there exist unique Hodge

decompositions with the properties in Lemma 2.3. Obviously one can find ag2 2
GC which maps one Hodge decomposition to the other. Theng2(g1(F

�)) = F �0 .2

PROPOSITION 2.6.GZ acts properly discontinuously onDPMHS. Therefore the
quotient spaceDPMHS=GZ is a normal complex space and has at most quotient
singularities.

Proof. In general,BR is compact, butGR does not act transitively onDPMHS;
andG0C � G

00
R acts transitively, butB0

C � B
00
R is not compact. So the proof is not as

easy as in the case of a pure Hodge structure. The central piece of the following
proof is the

OBSERVATION. G0R\ gBC g
�1 = fidg for anyg 2 G0C �G

00
R.

Proof. g(F �0 ) 2 DPMHS for suchg. Any h 2 G0R\ gBC g
�1 respectsg(F �0 ) and

HR � HC , soh respects the Hodge decomposition ofg(F �0 ) in Lemma 2.3. But
h 2 G0R acts as identity on GrW� , soh = id. 2

Let K � G0C � G
00
R=B

0
C � B

00
R
�= DPMHS be a compact subset andR := fg 2

GR j gK \K 6= ;g: It is enough to show thatR is compact. ThenGZ\R is finite,
andGZacts properly discontinuously onDPMHS.

Let 1 and 2 be the canonical projections

G0C �G
00
R

 1�! G0C �G
00
R=B

0
C

 2�! G0C �G
00
R=B

0
C �B

00
R:
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10 CLAUS HERTLING

 2 is proper, becauseB00
R is compact. Thus �1

2 (K) is compact. The set

P := f(g1B
0
C ; g2B

0
C ) 2  

�1
2 (K)�  �1

2 (K) j g1g
�1
2 2 GRg

�  �1
2 (K)�  �1

2 (K)

is compact and satisfies

R = fg1g
�1
2 j (g1B

0
C ; g2B

0
C ) 2 P; g1g

�1
2 2 GRg:

CLAIM. If g1; g2 2 G
0
C �G

00
R andb1; b2 2 B

0
C are given such that

(g1B
0
C ; g2B

0
C ) 2 P; g1g

�1
2 2 GR; (g1b1)(g2b2)

�1 2 GR:

Theng1g
�1
2 = (g1b1)(g2b2)

�1.
Proof. There exist (unique)
 2 G0C ; � 2 G

00
R such thatg2 = 
 � �.

��1 � (g1g
�1
2 )�1(g1b1)(g2b2)

�1 � � 2 GR and

= (��1
�)(b1b
�1
2 )(��1
�)�1 2 G0C :

The observation above impliesb1b
�1
2 = id. 2

The claim shows that there is a canonical well-defined surjective and continuous
mappingP ! R. ThusR is compact. 2

Remark.Often the situation is more complicated than the one which is discussed
above. For example, in the case of isolated hypersurface singularities, there is a
semisimple automorphism onHQ which commutes withN and respectsS. One can
modify all the statements and constructions starting from Lemma 2.3 to Proposition
2.6 to include this semisimple automorphism. A more detailed discussion for the
case of isolated hypersurface singularities is given in Section 3.

3. Hypersurface Singularities and Polarized Mixed Hodge Structures

In Section 3 we will fix notations for the classical topological data of a hyper-
surface singularity. We will describe the polarizing form for Steenbrink’s mixed
Hodge structure [St] on the cohomologyHn(X1; C ) of the Milnor fibre. This is a
canonical, but less well known nondegenerate bilinear form onHn(X1;Q). The
construction of Section 2 will be applied to yield a classifying spaceDPMHS for
such polarized mixed Hodge structures.

Letf : (C n+1;0)! (C ;0) be a holomorphic function with an isolated singular-
ity at 0 and Milnor number�. If we choose a sufficiently small open ballB around
0 in C n+1 and a sufficiently small punctured discT 0 around 0 inC , then

f : X 0 = f�1(T 0) \B ! T 0
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CLASSIFYING SPACES FOR HODGE STRUCTURES AND BRIESKORN LATTICES 11

is aC1 fibre bundle, the Milnor fibration. The fibresXt = f�1(t) \ B; t 2 T 0;
have the homotopy type of a bouquet of� n-spheres [Mi]. Ifu: T1 ! T 0 is
the universal covering andX1 = X 0 �T 0 T1, then for any� 2 T1 the natural
inclusionXu(�) ,! X1 is a homotopy equivalence.Hn(X1;Z) �= Z� is the
Milnor lattice.

We have the monodromyM , the intersection formq and the Seifert forml on
Hn(X1;Z) [AGV] (Ch. 2). The variation Var:Hn(X1;Z)! Hn(X1;Z) is an
isomorphism. Seifert forml and Variation Var determine one another by

l(a; b) = hVar�1(a); bi for a; b 2 Hn(X1;Z):

The Seifert forml determines monodromyM and intersection formq by

l(Ma; b) = (�1)n+1l(b; a) and q(a; b) = �l(a; b) + (�1)n+1l(b; a):

Thus any automorphism of the Milnor latticeHn(X1;Z), which respects the
Seifert form, also respects monodromy and intersection form. The group of all
automorphisms of the Milnor lattice, which respect the Seifert form, will be denoted
byGZ.

The intersection formq is(�1)n-symmetric, i.e. symmetric for evenn, skewsym-
metric for oddn. The radical of the intersection form is ker(M � id).

We have the monodromyM = Mu � Ms = Ms � Mu with unipotent part
Mu and semisimple partMs on the cohomologyHn(X1;Q). The nilpotent part
N = logMu satisfiesNn+1 = 0. We set

Hn(X1; C )� = ker(Ms � � � id) � Hn(X1; C );

Hn(X1; C ) 6=1 =
M
� 6=1

Hn(X1; C )� ;

Hn(X1;Z)6=1 = Hn(X1;Z)\H
n(X1; C )6=1;

and similarlyHn(X1;Z)1; H
n(X1;Q) 6=1; H

n(X1;Q)1.
The mixed Hodge structure onHn(X1; C ) was defined by Steenbrink [St],

using resolutions of singularities. Varchenko [Va1] found a construction, which
uses the Gauß–Manin connection, of a slightly different Hodge filtration. His
construction was modified [Ph2] [SchSt] [SM1] to obtain Steenbrink’s Hodge
filtration. This is reproduced in Section 3. Hodge filtration and weight filtration are
invariant with respect toMs. The mixed Hodge structure splits into a PMHS of
weightn onHn(X1; C )6=1 and a PMHS of weightn + 1 onHn(X1; C )1. This
determines the weight filtration. To explain this shift of the index and the polarizing
form S for the PMHS, we will combine a result of Scherk [Sche] with the results
of Schmid [Schm] and Steenbrink [St] (cf. [SchSt] for the following).

With a suitable coordinate change one can obtain [Br]
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12 CLAUS HERTLING

(i) f is a polynomial of arbitrary high degree,
(ii) 0 is the only singular point of the closureY0 of f�1(0) in Pn+1C .
(iii) the closureYt of f�1(t) in Pn+1C is smooth fort 2 T 0 = T 0� if � is small

enough.

Analogously to the Milnor fibration, we get a locally trivialC1-fibration�f : Y 0 !
T 0 with

d = degf; F (z0; : : : ; zn+1) = zdn+1 � f

�
z0

zn+1
; : : : ;

zn
zn+1

�
;

Y = f(z; t) 2 P
n+1

C � T j F (z)� t � zdn+1 = 0g = f(z; t) j z 2 Yt; t 2 Tg;

�f : Y ! T; (z; t) 7! t; Y 0 = ��1
f (T 0):

The monodromyMY on the primitive partP n(Yt;Q); t 2 T 0; of the middle
cohomology of a regular fibre is quasiunipotent.MY;s andMY;u are the semisimple
and unipotent part ofMY . The nilpotent partNY = logMY;u satisfiesNn+1

Y = 0.
There is a(�1)n-symmetric nondegenerate intersection formq�Y onP n(Yt;Q); we
setSY := (�1)n(n�1)=2 � q�Y :Y1 = Y 0 �T 0 T1 is defined analogously toX1. For
anyt 2 T 0 the embeddingYu(�) ,! Y1 is a homotopy equivalence.
NY determines a weight filtrationW� on P n(Y1;Q) with indexm = n as

in Lemma 2.1. The pure Hodge structures on the primitive cohomology groups
P n(Yt;Q); t 2 T 0; are polarized bySY and give a variation of Hodge structures
in the sense of [Schm]. This induces a holomorphic mapping� 7! F �u(�) from the
universal coverT1 of T 0 to a classifying space for Hodge filtrations onP n(Y1),
which satisfiesF �u(�+1) =M�1

Y F �u(�). Following Schmid, the limit filtration

F �1 = lim
Im�!1

exp(NY � �)F
�
u(�)

onP n(Yt; C ) is well-defined.

THEOREM 3.1 ([Schm], (6.16)).SY ; NY ; W� andF �1 give aPMHSof weight
n onP n(Y1). It is invariant with respect toMY;s.

Following Steenbrink, there is an exact sequence

0! Hn(Y0)! Hn(Y1)! Hn(X1)! Hn+1(Y0)! Hn+1(Y1)! 0:

The result of Scherk simplifies the situation.

THEOREM 3.2 ([Sche]).If f is a polynomial of sufficiently high degree with the
properties(ii) and(iii) from above, then the mappingi�: P n(Y1)! Hn(X1) is
surjective and the kernel iskeri� = ker(MY � id).

THEOREM 3.3 ([St]).Letf be as in Theorem 3.2. The sequence

comp4198.tex; 7/08/1995; 8:16; v.7; p.12

https://doi.org/10.1023/A:1000638508890 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000638508890


CLASSIFYING SPACES FOR HODGE STRUCTURES AND BRIESKORN LATTICES 13

0! ker(MY � id)! P n(Y1)! Hn(X1)! 0

is an exact sequence of mixed Hodge structures. HereP n(Y1) carries Schmid’s
mixed Hodge structure,Hn(X1) carries Steenbrink’s mixed Hodge structure. The
mixed Hodge structures are invariant with respect to the semisimple parts of the
monodromies.

Theorem 3.3 explains the shift of the index of the weight filtration onHn(X1)1. It
also shows, how one has to define a nondegenerate bilinear formS onHn(X1;Q),
which is invariant with respect toMs, and which leads to a PMHS of weightn on
Hn(X1; C ) 6=1 and a PMHS of weightn+ 1 onHn(X1; C )1.

The restrictioni�: P n(Y1)6=1 ! Hn(X1)6=1 is an isomorphism.SY induces
S on Hn(X1)6=1. One can express this part ofS in terms of the intersection
form q. The intersection formq onHn(X1;Q) 6=1 is nondegenerate and induces an
isomorphismHn(X1; C )6=1

�= Hn(X1; C ) 6=1 and a nondegenerate bilinear form
q� onHn(X1; C )6=1. ThenS = (�1)n(n�1)=2 � q�.

The restriction ofS to Hn(X1)1 is defined byS(a; b) := SY (~a;NY
~b) for

a; b 2 Hn(X1)1; ~a;~b 2 P n(Y1)1 such thati�~a = a; i�~b = b. This S is well-
defined and nondegenerate because of keri� = kerNY \ P

n(Y1)1 and Lemma
2.1 forNY andSY onP n(Y1)1. If one compares the pairingsSl in Definition 2.2
with Theorem 2.5, one sees, that thisS is the right one for a PMHS of weightn+1
onHn(X1)1.

The following lemma shows thatS is determined by the variation and the
monodromy and is independent of the choice of the projective fibrationY 0 ! T 0.
We define a monodromy invariant isomorphism�: Hn(X1;Q) ! Hn(X1;Q)
by

� = (M � id)�1 onHn(X1;Q) 6=1;

� =
X
l>1

1
l
(�1)l�1(M � id)l�1

�
‘ =

N

M � id
’
�

onHn(X1;Q)1:

LEMMA 3.4. The bilinear formS onHn(X1;Q) is nondegenerate and invariant
with respect to the monodromy. It is given byS(a; b) = (�1)n(n�1)=2ha;Var �
�(b)i for a; b 2 Hn(X1;Q). The restriction ofS to Hn(X1;Q)6=1 is equal to
(�1)n(n�1)=2 � q� and (�1)n-symmetric. The restriction ofS to Hn(X1;Q)1 is
(�1)n+1-symmetric.

Proof. The formula for the restriction toHn(X1;Q)6=1 follows from the defi-
nition of Var. The formula for the restriction toHn(X1;Q)1 follows from

NY = (MY;u � id)

0
@X
l>1

1
l
(�1)l�1(MY;u � id)l�1

1
A
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and

i� � Var � i� = PD � (MY � id);

where

i�: Hn(X1) ,! Pn(Y1);

and

PD: P n(Y1)
�=�! Pn(Y1) is Poincaŕe duality. 2

Remark.S induces an isomorphismHn(X1;Q) �= Hn(X1;Q) and a nonde-
generate bilinear formS� onHn(X1;Q). The restriction ofS� toHn(X1;Q)6=1

is S� = (�1)n(n�1)=2 � q. It is not difficult to compute the restriction ofS� to
Hn(X1;Q)1 in terms of the Seifert form:

S�(a; b) = (�1)n(n�1)=2l

0
@
0
@X
l>1

1
l!
N l�1

1
Aa; b

1
A

for a; b 2 Hn(X1;Q)1: Thus

S�(N a; b) = (�1)n(n�1)=2l((Mu � id)a; b) = (�1)n(n�1)=2q(a; b):

From the definition ofS and the previous theorems follows:

THEOREM 3.5.Steenbrink’s mixed Hodge structure andS yield a PMHS of
weightn onHn(X1;Z)6=1 and aPMHSof weightn+ 1 onHn(X1;Z)1.

This sum of two PMHS’s will also be called a PMHS. It is invariant with respect
to the semisimple partMs of the monodromy. To obtain a classifying space for
such PMHS’s, one has to includeMs and modify all definitions, statements and
proofs in Section 2 from Lemma 2.3 to Proposition 2.6. This is not difficult, so
only a few comments are necessary.

The spacesIp;q andIp;q0 of the Hodge decomposition in Lemma 2.3 are invariant
underMs. One has to show that the subspacesBl in Lemma 2.4 can be chosen as
invariant spaces with respect toMs. LetPl =

L
� P�;l be the decomposition ofPl

into generalized eigenspaces with respect toMs. The conditions dimF pPl = fpl
have to be replaced by dimF pP�;l = fp�;l. NowDprim is the product of classifying
spaces for those pure polarized Hodge structures on the primitive subspacesP�;k+
P��;k, which respect the decomposition into the eigenspacesP�;k andP��;k. In the
same manner, we can define the other classifying spaces. From now on the fibration
DPMHS! Dprim is denoted by�PMHS.
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CLASSIFYING SPACES FOR HODGE STRUCTURES AND BRIESKORN LATTICES 15

All the groups have to respectMs. The groupGZis the group of automorphisms
of the Milnor lattice, which respect the Seifert form. It is canonically isomorphic
to the group of automorphisms ofHn(X1;Z), which respectMs; N and S.
The quotientDPMHS=GZ parametrizes the isomorphism classes of PMHS’s on
Hn(X1;Z). All the statements of Propositions 2.5 and 2.6 carry over to the
situation which is considered here. The next proposition summarizes some of
them.

PROPOSITION 3.6.Let f be an isolated hypersurface singularity with Hodge
filtration F �0 on Hn(X1; C ). The spaceDPMHS is the classifying space of all
Hodge filtrations onHn(X1; C ) which have the same Hodge numbersfp�;l asF �0 ,
and which give aPMHSwith the same properties with respect toN; S andMs.

(a) DPMHS is a complex manifold and a homogeneous space with respect to a real
Lie group.�PMHS: DPMHS! Dprim is a locally trivial fibre bundle with fibres
isomorphic toCNPMHS, NPMHS2 N.

(b) The groupGZ acts properly discontinuously onDPMHS. The moduli space
DPMHS=GZ for the isomorphism classes of polarized mixed Hodge structures
onHn(X1) is a normal complex space and has only quotient singularities.

Remark.Varchenko [Va2] proved that the spectral numbers and spectral pairs
(cf. Section 4) are constant within a�-constant family of singularities. Thus also
the Hodge numbersfp�;l are constant. We have a period mapping from the parameter
space of the�-constant family to the moduli spaceDPMHS=GZ. This period mapping
is locally liftable toDPMHS.

4. Gauß–Manin Connection and Brieskorn Lattice

As in Section 3 letf : (C n+1;0) ! (C ; 0) be a hypersurface singularity and
f : X 0 ! T 0 a Milnor fibration. The Brieskorn lattice off is H 00

0 = H 00
0 (f) =


n+1
X;0 =df ^ d
n�1

X;0 [Br]. Brieskorn lattice and Gauß–Manin connection determine
Steenbrink’s Hodge filtration onHn(X1; C ) [Va1] [Ph2] [SchSt]. The Brieskorn
lattice induces an invariant of the right equivalence class off , which is finer than
the polarized mixed Hodge structure onHn(X1). A classifying space for this
invariant will be studied in Section 5.

Here, in Section 4, we will summarize the properties of the Gauß–Manin con-
nection and the Brieskorn lattice. There are other presentations of these properties
[He1] [He2] [SM1] [SM2] [SchSt]. The summary here is as elementary and short
as possible. There is a new, explicit description of the relation between the pairing
S and K. Saito’s higher residue pairing (4.1 and 4.4).

The cohomology bundleHn =
S
t2T 0 H

n(Xt; C ) is a flat complex vector
bundle.Hn(X1; C ) can be identified with the space of the global flat many-valued
sections inHn. If A 2 Hn(X1; C )� and� 2 Q such that e�2�i� = �, then
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s(A;�)(t) = t� exp
�

log t
�N

2�i

�
A(t)

is a unique holomorphic section inHn. LetHn be the sheaf of germs of holomorphic
sections inHn andi: T 0 ! T the inclusion. The germss(A;�)0 2 (i�H

n)0 in 0 of
the sectionss(A;�)(t) span aCftg[t�1]-vector spaceG0 of dimension�. This space
G0 is invariant with respect to the differential operator@t: (i�Hn)0 ! (i�H

n)0,
which is induced by the covariant derivative.G0 is a regular singularC ftg[t�1]-
module; it is called the Gauß–Manin connection [Ph1]. The mapping

 �: Hn(X1; C )� ! G0;  �(A) = s(A;�)0

is injective, the image �(Hn(X1; C )� ) is

C� = ker(t@t � �)n+1 � G0:

These subspacesC� are the key to understand the structure ofG0. The mapping �
satisfies

(t@t � �) �  � =  � �

�
�N

2�i

�
and t �  � =  �+1:

t: C� ! C�+1 is bijective, and@t: C� ! C��1 is bijective if � 6= 0. The
eigenspacesC� induce the decreasingV �-filtration onG0,

V � =
X
�>�

C ftgC� =
M

�6�<�+1

C ftgC� ;

V >� =
X
�>�

C ftgC� =
M

�<�6�+1

C ftgC� :

The ring

R = C ff@�1
t gg =

8<
:
X
i>0

ai@
�i
t

�����
X
i>0

ait
i=i! 2 C ftg

9=
;

is the ring of microdifferential operators with constant coefficients [Ph1]. It is easy
to see that the subspaceC ftg �C� is a freeR-module of rank dimC C� if � 62 Z<0.
The subspaceV >�1 is a freeR-module of rank�,

V >�1 =
M

�1<�60

R � C� =
M

�1<�60

C ftg � C�:

The mappings �; �1< � 6 0, are put together to give an isomorphism

 =
M

�1<�60

 �: Hn(X1; C ) !
M

�1<�60

C�

of vector spaces. We use the structure ofV >�1 asR-module, the isomorphism ,
and the bilinear formS onHn(X1; C ) to define a pairing onV >�1.
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DEFINITION 4.1. The pairingPS : V >�1 � V >�1 ! R � @�1
t is defined by the

following properties. Let�; � 2 (�1;0], a 2 C�; b 2 C�, g1(@
�1
t ); g2(@

�1
t ) 2 R,

and

PS(a; b) = 0 if �+ � =2 Z;

PS(a; b) =
1

(2�i)n
S( �1(a);  �1(b)) � @�1

t if �+ � = �1;

PS(a; b) =
1

(2�i)n+1S( 
�1(a);  �1(b)) � @�2

t if � = � = 0;

PS(g1(@
�1
t )a; g2(@

�1
t )b) = g1(@

�1
t )g2(�@

�1
t )PS(a; b):

P
(�l)
S is the part ofPS in C �@�lt , i.e.PS(a; b) =

P
l>1P

(�l)
S (a; b) andP (�l)

S (a; b) 2

C � @�lt .

LEMMA 4.2.
(i) PS : C� � C� ! 0 if � + � =2 Z; �; � > �1; PS : C� � C� ! C �

@�����2
t is a perfect pairing if�+ � 2 Z; �; � > �1:

(ii) P (�l)
S is (�1)n+1+l-symmetric.

(iii) [t; PS(a; b)] = PS(ta; b)� PS(a; tb), i.e.

(l � 1)P (�l+1)
S (a; b) � @�1

t = P
(�l)
S (ta; b)� P

(�l)
S (a; tb):

Proof. (i) and (ii) follow from Definition 4.1; (iii) follows with an easy calcu-
lation from(t@t � �) �  � =  � � (�N=2�i). 2

Remark.PS is the restriction of K. Saito’s higher residue pairing [SK1] [SK2]
toV >�1. This follows, because the residue pairing satisfies analogous properties to
4.1, 4.2, and 4.4 and also induces a polarization of the mixed Hodge structure [SM1]
Section 2. This residue pairing is defined on the Gauß–Manin system(

R n+1
f OX)0

[SM1] Section 2. The spaceV >�1 is canonically embedded in the Gauß–Manin
system. But we prefer the more elementary approach with Gauß–Manin connection
G0, Definition 4.1, Lemma 4.2, and Proposition 4.4.

If ! 2 
n+1
X is a holomorphic(n + 1)-form, then the Gelfand–Leray form

!=df jXt gives a holomorphic sections[!](t) in the cohomology bundleHn,

s[!](t) =

"
!

df

�����Xt

#
2 Hn(Xt; C ); t 2 T 0:

For any! 2 
n+1
X;0 the germs[!]0 2 (i�H

n)0 of the sections[!](t) is in G0 [Br]

and even inV >�1 [Ma]. The kernel of the mapping
n+1
X;0 ! V >�1; ! 7! s[!]0

is df ^ d
n�1
X;0 [Ma]. The Brieskorn latticeH 00

0 = 
n+1
X;0 =df ^ d
n�1

X;0 will be
identified with its image inV >�1.
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PROPOSITION 4.3.

(i) C ftg[t�1] �H 00
0 = G0; H 00

0 � V >�1:

(ii) tH 00
0 � H 00

0 , H 00
0 is a freeC ftg-module of rank�.

(iii) @�1
t H 00

0 � H 00
0 , H 00

0 is a freeR-module of rank�.

Proof.

(i) [Br] and [Ma].
(ii) follows from (i) andt � s[!]0 = s[f!]0.
(iii) follows from (i) and@�1

t s[d�]0 = s[df ^ �]0 for � 2 
nX;0 [Br]. 2

The Grothendieck residue on the Jacobi algebra induces a nondegenerate pairing
Resf on
n+1

X;0 =df ^
nX;0 = H 00
0=@

�1
t H 00

0 [SK1] [SK2] [Va4].

PROPOSITION 4.4.

(i) PS(H 00
0 ;H

00
0 ) � R � @�n�1

t , i.e.P (�l)
S (H 00

0 ;H
00
0 ) = 0 if 1 6 l 6 n.

(ii) P (�n�1)
S (s[!1]0; s[!2]0) = Resf (!1; !2) � @

�n�1
t if !1; !2 2 
n+1

X;0 .

Proof. Statements of this type can be found in [SM1] 2.7. But they are not
specific about the constants in the Definition 4.1 ofPS . Explicit calculations which
take into account all the constants can be found in [Va4] Section 3.3. Varchenko
uses a projective fibrationY 0 ! T 0 like the one which we used to defineS in
Section 3. He gives results on the sections in the bundle

S
t2T 0 P

n(Yt) and on the
pairingq�Y in P n(Yt). One has to translate these results into statements onH 00

0 and
PS and calculate all the constants in [Va4] Section 3.3. That gives (i) and (ii).2

COROLLARY 4.5.

(i) H 00
0 is isotropic of maximal size with respect to the antisymmetric bilinear form

P
(�n)
S , i.e.P (�n)

S (h;H 00
0 ) = 0 () h 2 H 00

0 .
(ii) H 00

0 � V n�1, dimH 00
0=V

n�1 = 1
2 dimV >�1=V n�1.

Proof.

(i) This follows easily fromP (�n)
S (H 00

0 ;H
00
0 ) = 0 (4.4(i)) and from the fact that

P
(�n�1)
S = Resf � @

�n�1
t is well-defined and nondegenerate onH 00

0=@
�1
t H 00

0 .

(ii) P (�n)
S (V >�1; V n�1) = 0 (4.2(i)),H 00

0 � V >�1 (4.3(i)), and (i) implyH 00
0 �

V n�1 and

H 00
0 =

0
@H 00

0 \
M

�1<�<n�1

C�

1
A� V n�1:
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CLASSIFYING SPACES FOR HODGE STRUCTURES AND BRIESKORN LATTICES 19

Now P
(�n)
S is nondegenerate on

L
�1<�<n�1C� (4.2(i)), and H 00

0 \L
�1<�<n�1C� is a maximal isotropic subspace. 2

Varchenko [Va1] used the Gauß–Manin connection and the Brieskorn lattice to
construct a mixed Hodge structure onHn(X1; C ). His construction was modified
later [Ph2] [SchSt] (cf. [SM1]) to obtain Steenbrink’s [St] mixed Hodge structure.
The modified version can be given as follows.

If a subspaceK � V >�1 satisfiesC ftg[t�1] �K = G0 and@�1
t K � K, thenK

induces a decreasing filtrationF �K onHn(X1; C ), which is invariant with respect
toMS , by

F pKH
n(X1; C )� =  �1

� (V � \ @n�pt K + V >�=V >�);

� 2 (�1;0]; e�2�i� = �:

PROPOSITION 4.6.F �H00

0
is Steenbrink’s Hodge filtrationF �.

Remark.NowN(F p) � F p�1 follows fromtH 00
0 � H 00

0 , andS(F p; F n+1�p) =
0 onHn(X1)6=1 andS(F p; F n+2�p) = 0 onHn(X1)1 follow fromPS(H

00
0 ;H

00
0 ) �

R � @�n�1
t .

Proposition 4.6 motivates the definition of the spectral pairs [St] [AGV]. These
are equivalent to the Hodge numbersfp�;l of the PMHS onHn(X1), but they reflect
better the embeddingH 00

0 � G0. They are� pairs(�; l) 2 Q �Zwith multiplicities
d(�; l), so

Spp(f) = �d(�; l)(�; l) 2 Z[Q � Z];

d(�; l) = dim Gr[n��]F GrWl H
n(X1; C )� for e�2�i� = �; � 6= 1;

d(�; l) = dim Grn��F GrWl+1H
n(X1; C )1 for e�2�i� = 1:

They satisfy the symmetries (any two of the symmetries determine the third)

d(�; l) = d(n� 1� �;2n� l);

d(�; l) = d(2n� 1� l � �; l);

d(�; l) = d(� � n+ l;2n� l):

This follows from the PMHS. But, in fact, the first symmetry follows already from
Proposition 4.4, in the spirit and as an extension of Corollary 4.5. Together with
V >�1 � H 00

0 , it implies d(�; l) = 0 if � =2 (�1; n), so (again)H 00
0 � V n�1, and

F n+1 = 0; F nHn(X1; C )1 = 0. The factNn+1 = 0 impliesd(�; l) = 0 if
l =2 [0;2n]. If one forgets the second entries and the weight filtration, one obtains
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20 CLAUS HERTLING

the spectral numbers,� rational numbers� with multiplicities d(�),

Sp(f) = �d(�)(�) 2 Z[Q];

d(�) = dim Gr[n��]F Hn(X1)� if � = e�2�i�

= dim Gr�VH
00
0 � dim Gr�V @

�1
t H 00

0 :

They satisfy the symmetryd(�) = d(n� 1� �).

PROPOSITION 4.7 ([Va2]).The spectral pairs are constant within a�-constant
family of singularities.

Thus the PMHS’s of the singularities in a�-constant family are contained in
the same classifying spaceDPMHS. We have a period mapping from the parameter
space of the�-constant family to the quotientDPMHS=GZ, which is locally liftable
to DPMHS. But the discussion in Section 6 will show that this period mapping
often is not good enough for Torelli type questions. One loses information if one
considers onlyF �H00

0
and GrV� H

00
0 instead ofH 00

0 .

5. Classifying Spaces for Brieskorn Lattices

In this section, a classifying spaceDBL for Brieskorn lattices with fixed spectral
pairs will be constructed. This is the technical center piece of the paper.

The canonical projectionDBL ! DPMHS will turn out to be a locally trivial
bundle with fibresCNBL just as the bundleDPMHS ! Dprim. The similarity with
DPMHS is quite strong:DPMHS is the classifying space for the Hodge filtrations,
Dprim can be seen as the classifying space for the Hodge filtrationsF �GrW� on the
quotients of the weight filtration;DBL will be the classifying space for the Brieskorn
lattices inG0,DPMHS can be seen as the classifying space for the quotients Gr�

VH
00
0

with respect to theV �-filtration.
But there is no transitive group action onDBL present. The conditions for the

Brieskorn lattices, which have to be controlled, are more involved than those for
the PMHS’s.

The following results can be seen as a continuation of the discussion of the
structure of the Brieskorn lattice in [SM1] Section 3. The existence of bases ofH 00

0
with very special properties is one of the main results of that paper. A more explicit
and refined version of the construction of such bases is given in Proposition 5.1
and Lemma 5.2, the analysis in 5.3–5.6 goes beyond [SM1].

We fix several data of a singularity, which were considered in Sections 3 and 4
and which are locally constant or canonically isomorphic in�-constant families:
the cohomologyHn(X1;Z) with Ms; N; S on Hn(X1;Q), the Gauß–Manin
connectionG0 � V >�1 with t; @t; V �; V >�; C�; PS , and the spectral pairs. These
data determine classifying spacesDPMHS and �DPMHS. The � spectral numbers

comp4198.tex; 7/08/1995; 8:16; v.7; p.20

https://doi.org/10.1023/A:1000638508890 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000638508890


CLASSIFYING SPACES FOR HODGE STRUCTURES AND BRIESKORN LATTICES 21

will be indexed such that�1 6 �2 6 � � � 6 ��: Because of the symmetry, they
satisfy�i+��+1�i = n� 1. Recall from Section 4 that any subspaceK � V >�1

satisfying@�1
t K � K induces a decreasing filtrationF �K onHn(X1; C ), which

is invariant with respect toMs, by

F pKH
n(X1; C )� =  �1

� (Gr�V @
n�p
t K); � 2 (�1;0]; e�2�i� = �:

A classifying space for Brieskorn lattices should consist of subspacesK � V >�1

having the following properties:

(i) @�1
t K � K,

(ii) F �K 2 DPMHS,
(ii) 0 F �K 2 �DPMHS,
(iii) tK � K,
(iv) P (�l)

S : K �K ! 0 for 16 l 6 n.

(i) and (ii)0 (resp. (iii) and (ii)0) imply thatK is a freeR-module (resp.Cftg-module)
of rank�. We define classifying spaces for Brieskorn lattices,

DBL = fK � V >�1 jK satisfies(i); (ii ); (iii ); (iv)g;
�DBL = fK � V >�1 jK satisfies(i); (ii )0; (iii ); (iv)g;

the canonical projection�BL: DBL ! DPMHS is the restriction of the projection
��BL: �DBL ! �DPMHS toDBL = ���1

BL (DPMHS).

Remarks.(a) The following remark is clear from the definition, but useful: If
K1;K2 � V >�1 are subspaces such that@�1

t Ki � Ki, i = 1;2; then Gr�VK1 =
Gr�VK2 for any � () F �K1

= F �K2
:

(b) M. Saito [SM2] (2.9) considers two larger classifying spaces

L(G)0 = fK � V >�1 j K � V n�1g (a union of Grassmann manifolds);

L(G) = fK � V >�1 j Gr�V has the right dimension for all�;

andK satisfies(i) and(iii )g;

so �DBL � L(G) � L(G)0. HereL(G) is not only a locally closed analytic subspace
of the manifoldL(G)0 [SM2] (2.9), but satisfies properties similar to those for�DBL

in Theorem 5.6. It is a holomorphic locally trivial fibre bundle with affine fibres
and smooth basefF �K jK 2 L(G)g. But, as condition (iv) is not used, this base is
larger than�DPMHS and the dimension of the fibres is larger thanNBL.

The choice of elementss1; :::; s� as in Proposition 5.1 is essential for the whole
Section 5.

PROPOSITION 5.1.LetF � 2 �DPMHS. There exist elementssi 2 C�i , i = 1; :::; �,
with the properties
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22 CLAUS HERTLING

(�) s1; : : : ; s� project onto aC -basis of
L
�1<�<n Gr�VK=Gr�V @

�1
t K for (one or

equivalently) anyK such that@�1
t K � K andF �K = F �.

(�) s�+1 := 0; there exists a map�: f1; : : : ; �g ! f1; : : : ; �; �+ 1g with

(t� (�i + 1)@�1
t )si = s�(i):

(
) There exists an involution�: f1; : : : ; �g ! f1; : : : ; �g with �(i) = �+ 1� i
if �i 6= 1

2(n � 1) and�(i) = � + 1� i or �(i) = i if �i = 1
2(n � 1) and

PS(si; sj) = ��(i)j � @
�n�1
t :

Remarks.(i) Condition(�) is the most simple to obtain and the most important.
It implies

Gr�V @
q
tK =

M
i;p

�i�p=�;p6q

C � @pt si:

Condition(�) corresponds to the notion of an opposite filtration in [SM1] Section 3.
(ii) Condition (�) is the next important. But without loosing too much, one

could replace it by the weaker condition

(t� (�i + 1)@�1
t )si 2

M
�j=�i+1

C � sj:

Together with(�), that corresponds to the notion of an opposite (B)-filtration in
[SM1] Section 3. With the weaker condition instead of(�), the involution� in (
)
can be chosen as�(i) = �+ 1� i for anyi.

Proof of Proposition 5.1.It will suffice to prove the existence ofs1; : : : ; s� for
one filtrationF � 2 DPMHS: anyg 2 GC induces an automorphism ofG0, which
mapss1; : : : ; s� to elements with the same properties(�) and(
) and the analogous
property(�) for g(F �) 2 �DPMHS. The groupGC acts transitively on�DPMHS.

So, letF � 2 DPMHS. The proof uses Deligne’s Hodge DecompositionIp;q and
a version of Lemma 2.3, which takes into account the semisimple partMs of the
monodromy.

Some notation.If � is an eigenvalue ofMs then� denotes the number such
that e�2�i� = �, � 2 (�1;0], andm := n if � 6= 1,m := n+ 1 if � = 1.

Let Ip;q0 =
L

�(I
p;q
0 )� be the decomposition into eigenspaces ofMs. The

cohomologyHn(X1; C ) decomposes intoHn(X1; C ) =
L

i;p;q;�N
i(Ip;q0 )�:We

define a mapping�: Hn(X1; C ) !
L

�1<�<n Gr�VK for K as in(�) by

� j N i(Ip;q0 )�: = @
(p�i)�n
t �  � j N

i(Ip;q0 )�:

comp4198.tex; 7/08/1995; 8:16; v.7; p.22

https://doi.org/10.1023/A:1000638508890 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000638508890


CLASSIFYING SPACES FOR HODGE STRUCTURES AND BRIESKORN LATTICES 23

The composition of� with the canonical projectionM
�1<�<n

Gr�VK !
M

�1<�<n

Gr�VK=Gr�V @
�1
t K

is an isomorphism. Any union of bases of the subspacesN i(Ip;q0 )� maps under�
to a set of elements which satisfy condition(�). Now observe

(t� (�+ k + 1)@�1
t ) � @�kt �  � = @�k�1

t �  � �

�
�N

2�i

�

to see that any union of bases of the primitive subspaces(Ip;q0 )� together with all
nonvanishing images under(�N=2�i) maps under� to a set of elements which
satisfy(�) and(�).

To also obtain(
), we will choose bases of the primitive subspaces(Ip;q0 )� with
good properties with respect toS and apply� to them and to all nonvanishing
images under(�N=2�i).

In the decomposition ofHn(X1; C ), all subspaces except one are orthogonal
toN i(Ip;q0 )� with respect toS; the subspacesN i(Ip;q0 )� andNp+q�m�i(Iq;p0 )� are
dual (Lemma 2.3). The pairing

1
(2�i)m

(�1)p�(m�n)S

 
�;

�
�N

2�i

�p+q�m
�

!
: (Ip;q0 )� � (Iq;p0 )� ! C

is a perfect pairing. Because of

(�1)p�(m�n)S

 
v1;

�
�N

2�i

�p+q�m
v2

!

= (�1)q�(m�n)S

 
v2;

�
�N

2�i

�p+q�m
v1

!

for v1 2 (Ip;q0 )�; v2 2 (Iq;p0 )�; we obtain the same pairing if we exchange(Ip;q0 )�
and(Iq;p0 )�. If (Ip;q0 )� 6= (Iq;p0 )� we choose any two bases of(Ip;q0 )� and(Iq;p0 )�
which are dual with respect to this pairing. Ifp = q and� 2 f�1g we can choose
either an orthonormal basis of(Ip;p0 )�1 with respect to this (symmetric) pairing, or
a basis of(Ip;p0 )�1 such that each element of the basis is dual to another element
of the basis – except for one, which is selfdual, if dim(Ip;p0 )�1 is odd.

The union of such bases of the subspaces(Ip;q0 )� together with all nonvanishing
images under�N=2�i maps under� to a set of elements, which satisfy(�), (�),
and(
) if they are indexed properly. This follows from the definition of the pairing
PS onV >�1. Here it is useful to observe that

PS(a; (t� (� + 1)@�1
t )b)

= PS((t� (�+ 1)@�1
t )a; b) if a 2 C�; b 2 C�;
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24 CLAUS HERTLING

which follows from Lemma 4.2(iii) and which is a translation toPS of the fact that
N is an infinitesimal isometry with respect toS. 2

The next lemma is essentially a translation of part of [SM1] 3.4 into the more
explicit data which are used here.

LEMMA 5.2. Suppose,F � 2 �DPMHS and elementss1; : : : ; s� satisfying condition
(�) of 5:1 are given. Then for anyK � V >�1 such that@�1

t K � K andF �K = F �

and for anyi 2 f1; : : : ; �g, the intersection
�
si +

P
j;p

p>1;�j�p>�i

C � @pt sj

�
\ K

consists of a single elementhi,

hi = si +
X
j;p

p>1;�j�p>�i

c
(p)
ij � @pt sj:

The elementshi; i = 1; :::; �, form anR-basis ofK.

Proof. We start with elements~hi 2 (si + V >�i) \ K. Any such elements
~h1; : : : ; ~h� form anR-basis ofK. Condition(�) implies

Gr�VK =
M
i;p

p60;�i�p=�

C � @pt si � C� = Gr�VK �
M
i;p

p>1;�i�p=�

C � @pt si:

For anyi, we can add a suitable finite linear combination off@pt
~hj j �j � p >

�i; p 6 0g to ~hi such that the sum~~hi is

~~hi 2

0
BB@si + M

j;p
p>1;�j�p>�i

C � @pt sj + V n�1

1
CCA \K:

AsK � V n�1 (because ofF �K = F �), there exists an elementhi as claimed. The
uniqueness can be seen at once if one looks at the difference of two such elements.2

In the situation of Lemma 5.2 we setc(p)ij := 0 for i; j 2 f1; : : : ; �g, p > 1, if

�j � p 6 �i. We obtain an infinite sequence of� � �-matrices(c(p)ij )ij of which
only the firstn can have entries6= 0, because�j � p > �i impliesp 6 n.

There is a canonicalC � -action onG0, given by

c�
X

�� :=
X

cordM �(��) � �� if �� 2 C�; c 2 C � ;

ordM := min (l jM l
s = id) = gcd( denominators of�1; : : : ; ��):
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In general,c� is not an automorphism of the Gauß–Manin connectionG0, but it
satisfies

(c�) � @t = cordM � @t � (c�);

(c�) � t = c�ordM � t � (c�);

P
(�l)
S (c�a; c�b) = cordM �(�l+2) � P

(�l)
S (a; b); if a; b 2 V >�1:

The induced action

c�K = fc�� j � 2 Kg; c 2 C � ; K � V >�1;

on the set of subsets ofV >�1 satisfies

F �c�K = F �K ; @
�1
t (c�K) = c�(@�1

t K); t � (c�K) = c�(tK);

P
(�l)
S (c�K; c�K) = 0 if P (�l)

S (K;K) = 0:

The setsfK � V >�1 j @�1
t K � K;F �K = F �g and ���1

BL (F
�) for fixed F � 2

�DPMHS are invariant under thisC � -action.

COROLLARY 5.3.Suppose,F � 2 �DPMHSand elementss1; : : : ; s� satisfying con-
dition (�) of 5:1 are given, and

N1 := ]f(i; j; p) j 1 6 i; j 6 �; p > 1; �j � p > �ig:

Lemma5:2 yields a mapping

fK � V >�1 j @�1
t K � K; F �K = F �g ! CN1 ;K 7! (c

(p)
ij j �j � p > �i):

This mapping is bijective. It induces a canonical affine algebraic structure on the
setfK � V >�1 j @�1

t K � K; F �K = F �g. TheC � -action on this affine algebraic
space has negative weightsordM � (�i � (�j � p)).

Proof. Because of condition(�), the elementssi+�j;pc
(p)
ij �@

p
t sj, i = 1; : : : ; �,

generate a freeR-module of rank� for any choice of(c(p)ij j1 6 i; j 6 �; p >

1; �j�p > �i) 2 CN1 . With Lemma 5.2, this yields the isomorphism toCN1 . This
isomorphism induces aC � -action onCN1 with weight ordM � (�i � (�j � p)) < 0

for the coordinatec(p)ij : 2

By Corollary 5.3 the spacefK � V >�1j@�1
t K � K;F �K = F �g for fixedF � 2

�DPMHS is equipped with a system of coordinates. The equations for the conditions
tK � K andPS(K;K) � R � @�n�1

t in these coordinates are not independent of
one another. The equations fortK � K will be given in Proposition 5.4 and in
Proposition 5.5 additional independent equations fortK � K andPS(K;K) �
R � @�n�1

t will be given.
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PROPOSITION 5.4.Suppose, the following are given: A subspaceK � V >�1

with @�1
t K � K, F �K 2 �DPMHS; elementss1; : : : ; s� and a map�: f1; : : : ; �g !

f1; : : : ; � + 1g, which satisfy conditions(�) and (�) of 5.1; coefficientsc(p)ij and
elementshi as in 5.2. ThentK � K holds if and only if forp > 2

c
(p)
ik � (�k � p� �i) = �c

(p�1)
i��1(k)

+ c
(p�1)
�(i)k +

X
j

(�j � 1� �i) � c
(1)
ij � c

(p�1)
jk :

(Here the first summand�c(p�1)
i��1(k)

is meaningful only ifk 2 �(f1; :::; �g) and has

to be omitted otherwise.) Hence, iftK � K, then the coefficientsc(1)ij determine

all the higher coefficientsc(p)ij , p > 2, recursively. Furthermore, then

t hi = (�i + 1)@�1
t hi + h�(i) +

X
j

c
(1)
ij (�j � 1� �i)hj :

Proof. K =
L�
i=1R � hi. The conditiontK � K is equivalent tot hi 2 K for

all i = 1; : : : ; �.

t hi = (�i + 1)@�1
t si + s�(i) +

X
j;p

c
(p)
ij ((�j � p+ 1)@p�1

t sj + @pt s�(j))

= (�i + 1)@�1
t hi + h�(i) +

X
j

c
(1)
ij ((�j � 1� �i)hj +

+
X
j;p
p>2

c
(p)
ij (�j � p� �i)@

p�1
t sj +

X
j;p

c
(p)
ij @

p
t s�(j) �

�
X
j;p

c
(p)
�(i)j@

p
t sj �

X
j

c
(1)
ij (�j � 1� �i) �

X
k;p

c
(p)
jk @

p
t sk:

The sum of the last four terms vanishes if and only ift hi 2 K. This yields the
recursive formulas for the coefficientsc(p)ij , p > 2, and the formula fort hi. 2

Remark.The core of [SM1] Section 3 consists of the choice of elements
s1; : : : ; s�, which satisfy conditions(�) and (�) of 5.1 (or (�) and the weaker
condition(t � (�i + 1)@�1

t )si 2
L

�j=�i+1 C � sj, see the remark after 5.1), the
existence and uniqueness of elementshi as in 5.2, and the identity

t hi 2 (�i + 1)@�1
t hi +

X
�j�1>�i

C � hj

for K such thatF �K = F �; @�1
t K � K; tK � K.

PROPOSITION 5.5.Suppose, the following are given: A subspaceK � V >�1

such that@�1
t K � K, F �K 2 �DPMHS, tK � K; elementss1; : : : ; s� and maps

�; � which satisfy(�); (�), and(
) of 5:1; coefficientsc(p)ij and elementshi as in
5:2. Then
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(i) P (�n)
S (hi; hj) = 0 for all i; j () P

(�l)
S (K;K) = 0 for all 1 6 l 6 n;

(ii) P (�n)
S (hi; hj) = 0 () c

(1)
i�(j) = c

(1)
j�(i).

Proof. (i)

CLAIM. Let l 6 n. ThenP (�l)
S (hi; hj) = 0 for all i; j impliesP (�l+1)

S (hi; hj) =
0 for all i; j:

The claim and the assumptionP (�n)
S (hi; hj) = 0 for all i; j yield inductively

P
(�l)
S (hi; hj) = 0 for all i; j 2 f1; : : : ; �g; l 2 f1; : : : ; ng:

This impliesP (�l)
S (K;K) = 0 for l 2 f1; : : : ; ng because of theR-sesquilinearity.

Proof of the claim.If �i + �j > l � 3, thenP (�l+1)
S (hi; hj) = 0 because

of PS : C� � C� ! C � @�����2
t . If �i + �j = l � 3, thenP (�l+1)

S (hi; hj) =

P
(�l+1)
S (si; sj) = 0, becausePS(si; sj) = P

(�n�1)
S (si; sj) 2 C �@�n�1

t (condition

)). If �i + �j < l � 3, then

(l � 1)@�1
t P

(�l+1)
S (hi; hj)

= [t; P
(�l+1)
S (hi; hj)]

= P
(�l)
S (t hi; hj)� P

(�l)
S (hi; t hj)

= P
(�l)
S ((�i + 1)@�1

t hi; hj)� P
(�l)
S (hi; (�j + 1)@�1

t hj)

= (�i + �j + 2)@�1
t P

(�l+1)
S (hi; hj);

so, also in this caseP (�l+1)
S (hi; hj) = 0. Here we have used the formulat hi 2

(�i + 1)@�1
t hi +

P
�j�1>�i C � hj from 5.4 and the hypothesisP (�l)

S (hi; hj) = 0.

Proof. (ii)

P
(�n)
S (hi; hk)

= P
(�n)
S

0
@si +X

j;p

c
(p)
ij @

p
t sj ; sk +

X
l;q

c
(q)
kl @

q
t sl

1
A

= @t � P
(�n�1)
S

0
@X

j

c
(1)
ij sj; sk

1
A+ (�@t) � P

(�n�1)
S

 
si;
X
l

c
(1)
kl sl

!
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28 CLAUS HERTLING

= @�nt (c
(1)
i�(k) � c

(1)
k�(i)): 2

THEOREM 5.6.��BL: �DBL ! �DPMHS is a locally trivial holomorphic bundle with
fibres isomorphic toCNBL ,

NBL = ]f(i; j) j 16 i 6 j 6 �; �i + �j < n� 2g

=
X

�+�<n�2;�<�

d(�) � d(�) +
X

2�<n�2

1
2d(�)(d(�) + 1) < 1

4�
2;

hered(�) is the multiplicity of� as spectral number. There is a canonicalC � -
action on the fibres with negative weights(ordM � (�i + �j � n + 2) j 1 6 i 6
j 6 �; �i + �j < n � 2). Thus there is a canonical zero section. TheC � -action
commutes with the action ofGC on �DBL .

�BL: DBL ! DPMHS is the restriction of��BL toDBL = ���1
BL (DPMHS):

Proof. For fixedF � 2 �DPMHS, 5.4 and 5.5 show that a coordinate system of
���1

BL (F
�) is given by thosec(1)i�(j) such thati 6 j and��(j)�1> �i. Thus���1

BL (F
�)

is isomorphic toCNBL ,

NBL = ]f(i; j) j 16 i 6 j 6 �; ��(j) � 1> �ig

= ]f(i; j) j 16 i 6 j 6 �; �i + �j < n� 2g

=
X

�+�<n�2;�<�

d(�) � d(�) +
X

2�<n�2

1
2d(�)(d(�) + 1)

< 1
4�

2;

here we used��(j) + �j = n � 1;
P
� d(�) = �; d(�) = d(n � 1 � �).

With respect to these coordinates, theC � -action on���1
BL (F

�) has the weights
ordM � (�i � (��(j) � 1)) = ordM � (�i + �j � n + 2) < 0. The groupGC acts
on G0 � V >�1, on �DBL, and on �DPMHS. By definition, theC � -action on �DBL

commutes with the action ofGC on �DBL.
If s1; : : : ; s� satisfy (�); (�); (
) of 5.1 for F �, then for anyg 2 GC the

imagesg(s1); : : : ; g(s�) satisfy(�); (�); (
) of 5.1 forg(F �). Thus the bijection
g: ���1

BL (F
�) ! ���1

BL (g(F
�)) respects the affine algebraic and the holomorphic

structure of these fibres of��BL. Any local section of the bundleGC ! GC � F
� =

�DPMHS induces a local trivialisation of the bundle��BL aroundF �. 2

COROLLARY 5.7.The groupGZacts properly discontinuously onDBL . The quo-
tientDBL=GZ is a normal complex space and has at most quotient singularities.

Proof. Proposition 3.6(b) and Theorem 5.6. 2

Remark.If F � 2 DPMHS then the groupGR \ Stab(F �) is compact because
of Lemma 2.3, and the groupGZ\ Stab(F �) is finite. The projectionDBL=GZ!
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DPMHS=GZis a locally trivial bundle if and only if the images ofGZ\ Stab(F �)!
Aut(��1

BL (F
�)) are isomorphic for allF � 2 DPMHS. For example, this is satisfied

for E3;0; Z1;0;W1;0; U1;0, but not forQ2;0; S1;0 (Sect. 6).

6. Period Mappings, Examples

The elements ofDBL=GZare equivalence classes of subspaces ofG0 with respect to
the operation ofGZonG0. The equivalence class inDBL=GZof a Brieskorn lattice
H 00

0 = H 00
0 (f) is an invariant of the right equivalence class off . We call this invariant

BL(f). The spaceDBL=GZ is a moduli space for such invariants. There is another
description of the elements ofDBL=GZ: We can considerGZas the automorphism
group of the tuple(Hn(X1;Z); Ms; N; S;  ; G0) andDBL=GZ as the set of
isomorphism classes of tuples(Hn(X1;Z); Ms; N; S;  ; G0; K � G0):

The invariant BL was defined and studied first in [He1] [He2], under the name
LBL and together with two weaker invariants, one of which is the Picard–Fuchs
singularity [AGV]. It contains very fine analytic information and is a good can-
didate for Torelli theorems for hypersurface singularities. In [He2] the following
conjecture is formulated.

CONJECTURE.The invariantBL(f) of a hypersurface singularityf determines
the right equivalence class off .

In [He2] [He3] global Torelli theorems for several families of singularities are
proved, which confirm this conjecture.

THEOREM 6.1 ([He2] [He3]).The invariantBLdetermines the right equivalence
class for

(i) all unimodal singularities,
(ii) all bimodal singularities, possibly with the exception of the subseriesZ1;14k;

S1;10k; S
]
1;10k (k > 1) (these cases are open),

(iii) all semiquasihomogeneous singularities with weights(1
3;

1
3;

1
3;

1
3),

(iv) all semiquasihomogeneous singularities with weights(1=a0; : : : ;1=an) and
pairwise coprimeai.

After some general remarks about the period mapping, these families will be
discussed in some detail.

Apart from these global Torelli theorems, the conjecture is confirmed by an
infinitesimal Torelli theorem for all hypersurface singularities [SM2] (3.1 and 3.2).
Let f0 be a hypersurface singularity andS a sufficiently small open subset of the
�-constant stratum in some semiuniversal unfolding off0. Within this�-constant
stratum, the topological data like Milnor lattice and Seifert form and also the
spectral pairs are constant. We obtain a period mapping�: S ! DBL ; s 7! H 00

0 (f)
for sufficiently smallS. The period mapping� is holomorphic.
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30 CLAUS HERTLING

THEOREM 6.2 ([SM2]).

(a) If S is smooth then�: S ! DBL is an immersion.
(b) Even ifS is not smooth any fibre of� is finite.

In the case of semiquasihomogeneous singularities, we know more aboutS and
the period mapping�. Let f0 be a quasihomogeneous singularity with weights
(w0; : : : ; wn) and degree 1. ThenDPMHS = Dprim andNPMHS = 0, because
the monodromy is finite. The�-constant stratumS in a suitable semiuniversal
unfolding is a productS = S0� S� with S� = C dim S� . Here

fs = f(s0;0) +
X
i

s�i di ; s = (s0; s�) = (s0; (s�i )i) 2 S
0� S�;

f(s0;0) is quasihomogeneous, thedi are the monomials of degree> 1 in a monomial
basis of the Jacobi algebra, and [Va2]

dimS0 = d(�1 + 1); dimS� =
X

�>�1+1

d(�);

here �1 = �1+
P
wi is the smallest spectral number. Setting

degs�i = ordM � (1� degdi) 2 Z<0;

ordM = min (l jM l = id) = gcd(denominators ofw0; : : : ; wn);

we obtain aC � -action with negative weights on the fibresS� of the trivial bundle
S0 � S� ! S0. We also have aC � -action with negative weights on the fibres of
the bundle�BL: DBL ! DPMHS (Prop. 5.5). In Proposition 6.3,S0 is supposed to
be sufficiently small.

PROPOSITION 6.3.In the case of semiquasihomogeneous singularities, the peri-
od mapping�: S ! DBL is a fibre preservingC � -equivariant embedding of the
bundleS ! S0 into the bundleDBL ! DPMHS.

The proposition follows from [He2] (2.4). There a monomial differential form
! = ( monomial inx0; : : : ; xn) � dx0 ^ : : : ^ dxn and its values

s[!]0(s
0; s�) 2 H 00

0 (f(s0;s�)) = 
n+1=df(s0;s�) ^ d
n�1 � V >�1

for fixeds0 and varyings� are considered. Then (cf. [Br])

s[!]0(s
0;0) 2 C�; where� = degw(monomial)� 1+�wi;

s[!]0(s
0; s�) has only eigenvalue parts inC� for � > �; the eigenvalue part in

C� is constant= s[!]0(s
0;0); the coefficients of the higher eigenvalue parts are

quasihomogeneous polynomials in(s�i )i such that

s[!]0(s
0; c�s�) = cordM �� � c� s[!]0(s

0; s�):
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The proof uses formulas for the derivatives@t; @s�
i

in the Gauß–Manin connection
and a power series ansatz for the holomorphic coefficients of the eigenvalue parts.
We obtainH 00

0 (f(s0;c�s�)) = c� H 00
0 (f(s0;s�)) and (together with 6.2) Proposition

6.3.
This shows that very often the PMHS of a singularity is not good enough

for Torelli theorems. All the semiquasihomogeneous singularities with the same
quasihomogeneous part have the same PMHS. Probably, the simple elliptic and the
hyperbolic singularities are the only singularities where the PMHS determines the
right equivalence class.

Now we come to the discussion of the families of singularities which are listed
in Theorem 6.1. The following table gives the dimensions dimS (=modality),
dimDprim, NPMHS, andNBL. In the case of semiquasihomogeneous singularities,
we write dimS = dimS0 + dimS�.

Table I.

Singularities dimS dimDprim NPMHS NBL

~E6; ~E7; ~E8 1 = 1+ 0 1 0 0
Tpqr;

1
p
+ 1

q
+ 1

r
> 1 1 0 1 0

14 exceptional unimodal 1= 0+ 1 0 0 1
E3;0; Z1;0; Q2;0;W1;0; S1;0; U1;0 2 = 1+ 1 1 0 1
14 exceptional bimodal 2= 0+ 2 0 0 2
8 bimodal series 2 0 or 1 0 > 2
semiqh. with weights( 1

3 ;
1
3 ;

1
3 ;

1
3) 5 = 4+ 1 4 0 1

semiqh. with weights(1=a0; : : : ; 1=an) dimS = 0+ dimS� 0 0 > dimS�

and pairwise coprimeai

Table I shows that any level of the double fibrationDBL ! DPMHS ! Dprim can
contain geometric information. dimS = dimDBL for 6 of the 8 listed classes.
That is not typical. In general, one can expect that dimDBL is much bigger than
the dimension of the�-constant stratum, and that dimDprim, NPMHS, andNBL are
not 0.

With the exception of the semiquasihomogeneous singularities with weights
(1

3;
1
3;

1
3;

1
3), the proof of the global Torelli theorems proceeds in the following

way. First, from Arnold’s lists families are chosen which contain representatives
of each right equivalence class in the�-homotopy class. The base spacesS are
not small. Then the (in most cases) many-valued period mappingS ! DBL is
computed. Finally the action ofGZ on DBL is determined and compared with
the right equivalence relation inS, with the result that the induced mapping
S=right equivalence! DBL=GZ is injective. Often, controlling the action ofGZ,
is most difficult. But also the computation of the period mapping is easy only for
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32 CLAUS HERTLING

semiquasihomogeneous parameters. In the following the most remarkable features
of the single families are discussed.

6.1. THE SIMPLE SINGULARITIESAk; Dk; Ek

Here the difference�� � �1 = n+ 1� 2
Pn
i=0wi of the largest and the smallest

spectral number is smaller than 1. ThusH 00
0 = V �1 andDBL = DPMHS = Dprim =

fptg. In view of Theorem 6.2, this implies that these singularities are simple.

6.2. THE SIMPLE ELLIPTIC SINGULARITIES ~E6; ~E7; ~E8

[He1] [He2],DBL = DPMHS = Dprim is isomorphic to the upper half planeH .
The groupGZacts onDprim asPSL(2;Z)acts onH . There exist Legendre normal
forms with parameter spaceS = C � f0; 1g andS=right equivalence= S=S3,

S3 =

�
�! �;1� �;

1
�
;

�

�� 1
;

1
1� �

;
�� 1
�

�
:

The period mappingS=right equivalence! DBL=GZ is an isomorphism. Every-
thing is as in the case of elliptic curves. In the case of surface singularities, the
invariant BL can be identified with the pure Hodge structure of the elliptic curve
in the minimal resolution of the singularity.

6.3. THE HYPERBOLIC SINGULARITIESTpqr; 1
p
+ 1

q
+ 1

r
< 1

[He1] [He2],Dprim = fptg; DPMHS = DBL
�= C ; DBL=GZ

�= C =Z �= C � f0g.
There exist normal forms withS = C � f0g andS=right equivalence= C �
f0g=he2�i=kgV (p;q;r)i. The period mappingS=right equivalence! DBL=GZ is an
isomorphism.

6.4. THE 14 EXCEPTIONAL UNIMODAL SINGULARITIES

[He1] [He2],Dprim = DPMHS = fptg; DBL
�= C ; DBL=GZ

�= C =he2�i=mi for
somem 2 N. There exist normal forms withS = C andS=right equivalence=
C � f0g=he2�i=mi. The period mappingsS ! DBL andS=right equivalence!
DBL=GZare isomorphisms.

6.5. THE 6 BIMODAL SINGULARITIES E3;0; Z1;0; Q2;0;W1;0; S1;0; U1;0

[He1] [He2],Dprim = DPMHS
�= H ; DBL

�= H � C . There exist normal forms
fs0;s� = fs0;0 + s� � d with S = S0 � S� = (C � f0; 1g) � C . Herefs0;0 is
quasihomogeneous andd is a monomial of degree> 1. DBL andS are vector
bundles.
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Letm be the number 9,7,6,9,6,5 forE;Z;Q;W;S; U respectively. There exist
groupsG(S); G(S0); G(DBL); G(DPMHS) of automorphisms ofS (as vector
bundle),S0; DBL (as vector bundle), andDPMHS with the properties:

S=right equivalence= S=G(S),
DBL=GZ= DBL=G(DBL),
G(S) andG(DBL) are central extensions ofG(S0) andG(DPMHS) by the
cyclic grouphe2�i=mi, which acts on the fibres of the vector bundles by multi-
plication.

The period mappingS ! DBL is many-valued, locally it is an isomorphism of
vector bundles, the image is the whole ofDBL with the exception of the fibres over
a discrete set of points ofDPMHS.

The period mappingS=right equivalence! DBL=GZ is injective. The moduli
spaceS=right equivalenceis isomorphic to

C 2 for E;Z;U

(C � f0g)� C for W

C 2=f�idg for Q

((C � f1;�1g)� C )=f�idg for S:

It is smooth forE;Z;U;W . In the case ofQ andS, it has anA1-singularity
at the right equivalence class off 1

2 ;0
. The projectionS=right equivalence!

S0=right equivalenceis a locally trivial bundle forE;Z;U;W , but not forQ and
S. In the case ofQ andS, the groupGZ\ Stab(F �) is isomorphic tohe2�i=mi for
genericF � 2 DPMHS, but this group has the double size for the Hodge filtration of
f 1

2 ;0
(compare the remark at the end of Section 5). In the case of surface singularities,

the four branches of the minimal resolution off 1
2 ;0

intersect the central curve in

four points with double ratio12.
For the reader who wants to check the statements on the moduli spaceS=right

equivalenceor who wants to know the groupG(DBL), here are some more details
on the groupsG(DPMHS); G(S

0); G(S):

G(DPMHS) is a triangle group of type(2;3;2m) forE;Z;Q;U and a triangle group
of type(2;2m;2m) for W;S.

G(S0) = S3 = f�! �;1��;1=�; �=��1;1=1��; ��1=�g forE;Z;Q;U ,
G(S0) = S2 = f�! �;1� �g for W;S.

There exists a holomorphic function�: G(S0)� S0 ! C � f0g such that

9 
 2 G(S) such that(s0
1; s

�
1 ) = 
(s0

2; s
�
2 )

() 9 g 2 G(S0) such thats0
1 = gs0

2 and(s�1 )
m = �(g; s0

2) � (s
�
2 )

m:
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The groupG(S) is uniquely determined byG(S0) and�.
In [He2] for some of the classesE;Z;Q;U;W; S, the monomiald was badly

chosen, because it was an element of the Jacobi ideal offs0;0 for special values of
s0. A better choice ofd is x2y4; x2y4; xz2; y4z; x2y4; x2y3 for E;Z;Q;U;W; S
respectively, if one uses the samefs0;0 as in [He2] (Table I). Then� is determined
by

�(� 7! 1� �; s) =

�
s

s� 1

�18

;

�
s

s� 1

�14

;�1;1;1;�1

for E;Z;Q;U;W; S, respectively, and

�

�
� 7!

1
�
; s

�
= s�12; s�10; s3;�s�21 for E;Z;Q;U; respectively:

6.6. THE 14 EXCEPTIONAL BIMODAL SINGULARITIES

[He1] [He2],Dprim = DPMHS = fptg; DBL
�= C 2, the quotientDBL=GZ has a

cyclic quotient singularity,

DBL=GZ
�= C 2=

��
e2�iwr 0

0 e2�iws

��
for somewr; ws 2 Q:

The period mappingsS = S� ! DBL andS=right equivalence! DBL=GZare
isomorphisms.

6.7. THE 8 BIMODAL SERIES

[He1] [He2], here letm := 18;14;12;12;12;10;10;9 for E3;p, Z1;p, Q2;p, W1;p,
W ]

1;p, S1;p, S
]
1;p, U1;p (p > 1), respectively.

Dprim = DPMHS = fptg; DBL
�= C [p=m]+2 for the singularities withp 6�

0(modm),

Dprim = DPMHS
�= H ; DBL

�= H �C [p=m]+2 for the subseries withp � 0(modm).

There exist normal forms withS = (C � f0g)� C .
Forp 6� 0( modm) the following holds: The image of the (many-valued) period

mappingS ! DBL is invariant underGZ. The period mappingS=right equi-
valence! DBL=GZ is injective.S=right equivalenceis the quotient ofS by some
finite group, which acts on the factorsC � f0g andC of S = (C � f0g) � C by
multiplication with unit roots. This group is cyclic for all series with the exception
of the subseriesU2q.
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Forp � 0(mod m) the following holds: The image of the (many-valued) period
mappingS ! DBL is contained in one fibre��1

BL (F
�
0 ) of �BL: DBL ! DPMHS and

is invariant underGZ\ Stab(F �0 ). GZacts onDPMHS
�= H like a triangle group

and onDBL like a central extension of this triangle group by some finite cyclic
group, which acts on the fibres of�BL. For nearly all fibres��1

BL (F
�), the stabilizer

groupGZ\ Stab(F �) is isomorphic to this finite group, but for some exceptional
fibres the groupGZ\ Stab(F �) might be larger. Unfortunately, it is not clear,
in which fibre the image�(S) of the period mapping is contained. The period
mappingS=right equivalence! DBL=GZ is injective only if this fibre is not one
of the exceptional fibres with larger stabilizer group. This is the reason for the
uncertainty, whether the invariant BL determines the right equivalence class for
some of the subseries withp � 0(modm).

6.8. THE SEMIQUASIHOMOGENEOUS SINGULARITIES WITH WEIGHTS( 1
3 ;

1
3 ;

1
3 ;

1
3)

[He3], the spaceDprim = DPMHS
�= fz 2 C 4 j jzj < 1g is isomorphic to the

classifying space of polarized pure Hodge structures onH3(X1; C )6=1, which are
invariant under the monodromy.

Any homogeneous singularity with weights(1
3;

1
3;

1
3;

1
3) is the cone over a smooth

cubic in P3. The coarse moduli spaceMcubics for smooth cubics inP3 is four
dimensional, an affine variety, and it coincides with the coarse moduli space for the
homogeneous singularities with weights(1

3;
1
3;

1
3;

1
3) up to right equivalence. The

period mappingMcubics! DPMHS=GZ is an open embedding. It yields a Torelli
theorem for smooth cubics inP3 in terms of some pure Hodge structure. This is
remarkable, because the Hodge structures on the cohomology groups of the smooth
cubics are trivial.

The proof of this Torelli theorem for the homogeneous singularities does not
use some global family and a many-valued period mapping as in all other cases.
The ingredients are [He3] a projective closure inP4 of the Milnor fibres of a homo-
geneous singularity, an exact sequence of mixed Hodge structures of Steenbrink,
the global Torelli theorem for cubics inP4 of Tjurin, Clemens and Griffiths, and
the cancellation property of space germs of Hauser and Müller.

There also exist semihomogeneous singularities with weights(1
3;

1
3;

1
3;

1
3). As

before Proposition 6.3, locally one can choose a�-constant stratum of the form
S = S0 � S� = S0 � C , whereS� = C gives the one semihomogeneous
parameter. The classifying spaceDBL

�= DPMHS� C is a vector bundle with one
dimensional fibre, too. For sufficiently smallS0 the period mappingS ! DBL

is an open embedding of vector bundles. The proof of the global Torelli theorem
for semihomogeneous singularities uses that for homogeneous singularities, this
period mapping, and some statement on the action ofGZon the fibres of the bundle
DBL ! DPMHS.
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36 CLAUS HERTLING

6.9. BRIESKORN–PHAM SINGULARITIES WITH PAIRWISE COPRIME EXPONENTS

[He3], any singularity which is�-homotopic to a Brieskorn–Pham singularity is
right equivalent to a semiquasihomogeneous singularity with weights(1=a0; : : : ;
1=an). If the exponentsa0; : : : ; an are pairwise coprime, there exists a normal
form with parameter spaceS = S� �= C dim S and aC � -action with negative
weights onS such thatS=right equivalence= S=he2�i=ai; a = a0 � : : : an: All
eigenspaces of the monodromy are one-dimensional, soDprim = DPMHS = fptg.
Also the classifying spaceDBL

�= CNBL is equipped with someC � -action with
negative weights. The period mappingS ! DBL is aC � -equivariant embedding.
The induced period mappingS=right equivalence! DBL=GZis injective, because
DBL=GZ= DBL=he2�i=ai: To prove this, one has to showGZ= h�Mi, which is a
consequence of the very special properties of the integral monodromyM for these
singularities.
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singulariẗaten,Math. Ann.302(1995), 359–394.
[He3] Hertling. C.: Brieskorn lattices and Torelli type theorems for cubics inP3 and for Brieskorn-

Pham singularities with coprime exponents, will appear in:Singularities, Festband in
honour to E. Brieskorn, Birkhäuser, Basle.
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