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Marcinkiewicz Multipliers and Lipschitz
Spaces on Heisenberg Groups

Yanchang Han, Yongsheng Han, Ji Li, and Chaogiang Tan

Abstract. The Marcinkiewicz multipliers are L? bounded for 1 < p < oo on the Heisenberg group
H" ~ C" x R (Miiller, Ricci, and Stein). This is surprising in the sense that these multipliers are
invariant under a two parameter group of dilations on C" x R, while there is no two parameter
group of automorphic dilations on H". The purpose of this paper is to establish a theory of the flag
Lipschitz space on the Heisenberg group H"” ~ C" x R that is, in a sense, intermediate between
that of the classical Lipschitz space on the Heisenberg group H" and the product Lipschitz space on
C" x R. We characterize this flag Lipschitz space via the Littlewood-Paley theory and prove that
flag singular integral operators, which include the Marcinkiewicz multipliers, are bounded on these
flag Lipschitz spaces.

1 Introduction

Classical Calderén-Zygmund singular integrals commute with the one parameter
dilations on R"*, § - x = (0xy,...,0x,) for § > 0, while the product Calderén-
Zygmund singular integrals commute with the multi-parameter dilationsonIR", §-x =
(81x15 ..., 0pxy) for 8 = (8y,...,8,) e R%.

In the product Calderén-Zygmund theory, the product singular integral operators
are of the form T f = K » f, where K is homogeneous; that is, §; --- §,K(J-x) = K(x),
or, more generally, K(x) and 6; --- 8, K(9 - x) satisfy the same size, smoothness, and
cancellation conditions. Such operators have been studied for example in Gundy and
Stein [13], Fefferman and Stein [11], Fefferman [8-10], Chang [3], Chang and Feffer-
man [4-6], Journé [17,18] and Pipher [29]. More precisely, Fefferman and Stein [11]
studied the L? boundedness (1 < p < oo) for the product convolution singular inte-
gral operators. Journé in [17,19] introduced a non-convolution product singular in-
tegral operators and established the product T1 theorem and proved the L - BMO
boundedness for such operators. The product Hardy space H? (R"” x R™) was first in-
troduced by Gundy and Stein [13]. Chang and Fefferman [4-6] developed the theory
of atomic decomposition and established the dual space of Hardy space H'(R" xR™),
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namely the product BMO(R"” x R™) space. Carleson [1] disproved by a counter-
example a conjecture that the product atomic Hardy space on R” x R™ could be de-
fined by rectangle atoms. This motivated Chang and R. Fefferman to replace the role
of cubes in the classical atomic decomposition of H? (R") by arbitrary open sets of
finite measures in the product H? (R” x R™). Subsequently, R. Fefferman in [9] es-
tablished the criterion of the H? — L? boundedness of singular integral operators
in Journés class by considering its action only on rectangle atoms via Journé lemma.
However, R. Fefferman’s criterion cannot be extended to three or more parameters
without further assumptions on the nature of T as shown in Journé [17,19]. In fact,
Journé provided a counter-example in the three-parameter setting of singular integral
operators such that R. Fefferman’s criterion breaks down. Subsequently, the H? to L?
boundedness for Journé’s class of singular integral operators with arbitrary number of
parameters was established by J. Pipher [29] by considering directly the action of the
operator on (non-rectangle) atoms and an extension of Journé’s geometric lemma to
higher dimensions.

On the other hand, multi-parameter analysis has only recently been developed for
L? theory with 1 < p < co when the underlying multi-parameter structure is not ex-
plicit, but implicit, as in the flag multi-parameter structure studied on the Heisenberg
group H" by Miiller, Ricci, and Stein in [23,24]. See also Phong and Stein in [28] and
Nagel, Ricci, and Stein in [25]. In [23,24], the authors obtained the surprising result
that certain Marcinkiewicz multipliers, invariant under a two-parameter group of di-
lations on C" x R, are bounded on L? (H"), despite the absence of a two-parameter
automorphic group of dilations on H". To be precise, the Heisenberg group H" is the
one consisting of the set

c" XR:{[z,t] :zeC”,teR}
with the multiplication law
[z.t]o [, t'] =[z+2, t+ 1 +2Im(2Z)],

where identity is the origin [0,0] and the inverse is given by [z, t]™ = [z, —t].
In addition to the Heisenberg group multiplication law, nonisotropic dilations of
H" are given by
§:H" —H", 6&([z1t]) =[rz, 1]
A trivial computation shows that §, is an automorphism of H” for every r > 0. How-
ever, the standard isotropic dilations of R?"*! are not automorphisms of H".
The “norm” function p on H" is defined by

plzt]) = (J2* + eV
e casytossthat 1) - (=t = (0511, p 0 5. -
p([z,t]) = 0if and only if [z,¢] = [0,0], and p([z,¢] o t']) < p(p(
p([z',t'])), where y > 1is a constant.

The Haar measure on H" is known to coincide with the Lebesgue measure on
R*"*1, The vector fields

9 9 9 2 2
Ti=—, Xji=—-2yi—, Yji=—+2x;—, j=1...,n,
o Tk Vo YT oy T "

P([Z> ])’
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form a natural basis for the Lie algebra of left-invariant vector fields on H”. The stan-
dard sub-Laplacian £ on the Heisenberg group is defined by

n

_ 2, y2
=-> (xj+1}).
=1
The operators £ and T = % commute, and so do their spectral measures dE; (£) and
dE,(n). Given a bounded function m (&, 1) on R, xR, define the multiplier operator
m(L,iT) on L*(H") by

m(L,iT) = fR fR m(&,n)dEy(§)dE,(n).

Then m(£,iT) is automatically bounded on L*(H"), and if one imposes Marcin-
kiewicz conditions on the multiplier m(¢&, ), namely,

| (896)*(10,)Pm(&,1)| < Cayps

for all |a|, > 0, then Miiller, Ricci and Stein [23] proved that the Marcinkiewicz
multiplier operator m(L,iT) is a bounded operator on L? (H") for 1 < p < co. This
is surprising, since these multipliers are invariant under a two parameter group of
dilations on C" x R, while there is no two parameter group of automorphic dilations
on H". Moreover, they showed that Marcinkiewicz multiplier can be characterized
by convolution operator with the form f x K where, however, K is a flag convolution
kernel. A flag convolution kernel on H” = C" x R is a distribution K on H" which
coincides with a C* function away from the coordinate subspace {(0,u)} c H",
where 0 € C" and u € R, and satisfies the following.

* (Differential Inequalities) For any multi-indices o = (o, ..., a,),
Cope -1-B
070K (2 )| < Cag Il (12 + Ju)

for all (z,u) e H" with z # 0 and all |«|, 8 > 0.
* (Cancellation Condition)

/RagK(z,u)qsl(au)du

for every multi-index « and every normalized bump function ¢; on R and every
d>0;

< Ca|z|—2n—|a|

‘[C oK (2, u)¢2(82)dz| < Cylu|™F

for every index 8 > 0 and every normalized bump function ¢, on C" and every
0 > 0;and

‘fH K(z,u)$3(612z, 6ou)dzdu| < C

for every normalized bump function ¢; on H" and every 6; > 0 and &, > 0.

They also proved that flag singular integral operators are bounded on L? (H") for
1 < p < oo. See [26] and [27] for more about flag singular integral operators on
homogeneous groups.

At the endpoint estimates, it is natural to expect that the boundedness on Hardy
and BMO spaces are available. However, the lack of automorphic dilations underlies
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the failure of such multipliers to be in general bounded on the classical Hardy space H'
and also precludes a pure product Hardy space theory on the Heisenberg group. This
was the original motivation in [14] to develop a theory of flag Hardy spaces Hﬁag on
the Heisenberg group, 0 < p <1, that is, in a sense ‘intermediate’ between the classical
Hardy spaces H? (H") and the product Hardy spaces Hgm duct (C"xR) (see A. Chang
and R. Fefferman [4, 5,8-10]). They showed that singular integrals with flag kernels,
which include the aforementioned Marcinkiewicz multipliers, are bounded on H ag’
as well as from H, ﬁa to L?, for 0 < p < 1. Moreover, they constructed a singular inte-
gral with a flag kernel on the Heisenberg group that was not bounded on the classical
Hardy spaces H'(H"). Since, as pointed out in [14], the flag Hardy space Hﬁag(H”)
is contained in the classical Hardy space H? (H"), this counterexample implies that
Hb, (H") § HI(H").

A basic question arises: Can one establish the endpoint estimates of flag singular
integral operators on the Lipschitz space? The purpose of this paper is to answer this
question. More precisely, we will establish a theory of the flag Lipschitz space on
Heisenberg group H" ~ C" x R that is, in a sense, intermediate between those of the
classical Lipschitz space on Heisenberg group H” and the product Lipschitz space on
C”" x R. For more about the classical Lipschitz spaces, see [2,15,16,20-22,30, 31].

We will characterize the flag Lipschitz space via the Littlewood-Paley theory and
prove that flag singular integral operators, which include the Marcinkiewicz multipli-
ers, are bounded on the flag Lipschitz space on Heisenberg group H".

Now we introduce the following notation:

Aury(N(z1) = f((z.1) 0 (u,v)) = f(z1),
ALy (N(zr) = f((zr) o (u,v)) + f((2.7) 0 (w,v) ) = 2f (2,7),
and

AL (N)(zr) = f(zr=w) - f(z.7),
Ai,’z(f)(z,r) = f(z,r+w)+ f(z,r—w) —2f(z,1).

The flag Lipschitz space on Heisenberg group is defined as follows.

Definition 1.1 A continuous function f(z,r) defined on H" belongs to the flag
Lipschitz space Lipg,,, where a = (a1, &) and ay, a3 > 0, if and only if
(i) when 0 < o, a5 < 1,

(11) |A%vAl(u,v)(f)(Z’ T)|
= ‘f( (z,r) o (u,v+ w)_l) —f( (z,1r)o0 (u,v)_l)
- (1) e (0w)™) + f(z7)|

< Cl(u, v) | w|*,

where |(u,v))? = |ul* + |v|;
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(ii) when a; = 1,0 < a5 < 1,
(12)  [ALALY,, (N(z 1)l
[f((zr) o (wv)) + f((z:r) o (u,9) ) = 2f(2,7)]
- [f((@r)o (wv=w)) + f((zr) o (v +w)™)
~2f((z.1) 2 (0,w) )]

< Cl(u,v) lwl*s
(iii) when 0 < a; < L5 = 1,
13) A% AL, (@)
[f((z7) 2 (0,)) + f((z:7) 0 (0,w) ™) = 2f(2.7)]
~[f(@r) o (w=v+w)) + f((zr) o (wv+w)™)
~2f((z.1) o () )]

< Cl(u, v)[“wls
(iv) when a; = a0 = 1,
a4 (AZAY7, (F)(ar)]
[f((zr) o (w,v+w))+ f((z7) 0 (u, v =w)™")
=2f((z,r) o (0,w))]
+ [f((zr) o (u,v=w)) + f((z.r) 0 (u,v +w) ™)
-2f((z.r) 2 (0,w)™)]

=2[f((z.1) o (w,v)) + f((=>7) o (u,v) ) = 2f (2, V))]‘
< Cl(uw,v)[lwl;

forall (z,7) and (u,v) € H", w € R and the constant C is independent of (z, r), (1, v)
and w.

When «a = (ay, ay) with ay, ay > 1, we write a; = m; + r; and ay = m, + r, where
my, m; are integers and 0 < ry, 7, < 1. Then f(z,u) € Lipg,, means that f(z,u) isa
C™*™ function, modulo polynomials of degree not exceeding m; + m;, such that all
the partial derivatives 97" 0} f (2, u) belong to Lipf,, with r = (r1,72).

If f € Lip,,, then | f ”LiPﬁag’ the norm of f, is defined as the smallest constant C
such that (1.1) to (1.4) hold.

Note that the flag structure is involved in the the definition of Lipﬁag(H") with
o = (a1, az), and Zygmund conditions are used when a7 = 1 or a, = 1, or both
o] =0y = 1.

In order to obtain the boundedness of flag singular integral operators on the flag
Lipschitz space Lipg, ., we characterize Lipg,, via the Littlewood-Paley theory. We
begin by recalling the standard Calderén reproducing formula on the Heisenberg
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group. Note that in [24], spectral theory was used in place of the Calderdn repro-
ducing formula.

Theorem 1.2 ([12, Corollary1]) There is a radial function v € C* (H") such that y €
S(H") and all moments of y vanish, and such that the following Calderén reproducing
formula holds, where x is Heisenberg convolution and ys(z,t) = s7>"y(%, %) for
s>0:

f= [Twennr S, pevan),

We now wish to extend this formula in two ways: (1) encompass the flag structure
on the Heisenberg group H"; (2) converges in the distribution space. For this purpose,
following [24], we construct a Littlewood-Paley component function y defined on
H" ~ C" x R, given by the partial convolution *, in the second variable only,

y(zu) =y %y (z,u) = wa%,u ~VyPW)dv, (z,u) eC" xR,

where y() ¢ S(H") is as in Theorem 1.2, and y(?) is a real even function defined in
8(R) that satisfies

o — dt
@) (tn)PZ= =1
fo [y (tn)] ;

for all # € R\{0}, along with the moment conditions
f 2uPy D (z,u)dzdu = 0, laf, 8 >0,
HYI
Avyw(z)(v)dv =0, y > 0.

Thus, we have

e e ds dt
15 few= [ [ vy fEn S rer@n),
where the functions v ; are given by

Yor(zu) =y 0y (z,u),

with
u

) _ a2, ()2 U @) () = 1, (Y
y(@u) =22y O (5, 5) and yP ) = yO(3),
and where the integrals in (1.5) converge in L?(H" ). Indeed,

l//s,t *Hn Ills,t *H f(Z, M)

= (¥ w2y D) s (YD 12y w5 f(20)

= (YO wpn YD) i (WP 2 yP) w5 f(20))

https://doi.org/10.4153/CJM-2018-003-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-003-0

Marcinkiewicz Multipliers and Lipschitz Spaces on Heisenberg Groups 613

yields (1.5) upon invoking the standard Calderdn reproducing formula on R and then
Theorem 1.2 on H":

o oo ds dt
[ [ Vo #an Vot # f(zu) DL
0 0 S

t
oo oo dty ds

= [ ey e { [T @ s fa) T
0 0 t7) s

o d
= [ v e @) S = fla),

Note that the Littlewood-Paley component function y satisfies the flag moment con-
ditions, so-called because they include only half of the product moment conditions
associated with the product C" x R:

[Ru“v/(z,u)du =0, foralla>0andzeC".

Indeed, with the change of variable ' = u — v and the binomial theorem
W +v)f= 3 ¢, s(u )V,
B=y+8

we have

fRu“w(z,u)du:fRu“{le//(z)(u—v)l//(l)(z,v)dv}du
:fR{[R(u'+v)“y/(z)(u')du}w(l)(z,v)dv
= % o [{ L@y@)au by O zvay

a=y+68

= > o fR{O}v‘Sw(l)(z,v)dv:O,

a=y+68

for all @ > 0 and each z ¢ C". Note that as a consequence, the full mo-
ments [, 2%uPy(z, u)dzdu all vanish, but that in general the partial moments
Jen 2%y (2, u)dz do not vanish.

In order to introduce the flag test function space on the Heisenberg H", we first
introduce the product test function space on H" x R as follows.

Definition 1.3  The product test function space on H” x R is the collection of all
Schwartz functions F on H" x R such that

[ 2*uPF(z,u,v)dzdu = 0
Hﬂ

forall|al,f>0,v e Rand
/ v'F(z,u,v)dv=0
R
forally >0, (z,u) € H".

If F is a product test function on H" x R, we write F € 8, (H" x R). The norm of
F is defined by the Schwartz norm of F on H" x R and is denoted by | F||s_. .
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Applying the projection 7 defined on H" as introduced in [23]:

f(z,u) = (nF)(z,u) = fR F( (z,u- v),v) dv,
we now define the flag test function space Sg,q (H").

Definition 1.4  The flag test function space Sg,q (H" ) consists of all functions f(z, u)
defined on H" satisfying

f(z,u) = (nF)(z,u) = /];RF( (z,u—v),v)dv
for some F € 8o, (H" x R). The norm of f is defined by
| flsns = inf{[[Flls.. = f = 7F}.

The distribution space, 83, (H"), is defined by the dual of Sgag (H").
Observing that v, ,(z,u) = 1/15(1) %9 wgz)(z,u) € Sflag, we will show that the
Carlderén reproducing formula (1.5) also converges in both flag test function space

Sfiag(H") and distribution space 8f,, (H") as follows.

Theorem 1.5 Let v, (z,u) = 1//51’ * 1//52) (z,u). Then
ds dt

1.6) f(z,u)=f0mf0w1//s,r*%,t*f(z>“)?7>

where the integrals converge in both Spag(H") and Sg,,(H").

We characterize the flag Lipschitz space Lipg,, by the following theorem.

Theorem 1.6  f € Lipg,, with a = (a1, a2), a1, a2 > 0 if and only if f € (Spag)' (H")
and

sup s M|y, * f(z,u)| < C < oo,
5,t>0,(z,u)eH"

Moreover,
||f|‘Lipgag ~ sup s f7“2|1//5,t * f(z,u)|.

5,t>0,(z,u)eH"
The main result of this paper is the following theorem.

Theorem 1.7  The flag singular integral operator T is bounded on Lipg,, with a =

(a1, @2), a1, &z > 0. Moreover, | Tfuipg, < C|fllLipg,, -

As a consequence, the Marcinkiewicz multipliers are bounded on the flag Lischitz
space Lipg,, .

2 Proof of Theorem 1.5

Observe that for Fj, F, € 8o (H" x R), then n(F, * F,) = (nF;) * (nF,). Suppose
that f € Spag(H") and f(x,y) = n(F) with F € 8o (H" x R). Set ¥; (2, u,7) =
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1//5(1) (z, u)l/fgz) (r) then v, = (¥, ;). We rewrite the Calderdn reproducing formula
in (1.6) as

(ﬂF)(z,u):/(]oofoooﬂ(‘l’s,,)*(nq’s,t) (2F)(z,u )d: dtt.

To show Theorem 1.5, it suffices to prove that for f € 8g,q (H"),
ds dt
/ [ \P N \P N Fi *)
N- 1
as N tends to oco.

By the definition of the norm of 8,4 (H" ), one only needs to show that

ds dt
/ f W,V + F(z,u, r)——
Nl

as N tends to oco.
To do this, observe that

W i tHnxr Vs, *H xR F( (Z: u) )
= (YY) tpane (YOYPD) tpnni F((2u),7)
= [ (D 51y YD 22 ¢ P)] #1nnr F((2,u),7)

— 0
Sflag

— 0

yields
oo ds dt
‘/() / \Pst*an]R ‘"Pst*H"xR F((z,u) r)ii

t

dty d
f w(l) i W(l) *Hn f ‘/’(2) *R V’( ) *R F( (2, ), ) t }?S

f w(l) *gn w(l) *Hn F( (Z u) ) is

=F((zu),r).

Observe that
N ds dt
’F_[ f \Ijst*\yst*F(zur)isi
N-1 JN-! t

o N ds dt
< / / |Ws,¢ * W, + F(z, 1, r)|—s—
d dt
f / |W,r * W ¢ * F(z,u, r)|—s—
N ds dt
+f / |‘I’s,t*‘PS,,*F(z,u,r)|——
0 0
e oo d dt
+/ / |‘I’S,t*‘Ps,t*F(z,u,r)|—s—
N Jo

=I+I1+1I1+1V.
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We claim that for N > 1 and any given an positive integer L, there exists a constant Cy,
independent of N such that

-L___
I<C(1+|(zu) +Ir]) "N7'F|s..

To show the claim, we write
W, s *rxHr W, *HrxR F( (z,u), r)
= [ s y D)Y@ 5 9] e F( (20, 7)
= AXW vy (2 u )i (" F((zou) o (25u') r = 1) dZ'du’dr’,

where wi = 1//5(1) *[n 1//51) and 1//% = 1//52) *R 1//52).

Considering the case where 0 < t < 1 first, the cancellation conditions on y! and
y? imply that

(2.1)/RXH" Vi WA F((zou) o (2,u') Y r —r)dZ du'dr’

B foH" vi(Z )i (r)[F((zu) o (25 u') L r =) = F((z,u),r = 1)
_ F((Z,Dl) o (Z”u’)—l’r) + F((Z’”)>T’)]d2'du’dr’_

Noting that |(z,u)[* = |z|* + |u| and applying the smoothness conditions on F, we
obtain the following estimates. For any given positive integer L there exists a constant
C such that

@) |[F((z,u)o (2, u") r=1")=F((z,u),r—1") = F((z,u) o (z',u') 7, 7)
+F((z,u),r)]
(', u")| [d
T (L |(z )22 (L [r)EH

IF]s..,
for |(2/,u)| < %(14— |(z,u)|) and /| < 2(1+|r]);

®) [F((z,u)o (2, u") s r—1") = F((z,u),r—1") = F((zu) o (z',u') 7", )
+F((z,u),7)|

(&) L 7
SCari@uhra | @epr— i * @i | 1Fls-

for |(z/,u")| < i(l +|(z,u)]) and || > 2(1+ |r]);

(© [F((zu)o (/) r—1")—F((z,u),r—1") = F((z,u) o (2, u") 7\, 1)

+F((z,u),r)]
1 1 I
< C( (1 + |(z,u) o (Z', u’)‘1|)L+2"+2 + (1 i |(z,u)|)L+2n+2) (1 N |7’|)L+1 H HSDc
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for |(z/,u")| > %(1 +|(z,u)]) and || < 2 (1+ |r]);

(d) [F((z,u)o (2, u") r=1")=F((z,u),r—1") = F((z,u) o (z',u') 7, )
+F((z,u),7)|

1 1
< C( (1 + |(Z,u) ° (z’, ul)—1|)L+2n+2 + (1 + |(Z’u)|)L+2n+2)

1 1
+ F
x ( (1+|r_rl|)L+l (l+|r|)L+1)H HSOO

for |(2/,u")| 2 i(l +|(z,u)|) and || > %(l +r]).
Plugging the above estimates together with the size conditions

1
1.1 1 —2n-2
zZ,u )| <Cs >
|1/’s( )| (1+|L'|2+ L,|)n+2+L
s s2
_ 1
Wl sCrl——
(1+1%])

into (2.1) yields that whenever 0 < ¢ <1,

<

| [ WOz o () r =z dudr| <
1

Cst F .
AT wpE e I8

We now consider the case with 1 < ¢ < co. For this case, applying the cancellation
conditions on ! and F((z,u), r) with respect to the variable r, we write

(2.2) /]J&an vi(Z, u )i (rYF(z,u) o (2/,u') r—1')dZ du'dr’
A CRRIHGEMEIDRICIGEDY
x [F( (zu)o (2, u') r=1") = F((z,u),r—1") ] dz'du'dr’,

where ¥, cj(y?)D(r)(+" - r)/ is the Taylor series of y? at r with the degree L.
Inserting estimates

(a)
W) - S O - <o T

/| L
j<t t+|r] ) (¢ + )+t

tL

for |r-r'| < %(t+ I7]);

(b)
20 aG) N L _|r'—r|j tt
ly: (") J;CJ(%) P(r)(r" =r)| < C[ (t+[rE +j;cf t (t+ |r|)1+L:|
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for [r = #'| > 1(t + |r]), together with

©

|F((z,u) o (2, u") " r =) =F((z,u),r-1")| <

(", u")| 1 IF[s
(1+|(z,u)|)L+2"+2 (1+|r_r/|)L+2 oo?

for |(z/,u")| < iy(l +(z,u)));
(d)
IF((z,u) o (2 ,u" ) r—1") = F((z,u),r—1")| <
o : + 1 )t IFls
(1+|(zu)o (2, ) D22 " 1+ |(zu) )22 ) (T4 |r - r/[)H o
for |(z/,u")| > iy(l +|(z,u)|) into (2.2) gives that if t > 1,

<

| [ E OV o () r = o) d2 dudr
s 1
— F .
e Al

These estimates imply the proof of the claim. Note that (9 B ) satisfy similar
regularity and cancellation conditions as F does, and

20N ¢ #rnum o #mnxe F((2,u),7) =
W, st et *ER (82858¥F)( (z,u),7).

These facts yield that |I|s.. < CN7}, and hence |I|s.. — 0 as N tends to co. The
proofs for II, I11, and IV are similar, and thus the proof of Theorem 1.5 is concluded.

3 Proof of Theorem 1.6

We first show that if f € Lip}"lag with a = (a1, @2),0 < ag, a2 < 1, then f € Shag. To see
this, for each g(z,u) € 8,5 where g = 7G with G € 8., and |G|s., = 1, we observe
that

(g,f>=/HnfRG((z,u—v),v)f(z,u)dvdzdu
:[Hn/H;G((z,u),v)f(z,u+v)dvdzdu.

Applying the cancellation conditions on G((z,u),v), we have

<g:f):/Hn/RG((Z,M),V)[f(Z,u+V)—f(O,V)—f(z,u)+f(0,0)]dvdzdu.

The size conditions on G and the fact that f € Lipg,, imply that

(& ) < Clf luipg,,»
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which shows that f € (Sfag)".
Observe that

Vs, * f(zu) = [}H A@ vV (7, u')w;z)(v)f( (zu) o (2, u' +v) ") dvdZ du'.
Applying the cancellation conditions on 1//5(1) and 1//52) , we have

Vst *f(z,u) = ./Hn [RV/s(l)(Z,’u,)WEZ)(V)[f((Z:U) o (z',u'+v)_1)
_f((Z,M) ) (z”u’)—l) _f((z,u) o (O’V)_l) +f(Z,M):|dVdZ,du'
= fn was(l) (Z,’u/)WEZ)(V)AIZ/AI(Z’,u’) (f)(z,u)dvdz'du'.

The size conditions on wﬁ” and 1//52) and the fact that f € Lip,, yield that

[Ws,e * f(z,u)] < CsMt™ Hf”LiPﬁag’

which implies that s~ *2|y, , * f(z,u)| < CHfHLipgag for any s, t > 0, and (z,u) €
H".

When o = (ay, az) with o = 1,0 < a < 1, noting first that ws(l) is a radial function
and then applying the cancellation conditions on 1//52) , we have

Vs, * f(z,u)
N R R IO (GRS
+f((zu) o (2, u' +v)™") | d'du'dv

2 [ [P @ (s uyo (2 )

+ (@) o (o +9) ™) ~2f () 0 (0.9)™)] d2'du dv
> [ [P O o (Zi )

(@) o (o +9) ™) ~2f () 0 (0.9)7)]

(@ u) o (o)) + f(z ) o (u')™) = 2f (20)]) ddu'dy
= % / / yO WP (AN (F)(zu)d2 du'dy.

Applying the same proof gives the desired estimate for this case. All other cases o =
(a1, a2) where 0 < a <1, a5 = 1l or a; = a, =1 can be handled similarly. For the case
where a = (a1, &) with ay, ap > 1, set 9™ *™2y(z, u) = y with s ™™y , satisfying
the similar smoothness, size, and cancellation conditions as v ;. Thus, repeating the
same proof gives

|Ws,t * f| — |$m1 tmz(s—ml t—mzv"j’s’t) * am1+mzf| < C5m1 tmzsntrz Hf”LiPﬁag
= Cs*1*2 HfHLiPSag'

Therefore, this case can be also handled similarly.
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We now prove the converse implication of Theorem 1.6. Suppose that f € Sﬂag (H™)

and |ys; * f(z,u)| < Cs*t* with ay, ap > 0. We first show that f is a continuous
function on H”. To do this, by Theorem 1.5,

f(z,u —f / Wst*llfst*f(z“)

where the integral converges in Sﬂag(H” ). We split the above integral into the follow-
ing four cases:

(@) s,t<;

(b) s>1,t<1;

(c) s<Lt>]

(d) s,t>1

Then wewrite f = fi+ f+ f3+ fa in Sﬂag(H”) according to the above four cases of s
and t. As for fj, observe that the fact |y, ; * ¥ * f(z,u)| < Cs*¢** implies that the

integral
1 ril dsdt
/(; /; Vst *V’s,t*f(z’“)ff

converges uniformly and hence, f; is a continuous function on H”.
To see that f, is continuous, for g € Sqgg,

ds dt

(g = [ [t e S gleu) S8

Note that by the cancellation condition on g, for any fixed positive integer N, we have

(I//s,t * Ys,t *f(z, u),g(z)u»
([, [y e @+ P vy
* f(Z',u")dvdzZ' du’, g(z,u)>

ff O((zu) o (21 +v)7™)

> capd oy (2w + ) ) (2 )]

|a|+2B<2N
x wfz)(v)l//s,t * f(2',u")dvdz'du', g(z, u)) ,

which implies that

falew) = / [ L L0 @ e
Y capdtdhy (2w + ) (W [y )y

|a|+2B<2N

« f(2 u")dvdZ du 'ds dt

in the sense of 8, (H").
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And hence,

L L0 we @ +n™)

= Y capd iy ) ) (2 )P

|a|+2B<2N

x 1//52) (Vs * f(Z,u")dvdZ du’

< CS—ZN-Hxl t“2|(z, u)|2N‘

The above estimate implies that for any given R > 0, the integral for f, converges
uniformly for |(z,u)[* < R, and thus f, is a continuous function on any compact
subset in H".

Note that (z,u) o (z/,u’ +v) ™' = (z,-u') o (2, —u +v) ™. We write

(Vi * s x f(zu), 8(zu))
([, L)o@ omue ) P vy
* (2, )dvdZ du’ g(z,u)>
([, L0y o @ P @ vy

* f(Z',u")dvdz' du ,g(z,u))
([ [0ty o D [¥P e - ¥ o v o]
y<2N

x s * f(2,u')dvdZ' du', g(z, u)>

Similarly,

B RACEIRER

d ! / / !
W) = 2 oD | per x f(&u)dvdedu

y<2N
< Cs(xl t—2N+:xz |u|2N,

and hence f; is a continuous function on any compact subset in H”.
Taking the geometric means of these two estimates shows that f; is a continuous
function.
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Now we show that f € Lipg,, . First, if & = (a1, 2) with 0 < a1, @z <1, then

|42 Ay () (2 7)|
= [f(@ry o (wvw)™) = f((zr) o (wv) ™)
= f((zr)e (0.w) ™)+ f(z)|
| [T L @ e et @)™
~ysa((zr) o (uv) o (2,1))
~ Y1) 0 (0,w) o (o)) +ys((zr) o (27) | e
« f(, ryiu'dsf
Observe that
Vai((zr) o (wvew) ™o (o)) —yeu((@r) o (wv) o (2.1))
~yoi((z1) 0 (0.w) 0 (,)1) +yeu((zr) o (21))
= [0 (o @) te @ +r))
~y (@) o @ + )] [WP (= w) -y () | dv
We have
A= [ [va(Ene@yewm ™o (@r)™) —ya((zr) e ) o (201)
~yi((zr) o (0w) o (1))
+9((2r) 0 (2,7)) |ws # (2, 1) d2 dr’
~ [ L¥O(@Ene @ e @ 1)) —yO((@r) o (2 +1)7)]
[P0 ) P O |y S v dar
We now choose o and sg such that ¢y < |(u,v)| < 2¢p and so < |w| < 2s9, and we split
J A e A A A A A A A A
=t A+ Ay + Az + Ay
To deal with A, applying the size conditions on both " and ¢ yields
|A| < Clyss * f(2'7")] < Cs%1t%, forall s, t > 0,

and hence A, is dominated by

sort o dsde
cfo fo salt“szsagltgzsc|(u,v)|“l|w|“z.
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To estimate A,, applying the smoothness condition on qxs(l) and the size condition
on wfk) implies

l(u V)| (ol
A5 [s,e + f(25 )] S 57 (u, ).
This implies that A, is bounded by

o rto ds dt _
C [ [ st S S )] < Oyt g () < Cla ) ]
0

The estimate for A3 is similar to the estimate for A,. Finally, to handle A4, applying
M and W(k)

' Mtu%,t * f(@, )] s s (u,v) |wl.
Hence, this implies that A4 is dominated by

oo oo ds dt
¢ [ [ s S S )] < s (vl < Cla vl
0 0

S

the smoothness conditions on both we obtain that

a2 1)
N

When « = (ay, &) with a; = &, = 1, observe that
B AL, (N)(zr)
=[£Gy o (wvew)) + f((zr) o (wv=w) ") =2f((z.7) o (0,w))]
+[f((zr)o (wv-w))
+f((@r)e (wv+w) ™) =2f((zr) e (0,w) )]
~2[f((zr) o (wv)) + f((z1) 0 (w¥) ) =2f(27)]
:f f [f O((z,r) 0 (wyv) Vo (20" +7)7)
(@) e (wv)o (v +1)7)
~29O((zr) 0 (ZV + 1)) |
VP = w) gD e w) =29 P ) |y flw)dzde.

Repeating a similar calculation gives the desired result for this case. The other two
cases, where a; = 1,0 < a; < land 0 < o < 1, & = 1, can be handled similarly. Lastly,
when «; = m; + 1, ay = my + ry, note that

MM f((z,r) o (v +w) ) =™ ™ f((z,r) 0 (u,v) ")
_ am1+mzf( (Z, 7‘) o ((), W)fl) + am‘mzf(z, 7’)

) / [R [amlwgl)( (zr) o (u,v) o (2v +1)7)
— amlw‘gl)((z, T) ° (Z,, V’ i r,)_l):l
" [aMZWEZ) (v'=w) - amzllfgz)(V')] Ve * f(2,r)dv'dZ' dr’.
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Agaln observe that the properties of 8’"11//(1) and 8"’21//( ) are similar to s™ 1//(1) nd

l'_mZI//t , respectively, and hence the estimate for this case is the same as the proof for
the case where a = (a1, &) with 0 < &, @y < 1. We leave the details to the reader. The
proof of Theorem 1.6 is concluded. ]

4 Proof of Theorem 1.7

We first show that if f « Lipf{ag with & = (a1, a2), a1, > 0, then there exists a
sequence { f,, } such that f, € L* n Lipg,, and f, converges to f in the distribution
sense. Moreover, || f, HLiPﬁag <C|f HLiPﬁag’ where the constant C is independent of f,
and f. To do this, note that, by Theorem 1.5, for each f € Lipg,,,

ew= [T [Ty eSS

where the integral converges in 8, (F"). Set

[ f Wst*wst*f(zu)det

Obviously, f, € L? and converges to f in the distribution sense. To see that f, €

Lip&, > by Theorem 1.6,
| f ”Llpfl <C sup s Cys fu(zu)l.
s,t>0
(2, u)eH—H"
Note that

ds' dt’
V/st*fn(x) f f Vst * Ysr o * Yo t’*f(z’ )S’ s

By an estimate given in [14], that there exists a constant C = C(M) depending only
on M such that if (s vs’)? < t v ¢/, then

|1l/$,t * Yo pr(2, u)| <
C(i/\s')zM(t t’)M (svs')2M (tv )M

s s (s v s'+|z])2m2M (¢ v ¢/ +|ul )M’

ot

andif (svs')? > tvt, then

|ys, e v (2 u)] <
(5 nE) (LY v ()"
s' s ot (svs'+H[2)2 M (g i flu])2rem

These estimates imply that if M > oy v a3,

57“1t7“2|‘/’s t* fu(2s ”)‘
s t w (a8’ At
sosmre [T [T (A (A @y 8y,

tl
g C Hf” Lipﬂag ’

which implies that | f,, HLiPﬁag <C|f H“Pﬁag'
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Now we claim that if f € L? and T = K * f is a flag singular integral operator on
H" with a flag kernel K as given in [23], then

IT(H) ILipg,, S 1 fLips,,-

Indeed, by Theorem 1.6,
H T(f) HLiP?lag S Slt.l% s % |1{/5,t * T(f)(z, u)|
s, t>
(z,u)eH"

Observe that, by a result in [23], T is bounded on L*(H"), and hence

I ds' dt’
Vs, * T(f)(zru) = fo fo Yo % Kok Yor % Y pr >"f(Z, M)%T

Again, By a result in [23], K(z,u) = [ K'(z,u —v,v)dv, where K!(z,u,v), (z,u) €
H",v € R, is a product singular integral kernel on H" x R. Note that

Ve * K*yy p(z,u) = fR‘I’s,t s K g o, v (2,0 = v,v)dv,

where VW5 = Y5 ;.
Applying the classical almost orthogonal estimates with ¥, ;, K! and ¥y » on
H" x R, we have that for any positive integer M,

¥y ¢ *pnwr KT e P ((2,0),7)]
C(S /\S')ZM(t/\t')M (svs )M (tv )™M
00t (svs) 24P + u)" M (fy p ] EeeM

s s
Thus, we obtain that there exists a constant C = C(M) depending only on M such
thatif (s vs')* < tv ¢/, then
| Ve, *an K xpn Yoo (2, 1) <
C(SAS')ZM(tAt')M (svs)M (tvi)M
't (svs'+[z])2n M (vt |u|) M

s’ s
and if (s vs')? > t v ¢, then
|I//S,t *Hn *K *Hn l//sl)tr(z, u)’ <

C(SAS’)M(tAt’)M (svs (svs
s s 't (svs'+[2)2 M (s g fu])2rem

/)M /)M

These estimates imply that if M > oy v a3,
ST Sy T(f) (2,u))
vy [ s SI\Mot f\M L ds’ dt!
sesmen [0 L (5a5) () @
g CHfHLinlag’

which yields the proof of the claim.
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We now extend T to Lipg,, as follows. First, if f € Lipg,,, then, as mentioned
above, there exists a sequence { f, }nez € L* N Lip,, such that f, converges to f in
the distribution sense and | f,, HLiP‘g‘.ag <Cl|lf HLiP‘g‘lag' It follows from the claim that

H T(fn) - T(fm ) HLip?lag < C”fn - fm HLip}iag’
and hence T(f,) converges in the distribution sense. We now define
T(f) = lim T(f,)
in the distribution sense. We obtain, by Theorem 1.6 and the above claim,

IT()lipg,, S sup s~ |y T(f) (2 u)]

5,t>0
(z,u)eH"
S sup s lim oy x T(f)(2,u)]
5,t>0 n—>o0
(z,u)eH"
Sliminf sup s~y * T(f) (2 )|
n—oo 5,1>0
(z,u)eH"

Sliminf | fuuipg,, S 1/ luipg,,-
The proof of Theorem 1.7 is concluded. ]
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