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Abstract. We construct a formal connection on the Aomoto complex of an arrangement of
hyperplanes, and use it to study the Gauss–Manin connection for the moduli space of the

arrangement in the cohomology of a complex rank one local system. We prove that the eigen-
values of the Gauss–Manin connection are integral linear combinations of the weights which
define the local system.
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1. Introduction

Let A ¼ fH1; . . . ;Hng be a hyperplane arrangement in C
‘, with complement

M ¼ MðAÞ ¼ C
‘
n
Sn

j¼1 Hj. Let k ¼ ðl1; . . . ; lnÞ 2 C
n be a collection of weights.

Associated to k, we have a rank one representation r: p1ðMÞ ! C	 given by

gj 7!tj ¼ expð�2piljÞ for any meridian loop gj about the hyperplane Hj of A, and
an associated rank one local system L on M. The need to calculate the local system

cohomology H	ðM;LÞ arises in various contexts. For instance, such local systems

may be used to study the Milnor fiber of the non-isolated hypersurface singularity

at the origin obtained by coning the arrangement, see [6, 7]. In mathematical physics,

local systems on complements of arrangements arise in the Aomoto–Gelfand theory

of multivariable hypergeometric integrals [2, 12, 18] and the representation theory of

Lie algebras and quantum groups. These considerations lead to solutions of the

Knizhnik–Zamolodchikov differential equation from conformal field theory, see

[21, 24]. Here, a central problem is the determination of the Gauss–Manin connec-

tion on H	ðMðAÞ;LÞ for certain arrangements, and local systems arising from cer-

tain weights. In this paper, we study the Gauss–Manin connection on

H	ðMðAÞ;LÞ for all arrangements, and local systems arising from arbitrary weights.
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The arrangements which arise in the context of the K-Z equations are the discri-

minantal arrangements of Schechtman and Varchenko [21]. For these arrangements,

and certain weights, the Gauss–Manin connection on H	ðMðAÞ;LÞ was determined
by Aomoto [1] and Kaneko [15]. The monodromy corresponding to this connection

is a representation of the fundamental group of the moduli space of all these arrange-

ments, which is a (classical) configuration space, see [24]. Moduli spaces of arbitrary

arrangements with a fixed combinatorial type were defined and investigated by Terao

[23]. He identified the moduli spaces of certain arrangements, and determined the

Gauss–Manin connection for certain weights. A priori, the eigenvalues of this con-

nection are rational functions of the weights. Terao found that the eigenvalues

are, in fact, integral linear combinations of the weights. He asked if this is always

the case. In Theorem 4.4, we prove that the eigenvalues of the Gauss–Manin connec-

tion are indeed integral linear combinations of the weights for all arrangements and

all weights.

Fix the combinatorial type of an arrangement A, and let B be a smooth, connected

component of the moduli space of arrangements of type A. There is a fiber bundle
p:M ! B over B. The fibers of this bundle, p�1ðbÞ ¼ MðAbÞ, are complements of

arrangements Ab combinatorially equivalent to A, so are diffeomorphic to MðAÞ
(since B is connected). Given weights k, we used stratified Morse theory in [5] to con-

struct a complex which computes H	ðMðAÞ;LÞ. In fact, we constructed a universal
complex ðK�

LðAÞ;D
�
ðxÞÞ with the property that the specialization xj 7! tj ¼

expð�2piljÞ calculates H	ðMðAÞ;LÞ. Here, x ¼ ðx1; . . . ; xnÞ are the coordinate func-

tions on the complex n-torus ðC	
Þ
n, and L ¼ C½x�11 ; . . . ; x�1n � is the coordinate ring.

This construction is reviewed in Section 2.

At b 2 B, we have the corresponding universal complex ðK�
LðAbÞ;D

�
ðxÞÞ, its specia-

lization ðK�ðAbÞ;D
�
ðtÞÞ and the cohomology of the latter. Loops in B based at b

induce automorphisms of all these objects and consequently yield representations

of p1ðB; bÞ. In particular, there is a universal representation p1ðB; bÞ ! AutLK�
LðAbÞ.

Let y ¼ ðy1; . . . ; ynÞ be the coordinates of T1ðC
	
Þ
n
¼ C

n, the holomorphic tangent

space of ðC	
Þ
n at the identity element 1 ¼ ð1; . . . ; 1Þ 2 ðC	

Þ
n. The exponential map

T1ðC
	
Þ
n
! ðC

	
Þ
n is induced by exp:C! C

	, yj 7! eyj ¼ xj. We call the formal loga-

rithm associated to the universal representation the formal connection.

Since the complex ðK�ðAbÞ;D
�
ðtÞÞ computes the cohomology of the local system L

on MðAbÞ corresponding to the weights k, the representation p1ðB; bÞ ! AutC
H	ðMðAbÞ;LÞ is induced by the representation p1ðB; bÞ ! AutC K�ðAbÞ. We realize

the latter as the specialization at t of the universal representation. Similarly, the spe-

cialization yj 7! lj of formal connection induces the Gauss–Manin connection on the

local system cohomology. Given a loop g 2 p1ðB; bÞ, we show in Section 3 that the

eigenvalues of the corresponding universal representation matrix are monomials in

the xj with integer exponents. In Section 4, we show that the eigenvalues of the cor-

responding formal connection matrix are linear forms in the yj with integer coeffi-

cients. It follows that the eigenvalues of the corresponding Gauss–Manin

connection matrix in local system cohomology are integral linear combinations of
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the weights, answering Terao’s question affirmatively for all arrangements and all

weights.

The formal connection may be viewed as a connection on a combinatorial object,

the Aomoto complex. We use the notation and results of [17, 18]. Let A ¼ AðAÞ be
the Orlik–Solomon algebra of A generated by the one-dimensional classes aj,

14 j4 n. It is the quotient of the exterior algebra generated by these classes by a

homogeneous ideal, hence is a finite-dimensional graded C-algebra. There is an iso-

morphism of graded algebras H	ðM;CÞ ’ AðAÞ. For weights k, the Orlik–Solomon
algebra is a cochain complex with differential given by multiplication by

ak ¼
Pn

j¼1 lj aj. The Aomoto complex ðA
�
RðAÞ; ay^Þ is a universal complex with the

property that the specialization yj 7! lj calculates H	ðA�; ak^Þ. Here,

R ¼ C½y1; . . . ; yn� is the coordinate ring of Cn, the holomorphic tangent space of

ðC
	
Þ
n at 1. In [5, Thm. 2.13], we showed that the Aomoto complex ðA�

RðAÞ; ay^Þ is
chain equivalent to the linearization of the universal complex ðK�

LðAÞ;D
�
ðxÞÞ.

Call a system of weights k or the corresponding local system L combinatorial if

local system cohomology is quasi-isomorphic to Orlik–Solomon algebra cohomology,

H	ðMðAÞ;LÞ ’ H	ðA�ðAÞ; ak^Þ:

The set of combinatorial weights is open and dense in C
n. See [10, 20] for sufficient

conditions. For combinatorial weights, the Gauss–Manin connection in local system

cohomology coincides with that in the cohomology of the Orlik–Solomon algebra.

Thus, if the eigenvalues of the former are integer linear combinations of the weights,

then so are those of the latter. In Section 5, we show that, in fact, the eigenvalues of

the combinatorial Gauss–Manin connection in Orlik–Solomon algebra cohomology

are integer linear combinations of the weights for all weights. Since the Aomoto

complex A�
RðAÞ is the linearization of the universal complex K�

LðAÞ, results on the

universal representation on K�
LðAÞ inform on the formal connection on A�

RðAÞ,
and its specializations, for arbitrary weights.

Call a system of weights k or the corresponding local system L nonresonant if the

Betti numbers of M with coefficients in L are minimal. The set of nonresonant

weights is open and dense in Cn, but does not coincide with the set of combinatorial

weights. The cohomology of nonresonant local systems is known. A detailed account,

including sufficient conditions, is found in [18]. For nonresonant weights we have

HqðM;LÞ ¼ 0 for q 6¼ ‘; and dimH‘ðM;LÞ ¼ jeðMÞj; ð1:1Þ

where eðMÞ is the Euler characteristic, see [10, 20, 25]. If the weights are both com-

binatorial and nonresonant, the Gauss–Manin connection may be studied effectively

by combinatorial means. In particular, explicit bases for the single nonvanishing

cohomology group are known, see [11].

Several authors have studied Gauss–Manin connections using such a basis. See

Aomoto [1] and Kaneko [15] for discriminantal arrangements, and Kanarek [14]

for the connection arising when a single hyperplane in the arrangement is allowed

to move. For general position arrangements, the Gauss–Manin connection matrices
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were computed by Aomoto and Kita [2]. These connection matrices were obtained

by Terao [23] for a larger class of arrangements. Like the eigenvalues, the entries

of these matrices were known to be rational functions of the weights. Aomoto and

Kita, and Terao found that these entries were, in fact, integer linear combinations

of the weights, and Terao asked if this is the case in general. Our work here was moti-

vated by these results and this question.

2. Cohomology Complexes

For an arbitrary complex local system L on the complement of an arrangement A,
we used stratified Morse theory in [4] to construct a complex ðK�ðAÞ;D�

Þ, the coho-

mology of which is naturally isomorphic to H	ðM;LÞ, the cohomology of M with

coefficients in L. We now recall this construction in the context of rank one local sys-

tems, and record several related complexes and relevant results from [4, 5].

Choose coordinates u ¼ ðu1; . . . ; u‘Þ on C‘, and let A ¼ fH1; . . . ;Hng be a hyper-

plane arrangement in C
‘, with complement M ¼ MðAÞ ¼ C

‘
n
Sn

j¼1 Hj. We assume

throughout that A contains ‘ linearly independent hyperplanes. For each j, let fj
be a linear polynomial with Hj ¼ fu 2 C

‘
j fjðuÞ ¼ 0g. Let k ¼ ðl1; . . . ; lnÞ 2 C

n be

a system of weights. Associated to k, we have

(1) a flat connection on the trivial line bundle over M, with connection form

H ¼ dþ ok ^: O
0
! O1, where d is the exterior differential operator with respect

to the coordintes u, ok ¼
Pn

j¼1 lj d logð fjÞ, and Oq is the sheaf of germs of holo-

morphic differential forms of degree q on M;

(2) a rank one representation r: p1ðMÞ ! C
	, given by rðgjÞ ¼ tj, where

t ¼ ðt1; . . . ; tnÞ 2 ðC
	
Þ
n is defined by tj ¼ expð�2piljÞ, and gj is any meridian loop

about the hyperplane Hj of A; and
(3) a rank one local system L ¼ Lt ¼ Lk on M associated to the representation r

(resp., the flat connection H).

Note that weights k and k
0 yield identical representations and local systems if

k� k
0
2 Zn.

Remark 2:1: The arrangement A determines a Whitney stratification of C‘, with

codimension zero stratum given by the complement M. To describe the strata of

higher codimension, recall that an edge of A is a nonempty intersection of hyper-

planes. Associated to each codimension p edge X, there is a stratum SX ¼ X n
S

Y,

where the union is over all edges Y of A which satisfy Y�
=
X. Note that SX ¼ MðAX

Þ

may be realized as the complement of the arrangement AX in X, see [17].

Let F be a complete flag (of affine subspaces) in C‘,

F : ; ¼ F�1 � F 0 � F 1 � F 2 � � � � � F ‘ ¼ C
‘; ð2:1Þ

transverse to the stratification determined by A, so that dimF q \ SX ¼ q� codimSX

for each stratum, where a negative dimension indicates that F q \ SX ¼ ;. For an
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explicit construction of such a flag, see [4, Section 1]. Let Mq ¼ F q \M for each q.

Let Kq ¼ HqðMq;Mq�1;LÞ, and denote by Dq the boundary homomorphism

HqðMq;Mq�1;LÞ ! Hqþ1ðMqþ1;Mq;LÞ of the triple ðMqþ1;Mq;Mq�1Þ. The follow-

ing compiles several results from [4].

THEOREM 2.2. Let L be a complex rank one local system on the complement M of

an arrangement A in C
‘.

ð1Þ For each q, 04 q4 ‘, we have HiðMq;Mq�1;LÞ ¼ 0 if i 6¼ q, and

dimC HqðMq;Mq�1;LÞ ¼ bqðAÞ is equal to the qth Betti number of M with trivial

local coefficients C.

ð2Þ The system of complex vector spaces and linear maps ðK�;D�
Þ,

K0 �!
D0

K1 �!
D1

K2�! � � � �!K‘�1 �!
D‘�1

K‘;

is a complex ðDqþ1
� Dq

¼ 0Þ. The cohomology of this complex is naturally iso-

morphic to H	ðM;LÞ, the cohomology of M with coefficients in L.

The dimensions of the terms, Kq, of the complex ðK�;D�
Þ are independent of t

(resp., k, L). Write D�
¼ D�

ðtÞ to indicate the dependence of the complex on t, and

view these boundary maps as functions of t. Let L ¼ C½x�11 ; . . . ; x�1n � be the ring

of complex Laurent polynomials in n commuting variables, and for each q, let

K
q
L ¼ L�C Kq.

THEOREM 2.3 ([5, Thm. 2.9]). For an arrangement A of n hyperplanes with com-

plement M, there exists a universal complex ðK�
L;D

�
ðxÞÞ with the following properties:

ð1Þ The terms are free L-modules, whose ranks are given by the Betti numbers of M,

K
q
L ’ LbqðAÞ.

ð2Þ The boundary maps, Dq
ðxÞ:K

q
L ! K

qþ1
L are L-linear.

ð3Þ For each t 2 ðC
	
Þ
n, the specialization x 7! t yields the complex ðK�;D�

ðtÞÞ, the

cohomology of which is isomorphic to H	ðM;LtÞ, the cohomology of M with coeffi-

cients in the local system associated to t.

The entries of the boundary maps Dq
ðxÞ are elements of the Laurent polynomial

ring L, the coordinate ring of the complex algebraic n-torus. Via the specialization

x 7! t 2 ðC	
Þ
n, we view them as holomorphic functions ðC	

Þ
n
! C. Similarly, for

each q, we view Dq
ðxÞ as a holomorphic map Dq: ðC	

Þ
n
!MatðCÞ, t 7!Dq

ðtÞ.

Remark 2:4: If t ¼ 1 is the identity element of ðC
	
Þ
n, the associated local

system L1 is trivial. Consequently, the specialization x 7! 1 yields a complex

ðK�;D�
ð1ÞÞ whose cohomology gives H	ðM;CÞ. Since dim Kq ¼ bqðAÞ ¼

dim HqðM;CÞ, the boundary maps of this complex are necessarily trivial,

Dq
ð1Þ ¼ 0 for each q.
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There is an analogous universal complex for the cohomology, H	ðA�; ak^Þ, of the

Orlik–Solomon algebra A ¼ AðAÞ. Let R ¼ C½y1; . . . ; yn� be the polynomial ring.

The Aomoto complex ðA�
R; ay^Þ has terms A

q
R ¼ R�C Aq ’ RbqðAÞ, and boundary

maps given by pðyÞ � Z 7!
P

yjpðyÞ � aj ^ Z. For k 2 C
n, the specialization y 7!l of

the Aomoto complex ðA�
R; ay^Þ yields the Orlik–Solomon algebra complex ðA

�; ak^Þ.

A choice of basis for the Orlik–Solomon algebra of A yields a basis for each term

A
q
R of the Aomoto complex. Let mqðyÞ denote the matrix of ay ^ :A

q
R ! A

qþ1
R with

respect to a fixed basis. The following results were established in [5].

THEOREM 2.5. ð1Þ For each q, the entries of mqðyÞ are integral linear forms in

y1; . . . ; yn.

ð2Þ For any arrangement A, the Aomoto complex ðA�
R; m

�ðyÞÞ is chain equivalent to

the linearization of the universal complex ðK�
L;D

�
ðxÞÞ.

3. Representations

Let A be an arrangement of n hyperplanes in C‘ as above, and let B be a smooth,

connected component of the moduli space of arrangements with the combinatorial

type of A. This moduli space is a locally closed subspace of ðCP‘
Þ
n. We refer to

[18, 23] for the precise definition of this moduli space, and to Section 6 for an exam-

ple. In this section, we extend the constructions of the previous section to produce

representations of the fundamental group of B related to the cohomology of the

complement of A with coefficients in a rank one local system.

Denote the coordinates on ðCP‘
Þ
n by z ¼ ðz1; . . . ; znÞ, where zi ¼ ðzi

0 : � � � : zi
‘Þ, and

recall that the coordinates on C
‘ are denoted by u ¼ ðu1; . . . ; u‘Þ. There is a fiber

bundle p:M ! B, see [23, Section 3]. The total space may be described as

M ¼ fðz; uÞ 2 ðCP‘
Þ
n
� C

‘
j z 2 B and u 2 p�1ðzÞg;

and the projection is given by pðz; uÞ ¼ z. For b 2 B, the fiberMb ¼ p�1ðbÞ is the com-
plement, Mb ¼ MðAbÞ, of the arrangement Ab combinatorially equivalent to A. The
closure, �MMb, of the fiber is homeomorphic to C‘, and admits a Whitney stratification

determinedby the arrangementAb as inRemark2.1. LetF b be aflag in �MMb that is trans-

verse to Ab as in (2.1). Evidently, these flags may be chosen to vary smoothly with b.

Recall that the hyperplanes of A are defined by linear polynomials fj ¼ fjðuÞ. Since

B is by assumption connected, for every b 2 B, the arrangement Ab is lattice-isotopic

to A in the sense of Randell [19]. Consequently, there are smooth functions fjðz; uÞ on

M so that, for each b 2 B, the hyperplanes of Ab are defined by fjðb; uÞ.

Given t 2 ðC
	
Þ
n (or weights k 2 C

n) and b 2 B, denote the corresponding local sys-

tem on Mb by LðbÞ. In this context, the construction of the previous section yields

vector bundles Kq over B for 04 q4 ‘ as follows. For b 2 B, let M
q
b ¼ F q

b \Mb

and KqðbÞ ¼ HqðM
q
b;M

q�1
b ;LðbÞÞ: Since p:M! B is locally trivial, the natural projec-

tion pq:Kq ! B, where Kq ¼
S

b2B KqðbÞ, is a vector bundle. The transition functions

of this vector bundle are locally constant.

304 DANIEL C. COHEN AND PETER ORLIK

https://doi.org/10.1023/A:1023262022279 Published online by Cambridge University Press

https://doi.org/10.1023/A:1023262022279


If g: I ! B is a path, then the induced bundle g	ðKqÞ is trivial. Consequently there

is a canonical linear isomorphism Kqðgð0ÞÞ ! Kqðgð1ÞÞ, from the fiber over the initial

point of g to that over the terminal point, which depends only on the homotopy class
of the path. Fix a basepoint b 2 B, and write K� ¼ K�ðbÞ. The operation of parallel

translation of fibers over curves in B in the vector bundle pq:Kq ! B provides a

complex representation of rank bqðAÞ,

Fq: p1ðB; bÞ�!AutCðK
qÞ: ð3:1Þ

To indicate the dependence of the representation Fq on t 2 ðC
	
Þ
n, write Fq ¼ FqðtÞ.

THEOREM 3.1. If t ¼ 1 is the identity element of ðC	
Þ
n, then the corresponding

representation Fqð1Þ is trivial for each q. That is, for every g 2 p1ðB; bÞ, we have

Fqð1ÞðgÞ ¼ id:Kq ! Kq for each q, 04 q4 ‘.

Proof. For the trivial local system LðbÞ ¼ C associated to t ¼ 1, the long exact

cohomology sequence of the pair ðM
q
b;M

q�1
b Þ splits into short exact sequences

0! HiðM
q
b;M

q�1
b ;CÞ ! HiðM

q
b;CÞ ! HiðM

q�1
b ;CÞ ! 0;

see [13, III.3] and [4, Rem. 5.4]. In particular, the qth relative cohomology group Kq

is canonically isomorphic to HqðM
q
b;CÞ ¼ HqðMb;CÞ, the qth cohomology ofMb with

constant coefficients C, see Remark 2.4. So it suffices to show that the fundamental

group of B acts trivially on HqðMb;CÞ.

Let ib:Mb ! M denote the inclusion of the fiber in the total space of the bundle

p:M ! B. It is known [22] that the image, i	bH
	ðM;CÞ � H	ðMb;CÞ, of the cohomo-

logy of the total spaceM with (trivial) coefficients in the field C is invariant under the

action of p1ðB; bÞ. Consider the logarithmic forms on M defined by

ojðz; uÞ ¼
dz fjðz; uÞ þ du fjðz; uÞ

fjðz; uÞ
; where dyg ¼

Xk

i¼1

@g

@yi
dyi

denotes the gradient of g with respect to the variables y ¼ ðy1; . . . ; ykÞ. Clearly these

forms represent nontrivial classes in H	ðM;CÞ. Furthermore, we have

i	bojðz; uÞ ¼ ojðb; uÞ ¼
dz fjðb; uÞ þ du fjðb; uÞ

fjðb; uÞ
¼

du fjðb; uÞ

fjðb; uÞ
¼ du logð fjðb; uÞÞ:

As is well known, the forms ojðb; uÞ generate the cohomology ring ofMb ¼ MðAbÞ. It

follows that Mb is totally nonhomologous to zero in M with respect to C: The inclu-

sion ib:Mb ! M induces a surjection i	b:H
	ðM;CÞ ! H	ðMb;CÞ in cohomology with

trivial coefficients C. Consequently, the fundamental group p1ðB; bÞ acts trivially on
the HqðMb;CÞ for each q, and the representation Fqð1Þ is trivial. &

Denote the boundary homomorphism of the triple ðM
qþ1
b ;Mq

b;M
q�1
b Þ in cohomo-

logy with local coefficients LðbÞ determined by t by Dq
ðtÞ ¼ Dq

bðtÞ:K
q ! Kqþ1.
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COROLLARY 3.2. For each t 2 ðC	
Þ
n and each g 2 p1ðB; bÞ, the automorphisms

FqðtÞðgÞ:Kq ! Kq, 04 q4 ‘, comprise a chain automorphism F�ðtÞðgÞ of the complex

ðK�;D�
ðtÞÞ.

Proof. By Theorem 3.1, the result holds at t ¼ 1. Therefore it holds for t close to

1. The result follows. &

We abbreviate the above result by writing F�ðtÞ: p1ðB; bÞ ! AutCðK
�Þ. For

g 2 p1ðB; bÞ, the automorphism FqðgÞ ¼ FqðtÞðgÞ may be viewed as a holomorphic

function of t:

FqðgÞ: ðC	
Þ
n
! AutCðK

qÞ; t 7!FqðtÞðgÞ:

Recall that L ¼ C½x�11 ; . . . ; x�1n �. Let ðK�
L;D

�
ðxÞÞ be the universal complex of the

arrangement Ab from Theorem 2.3. By the continuity of the functions FqðgÞ, we have
the following extension of this result.

THEOREM 3.3. For each g 2 p1ðB; bÞ, there is a chain map F�ðxÞðgÞ:K�
L ! K�

L so

that the specialization x 7! t yields the chain automorphism F�ðtÞðgÞ of the complex

ðK�;D�
ðtÞÞ. This provides a representation F�ðxÞ: p1ðB; bÞ ! EndLðK

�
LÞ which specia-

lizes to the representation F�ðtÞ: p1ðB; bÞ ! AutCðK
�Þ.

Call F�ðxÞ: p1ðB; bÞ ! EndLðK
�
LÞ the universal representation.

THEOREM 3.4. For each q and each g 2 p1ðB; bÞ, the eigenvalues of FqðxÞðgÞ are

monomials functions of the form rðxÞ ¼ xm1

1 � � � xmn
n , where mj 2 Z.

Proof. Given q and g 2 p1ðB; bÞ, let rðxÞ be an eigenvalue of FqðxÞðgÞ. Then rðtÞ is

an eigenvalue of FqðtÞðgÞ 2 AutCðKqÞ ’ GLðbqðAÞ;CÞ for every t 2 ðC
	
Þ
n. It follows

that the function r: ðC	
Þ
n
! C, t 7! rðtÞ is single-valued and has no poles. Thus, rðxÞ

is a Laurent polynomial in x1; . . . ; xn. Write rðxÞ ¼ xm1

1 � � � xmn
n � pðxÞ, where pðxÞ is a

polynomial. Since FqðtÞðgÞ is an automorphism for every t 2 ðC	
Þ
n, we have pðtÞ 6¼ 0

for all t. Thus, pðxÞ ¼ c 2 C
	 is a nonzero constant, and rðxÞ ¼ c � xm1

1 � � � xmn
n is a unit

in L. Using Theorem 3.1, we have c ¼ 1. &

Thus for every g 2 p1ðB; bÞ, the maps FqðxÞðgÞ are automorphisms, so we write

F�ðxÞ:p1ðB; bÞ ! AutLðK
�
LÞ.

COROLLARY 3.5. For each t 2 ðC
	
Þ
n, the eigenvalues of the automorphism FqðtÞðgÞ

are evaluations rðtÞ of the monomial functions rðxÞ.

Given t 2 ðC
	
Þ
n with associated local system LðbÞ onMb, there are also vector bun-

dles Hq ! B over the moduli space, defined by Hq ¼
S

b2B HqðMb;LðbÞÞ for each q.

As above, parallel translation of the fibers in this bundle over curves in the base gives

rise to a representation

Cq ¼ CqðtÞ: p1ðB; bÞ �!AutCðH
qðMb;LðbÞÞÞ:
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By Theorem 2.2.2, the cohomology of the complex ðK�;D�
ðtÞÞ is naturally iso-

morphic to H	ðMb;LðbÞÞ. Furthermore, parallel translation induces the representa-
tion F�ðtÞ: p1ðB; bÞ ! AutCðK

�Þ of (3.1) on this complex. Thus by functoriality, we

have the following theorem:

THEOREM 3.6. The cohomology representation CqðtÞ ¼ FqðtÞ	 is induced by F�ðtÞ.

In other words, for each g 2 p1ðB; bÞ, the automorphism C�ðtÞðgÞ in cohomology is

induced by the automorphism F�ðtÞðgÞ of the complex ðK�;D�
ðtÞÞ.

COROLLARY 3.7. For each t 2 ðC	
Þ
n, the eigenvalues of the automorphism CqðtÞðgÞ

are evaluations of monomial functions.

4. Connections

The vector bundles Kq ! B and Hq ! B over the moduli space constructed above

support Gauss–Manin connections corresponding to the representations FqðtÞ and

CqðtÞ of the fundamental group of B. We now study these connections in light of

the results of the previous section.

Over a manifold such as B, there is a well known equivalence between local sys-

tems and complex vector bundles equipped with flat connections, see [9, 16]. Let

V! B be such a bundle, with connection H. The latter is a C-linear map

H:O0
ðVÞ ! O1

ðVÞ, where Op
ðVÞ denotes the complex p-forms on B with values in

V, which satisfies Hð fsÞ ¼ sdfþ f HðsÞ for a function f and s 2 O0
ðVÞ. The connec-

tion extends to a map H:Op
ðVÞ ! Opþ1

ðVÞ for p5 0, and is flat if the curvature H � H
vanishes. Call two connections H and H0 on V isomorphic if H0 is obtained from H by

a gauge transformation, H0 ¼ g � H � g�1 for some g:B ! HomðV;VÞ.

The aforementioned equivalence is given by ðV;HÞ 7!VH, where VH is the local

system, or locally constant sheaf, of horizontal sections fs 2 O0
ðVÞ j HðsÞ ¼ 0g.

There is also a well known equivalence between local systems on B and finite-dimen-

sional complex representations of the fundamental group of B. Note that isomorphic

connections give rise to the same representation. Under these equivalences, the local

systems induced by the representations FqðtÞ and CqðtÞ correspond to flat connec-

tions on the vector bundles Kq ! B and Hq ! B, called Gauss–Manin connections.

For weights k that are both nonresonant and combinatorial, it follows from (1.1)

that the only nonvanishing cohomology vector bundle is H‘ ! B. In [23], Terao

shows that this vector bundle is trivial, and that the corresponding Gauss–Manin

connection has logarithmic poles along the irreducible components of the codimen-

sion one divisor D ¼ �BBnB, where �BB denotes the closure of B in ðCP‘
Þ
n.

For general weights, the vector bundles Kq ! B and Hq ! B need not be trivial.

However, the restriction of any one of these vector bundles to a circle is trivial, since

any map from the circle to the relevant classifying space is null-homotopic. Thus we

make a local study of these bundles, their Gauss–Manin connections, and the corres-

ponding local systems and fundamental group representations as follows.
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Let g 2 p1ðB; bÞ, and choose a representative path ~gg: I ! B. Then, of course,

~ggð0Þ ¼ ~ggð1Þ ¼ b, so ~gg defines a map g:S1
! B. If f denotes one of the representa-

tions FqðtÞ or CqðtÞ, there is an induced representation of p1ðS
1; 1Þ ¼ hzi ¼ Z, given

by z 7!X, where X ¼ fðgÞ. Denote the matrix of X by the same symbol.

Now let V! B denote one of the vector bundles Kq ! B or Hq ! B, and let

g	ðVÞ ! S
1 be the induced vector bundle over the circle. Pulling back the relevant

Gauss–Manin connection H, we have a corresponding connection g	ðHÞ on the bun-
dle g	ðVÞ ! S1, which, as noted above, is necessarily a trivial vector bundle. Speci-

fying the flat connection g	ðHÞ on this trivial bundle amounts to choosing a

logarithm, Y, of the matrix X arising from the above representation. In summary:

PROPOSITION 4.1. The connection matrix Y satisfies X ¼ expð�2piY Þ.

The representations F�ðtÞ and C�ðtÞ are induced by the universal representation

F�ðxÞ:p1ðB; bÞ ! AutLðK
�
LÞ, see Theorems 3.3 and 3.6. We now define a correspond-

ing formal connection. Recall from Theorem 2.5.2 that the Aomoto complex

ðA�
R; m

�Þ ¼ ðA�
RðbÞ; m

�
bÞ is chain equivalent to the linearization (at 1 2 ðC	

Þ
n) of the

universal complex ðK�
L;D

�
ðxÞÞ. Choosing bases appropriately, we can assume that

the Aomoto complex is equal to this linearization, see the proof of [5, Thm. 2.13].

For each g 2 p1ðB; bÞ and each q, let Oq
ðyÞðgÞ denote the linear term in the power

series expansion of FqðxÞðgÞ in y, where x ¼ expðyÞ, that is xj ¼ expðyjÞ for 14 j4 n.

This defines a map (in fact, a representation)

Oq
ðyÞ: p1ðB; bÞ �!EndRðA

q
RÞ: ð4:1Þ

By construction, the entries of the matrix of Oq
ðyÞðgÞ are linear forms in y1; . . . ; yn,

with integer coefficients, see Theorem 2.5.1. We call the collection O�
ðyÞ the formal

connection.

THEOREM 4.2. The eigenvalues of the formal connection are integral linear forms in

the variables y1; . . . ; yn. In other words, for each g 2 p1ðB; bÞ and each q, the eigen-

values of the formal connection matrix Oq
ðyÞðgÞ are integral linear forms in y1; . . . ; yn.

Proof. Recall from Theorem 3.4 that the eigenvalues of FqðxÞðgÞ are monomials
of the form xm1

1 � � � xmn
n . Since Oq

ðyÞðgÞ is the linear term in the power series expansion

of FqðexpðyÞÞðgÞ in y, the result follows. &

THEOREM 4.3. Let k be a system of weights, and let t ¼ expð�2pikÞ. For each

g 2 p1ðB; bÞ, the evaluation Oq
ðkÞðgÞ of the formal connection matrix Oq

ðyÞðgÞ at k is a

Gauss–Manin connection matrix corresponding to the automorphism FqðtÞðgÞ.
Proof. Given g 2 p1ðB; bÞ, the endomorphism Oq

ðyÞðgÞ of A
q
R is the linearization

of the automorphism FqðxÞðgÞ of K
q
L. Recall from Theorem 3.1 that Fqð1ÞðgÞ ¼ id. It

follows that Oq
ðyÞðgÞ may be realized as a logarithmic derivative of FqðxÞðgÞ at t ¼ 1.

This being the case, we have FqðxÞðgÞ ¼ expðOq
ðyÞðgÞÞ, where x ¼ expðyÞ. Since

t ¼ expð�2pikÞ, the specialization x 7! t yields FqðtÞðgÞ ¼ expðOq
ð�2pikÞðgÞÞ: Thus a
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Gauss–Manin connection matrix YðgÞ satisfies �2piYðgÞ ¼ Oq
ð�2pikÞðgÞ, see

Proposition 4.1. Now the entries of Oq
ðyÞðgÞ are linear forms in y1; . . . ; yn. Conse-

quently, we have Oq
ð�2pikÞðgÞ ¼ �2piOq

ðkÞðgÞ. Therefore, the specialization y 7! k

yields the Gauss–Manin connection matrix YðgÞ ¼ Oq
ðkÞðgÞ. &

These results lead to the following theorem, the main result of this paper, which

provides an affirmative answer to the question of Terao stated in the Introduction.

THEOREM 4.4. For any arrangement A and any system of weights k, if g 2 p1ðB; bÞ,
then the eigenvalues of a corresponding Gauss–Manin connection matrix in local sys-

tem cohomology are evaluations of linear forms with integer coefficients, and are thus

integral linear combinations of the weights.

Proof. Let g 2 p1ðB; bÞ, and consider the corresponding induced bundles over the
circle as discussed above. By Theorem 4.3, the Gauss–Manin connection on the

vector bundle Kq ! S
1 is given by the matrix Oq

ðkÞðgÞ for each q. By Theorem 4.2,

the eigenvalues of the connection matrix Oq
ðkÞðgÞ are evaluations at k of linear forms

with integer coefficients for each q. Passage to cohomology yields a connection

matrix �OOq
ðkÞðgÞ, corresponding to the cohomology representation CqðtÞðgÞ, whose

eigenvalues satisfy the same condition. &

Remark 4:5: As noted above, for weights k that are both nonresonant and

combinatorial, the only nonvanishing cohomology vector bundle H‘ ! B, corre-

sponding to the representation C‘ðtÞ, is trivial. A trivialization is given by the bnbc
basis for the local system cohomology group H‘ðMb;LðbÞÞ, see [11, 23]. In this

context, Terao [23] shows that the Gauss–Manin connection is determined by a

connection 1-form
P

d logDj � Hj, where Hj 2 EndCH‘ðMb;LðbÞÞ, each d logDj

denotes a 1-form on �BB with a simple logarithmic pole along the irreducible com-

ponent Dj of the divisor D ¼ �BB n B, and the sum is over all such irreducible com-

ponents. In cases where the codimension of �BB in ðCP‘
Þ
n is small, the endomorphisms

Hj have been explicitly determined, by Aomoto and Kita [2] in the codimension zero

case, and by Terao [23] in the codimension one case. See [18] for an exposition of

these results.

If gj is a simple loop in B linking the component Dj, then the endomorphisms Hj

and Oj ¼ �OO‘
ðkÞðgjÞ give rise to conjugate automorphisms expð�2piHjÞ and

C‘ðtÞðgjÞ ¼ expð�2piOjÞ of H‘ðMb;LðbÞÞ. It follows that the connections on the

trivial vector bundle over the circle corresponding to Hj and Oj are isomorphic. By

Theorem 4.4, the eigenvalues of the latter connection matrix are integral linear com-

binations of the weights. &

5. Combinatorial Connections

In this section, we investigate the combinatorial implications of the formal connec-

tion defined on the Aomoto complex. Recall that the Aomoto complex is a universal
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complex, ðA�
RðAÞ; ay^Þ, with the property that the specialization yj 7! lj calculates

the Orlik–Solomon algebra cohomology H	ðA�ðAÞ; ak^Þ.
Let Aq

! B be the vector bundle over the moduli space whose fiber at b is AqðAbÞ,

the qth graded component of the Orlik–Solomon algebra of the arrangement Ab.

Given weights k, the cohomology of the complex ðA�ðAbÞ; ak^Þ gives rise to an addi-

tional vector bundle HqðAÞ ! B whose fiber at b is the qth cohomology group of the

Orlik–Solomon algebra, HqðA�ðAbÞ; ak^Þ. Like their topological counterparts

studied in the previous sections, these combinatorial vector bundles admit combina-

torial connections.

Fix a basepoint b 2 B, and denote the Aomoto complex of Ab by simply

ðA�
R; ay^Þ. As before, let m

�ðyÞ denote the boundary map with respect to a given basis.

Recall from (4.1) that the formal connection is comprised of maps O�
ðyÞ: p1ðB; bÞ !

EndRðA
q
RÞ.

PROPOSITION 5.1. For each g 2 p1ðB; bÞ, the endomorphisms Oq
ðyÞðgÞ:Aq

R ! A
q
R,

04 q4 ‘, comprise a chain map O�
ðyÞðgÞ of the Aomoto complex ðA�

RðbÞ; m
�ðyÞÞ.

Proof. For g 2 p1ðB; bÞ, we have an automorphism F�ðxÞðgÞ of the universal

complex ðK�
L;D

�
ðxÞÞ by Theorems 3.3 and 3.4. Write Fq ¼ FqðxÞðgÞ and Dq

¼ Dq
ðxÞ,

and consider these maps as matrices with entries in L. Then, for each q,

Dq
� Fqþ1 ¼ Fq � Dq:

Now make the substitution x ¼ expðyÞ, and denote power series expansions in y by

Dq
¼

P
k50 D

q
k and Fq ¼

P
k50F

q
k. In this notation, O

q
ðyÞðgÞ ¼ Fq

1. Comparing terms

of degree two in the above equality, we obtain

Dq
0 � F

qþ1
2 þ Dq

1 � F
qþ1
1 þ Dq

2 � F
qþ1
0 ¼ Fq

0 � D
q
2 þ Fq

1 � D
q
1 þ Fq

2 � D
q
0: ð5:1Þ

By Remark 2.4, we have Dq
0 ¼ 0. By Theorem 2.5.2, the linearization of Dq is equal to

the boundary map of the Aomoto complex, Dq
1 ¼ mqðyÞ. Also, Theorem 3.1 implies

that Fq
0 ¼ id and Fqþ1

0 ¼ id. These facts, together with (5.1), imply that

mqðyÞ � Fqþ1
1 ¼ Fq

1 � m
qðyÞ. In other words, F�

1 ¼ O�
ðyÞðgÞ is a chain map of the

Aomoto complex. &

So we write O�
ðyÞ: p1ðB; bÞ ! EndRðA

�
RÞ. By Theorem 4.2, the eigenvalues of the

formal connection O�
ðyÞ on the Aomoto complex A�

R are integral linear forms in

y. Using this fact and the above Proposition, we obtain the following combinatorial

analogue of Theorem 4.4.

THEOREM 5.2. For any arrangement A and any system of weights k, the eigenvalues

of the combinatorial connection in Orlik–Solomon algebra cohomology are evaluations

of linear forms with integer coefficients, and are thus integral linear combinations of the

weights.

Proof. For g 2 p1ðB; bÞ, the formal connection O�
ðyÞðgÞ is a chain map on the

Aomoto complex, which induces upon specialization the Gauss–Manin connection

in Orlik–Solomon algebra cohomology. The result follows. &
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6. An Example

We conclude by illustrating the results of the previous sections with an explicit exam-

ple. Let A be the arrangement in C
2 with hyperplanes

H1 ¼ fu1 þ u2 ¼ 0g; H2 ¼ f2u1 þ u2 ¼ 0g;

H3 ¼ f3u1 þ u2 ¼ 0g; H4 ¼ f1þ 5u1 þ u2 ¼ 0g:

6.1. UNIVERSAL COMPLEXES

We first record the universal complex K�
L and the Aomoto complex A�

R of A. The
universal complex is equivalent to the cochain complex of the maximal Abelian cover

of the complement M ¼ MðAÞ. For any t 2 ðC
	
Þ
4, the specializations at t of the two

complexes are quasi-isomorphic. The latter complex may be obtained by applying

the Fox calculus to a presentation of the fundamental group of the complement,

see for instance [7]. A presentation of this group is

p1ðMÞ ¼ hg1; g2; g3; g4 j ½g3 g1; g2�; ½g1 g2; g3�; ½gi; g4� for i ¼ 1; 2; 3i; ð6:1Þ

where ½a; b� ¼ aba�1b�1. Using this presentation, we obtain K�
L:L �!

D0

L4
�!
D1

L5,

where, in matrix form, D0
¼ D0

ðxÞ ¼ x1 � 1 x2 � 1 x3 � 1 x4 � 1
� �

and

D1
¼ D1

ðxÞ ¼

x3 � x2x3 1� x3 1� x4 0 0
x1x3 � 1 x1 � x1x3 0 1� x4 0
1� x2 x1x2 � 1 0 0 1� x4
0 0 x1 � 1 x2 � 1 x3 � 1

2
664

3
775:

By Theorem 2.5(2), the Aomoto complex A�
R is the linearization of the complex K�

L.

Fixing the nbc-basis [18, Section 5.2] for the Orlik–Solomon algebra ofA yields a cor-

responding basis for A�
R. With respect to this basis, the Aomoto complex is given by

A�
R: R �!

m0
R4 �!

m1
R5; where m0 ¼ m0ðyÞ ¼ y1 y2 y3 y4½ � and

m1 ¼ m1ðyÞ ¼

�y2 �y3 �y4 0 0
y1 þ y3 �y3 0 �y4 0
�y2 y1 þ y2 0 0 �y4
0 0 y1 y2 y3

2
664

3
775:

6.2. THE MODULI SPACE AND RELATED BUNDLES

The moduli space of the arrangement A was studied in detail by Terao [23], see also

[18, Ex. 10.4.2]. This moduli space may be described as
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B ¼ BðAÞ ¼
z10 z20 z30 z40 1

z11 z21 z31 z41 0

z12 z22 z32 z42 0

0
BB@

1
CCA

Di;j;k ¼ 0 if fi; j; kg ¼ f1; 2; 3g

Di;j;k 6¼ 0 if fi; j; kg 6¼ f1; 2; 3g

������

8>><
>>:

9>>=
>>;
:

Here, ðzi
0 : zi

1 : zi
2Þ 2 CP2 for 14 i4 4, and Di;j;k denotes the determinant of the sub-

matrix of the above matrix with columns i, j, and k, for 14 i < j < k4 5. This mod-

uli space is smooth, see [18, Prop. 9.3.3]. Recall the fiber bundle p:M ! B of [23,

Section 3], with fiber p�1ðbÞ ¼ Mb ¼ MðAbÞ, the complement of the arrangement

Ab combinatorially equivalent to A. The total space of this bundle is given by

M ¼ fðb; uÞ 2 B� C
2
j u 2 Mbg:

For brevity, in 6.3–6.5 below, we calculate various representation and connection

matrices for a single element a 2 p1ðB; b0Þ, where b0 2 B is the basepoint (corres-

ponding to A) given below. View S1 as the set of complex numbers of length one,

and define g : S1
! BðAÞ, s 7! gðsÞ, by the following formula.

b0 ¼

0 0 0 1 1
1 2 3 5 0
1 1 1 1 0

0
@

1
A; gðsÞ ¼

0 0 0 1 1
3�s
2

3þs
2 3 5 0

1 1 1 1 0

0
@

1
A:

Note that g is a loop based at b0 about the divisor defined by D1;2;5 ¼ 0 in �BBnB, so

represents an element a of the fundamental group p1ðB; b0Þ. We will determine the

action of a on the universal complex K�
L.

For this, consider the induced bundle g	ðMÞ, with total space

E ¼ f s; ðb; uÞð Þ 2 S1
� ðB� C2

Þ j gðsÞ ¼ b and u 2 Mbg;

and projection p0 s; ðb; uÞð Þ ¼ s. A similar bundle over S1 arises in the context of con-

figuration spaces. We refer to [3] as a general reference on configuration spaces and

braid groups. Let FnðCÞ ¼ fv 2 C
n
j vi 6¼ vj if i 6¼ jg be the configuration space of

n ordered points in C, the complement of the braid arrangement. There is a

well known bundle p:Fnþ1ðCÞ ! FnðCÞ, which admits a section. Writing

Fnþ1ðCÞ ¼ ðv;wÞ 2 FnðCÞ � C j w 2 Cnfvjg
� �

, the projection is pðv;wÞ ¼ v. The fiber

of this bundle is p�1ðvÞ ¼ Cnfvjg, the complement of n points in C.

Define g1:S
1
! F4ðCÞ by

g1ðsÞ ¼
3� s

2
;
3þ s

2
; 3; 4

� �
:

This loop represents the standard generator A1;2 of the pure braid group

P4 ¼ p1ðF4ðCÞ; v0Þ, the fundamental group of the configuration space F4ðCÞ, where

v0 ¼ ð1; 2; 3; 4Þ. Let g	1ðF5ðCÞÞ be the pullback of the bundle p:F5ðCÞ ! F4ðCÞ along

the map g1: S
1
! F4ðCÞ. The bundle g	1ðF5ðCÞÞ has total space

E1 ¼
�

s; ðv;wÞð Þ 2 S
1
� ðF4ðCÞ � CÞ j g1ðsÞ ¼ v and w 2 Cnfvjg

�
;
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and projection p0 s; ðv;wÞð Þ ¼ s. The two induced bundles g	ðMÞ and g	1ðF5ðCÞÞ are

related as follows. If v ¼ g1ðsÞ and w 2 C n fvjg, it is readily checked that the point

u ¼ ð�1;wÞ is in MgðsÞ, the fiber of g	ðMÞ over s 2 S1. This defines a map

h:E1 ! E, s; ðv;wÞð Þ 7! s; ðgðsÞ; uÞð Þ, where u ¼ ð�1;wÞ. Checking that p0 � h ¼ p0,

we see that h: g	1ðF5ðCÞÞ ! g	ðMÞ is a map of bundles.

6.3. UNIVERSAL REPRESENTATIONS AND FORMAL CONNECTIONS

The fiber bundles x1 ¼ g	1ðF5ðCÞÞ and x ¼ g	ðMÞ admit compatible sections, induced

by the section of the configuration space bundle p : F5ðCÞ ! F4ðCÞ and the bundle

map h defined above. Consequently, upon passage to fundamental groups, we obtain

the following commutative diagram with split short exact rows.

1 ! p1ðCnfvjgÞ ! p1ðE1Þ ! p1ðS
1
Þ ! 1

j
j
#

h	
j
j
#

h	

����
1 ! p1ðMÞ ! p1ðEÞ ! p1ðS

1
Þ ! 1

Via the bundle map h, the fiber p1ðCnfvjgÞ of g	1ðx1Þ may be realized as the inter-
section of the line fu1 ¼ �1g with the fiber of g	ðxÞ in C

2. Thus, the map

h	: p1ðCnfvjgÞ ! p1ðMÞ is the natural projection of the free group on four generators,

p1ðCnfvjgÞ ¼ F4 ¼ hg1; g2; g3; g4i, onto the group p1ðMÞ with presentation (6.1). Let z
denote the standard generator of p1ðS

1; 1Þ, mapping to A1;2 2 P4 ¼ p1ðF4ðCÞ; v0Þ and
to a 2 p1ðB; b0Þ under the homomorphisms induced by the maps g1 and g. The action

of z on the free group F4 coincides with that of A1;2 on F4, and is well known. It is

given by the Artin representation:

zðgiÞ ¼ A1;2ðgiÞ ¼
g1g2gig

�1
2 g�11 ; if i ¼ 1 or i ¼ 2,

gi; otherwise.

�

By virtue of the commutativity of the above diagram, this action descends to an

action of a 2 p1ðB; b0Þ on p1ðMÞ defined by the same formula. The resulting action

of a on the universal complex K�
L – the universal representation – may be determined

using the Fox calculus, see for instance [8] for similar computations. The action on

K 0
L is trivial since a acts on p1ðMÞ by conjugation. The action on K1

L is familiar. It is

obtained by applying the Gassner representation to the pure braid A1;2. We suppress

the calculation of the action of a on K2
L, and record only the result below.

Denote the universal representation and formal connection matrices corres-

ponding to a 2 p1ðB; b0Þ by Fq ¼ FqðxÞðaÞ and Oq
¼ Oq

ðyÞðaÞ respectively. These
matrices provide chain maps of the universal and Aomoto complexes:

L !
D0

L4
!

D1

L5

j
j
#
F0

j
j
#
F1

j
j
#
F2

L !
D0

L4
!

D1

L5

;

R !
m0

R4 !
m1

R5

j
j
#
O0

j
j
#
O1

j
j
#
O2

R !
m0

R4 !
m1

R5
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and are given by F0 ¼ 1, O0
¼ 0,

F1¼

1�x1þx1x2 1�x2 0 0

x1�x21 x1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; O1

¼

y2 �y2 0 0

�y1 y1 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775;

F2¼

x1x2 0 0 0 0

x2�1 1 0 0 0

0 0 1�x1þx1x2 1�x2 0

0 0 x1�x21 x1 0

0 0 0 0 1

2
6666664

3
7777775
; O2

¼

y1þy2 0 0 0 0

y2 0 0 0 0

0 0 y2 �y2 0

0 0 �y1 y1 0

0 0 0 0 0

2
6666664

3
7777775

6.4. NONRESONANT LOCAL SYSTEMS

Let k ¼ ðl1; l2; l3; l4Þ be a system of weights in C
4, and t ¼ ðt1; t2; t3; t4Þ the corre-

sponding point in ðC
	
Þ
4. The induced local system L on M is nonresonant, and

H2ðM;LÞ ’ C2, provided the rank of the matrix D1
ðtÞ is equal to three. If this is

the case, then t 6¼ 1 and rank D0
ðtÞ ¼ 1.

Let XðxÞ : L5
! L2 and UðyÞ : R5 ! R2 be the linear maps with matrices

X ¼ XðxÞ ¼

x4 � 1 0
0 x4 � 1

x3 � x2x3 1� x3
x1x3 � 1 x1 � x1x3
1� x2 x1x2 � 1

2
66664

3
77775 and U ¼ UðyÞ ¼

y4 0
0 y4
�y2 �y3

y1 þ y3 �y3
�y2 y1 þ y2

2
66664

3
77775:

Note that U is the linearization of X. It is readily checked that X � D1
¼ 0, U � m1 ¼ 0,

and that rank XðtÞ ¼ 2 if t 2 ðC	
Þ
4 induces a nonresonant local system L on M. Con-

sequently, the projection C
5
’ K26H2ðM;LÞ ’ C

2 may be realized as the speciali-

zation at t of the map X.
Via X:K2

L ! L2 and U:A2
R ! R2, the chain maps F�:K�

L ! K�
L and O�:A�

R ! A�
R

induce maps �FFðxÞ:L2
! L2 and �OOðyÞ:R2 ! R2, given by

�FF ¼ �FFðxÞ ¼
x1x2 0

x2 � 1 1

� �
and �OO ¼ �OOðyÞ ¼

y1 þ y2 0
y2 0

� �
:

Specializing at t 2 ðC	
Þ
4 and k 2 C

4 yields the representation matrix C2ðtÞðaÞ ¼ �FFðtÞ
and the corresponding Gauss–Manin connection matrix �OO2

ðkÞðaÞ ¼ �OOðkÞ in the coho-
mology of the nonresonant local system L. These matrices are

C2ðtÞðaÞ ¼
t1t2 0

t2 � 1 1

� �
and �OO2

ðkÞðaÞ ¼
l1 þ l2 0

l2 0

� �
:

Up to a transpose, the latter recovers Terao’s calculation of the connection matrix

corresponding to the divisor D1;2;5, denoted by O4 in [18, Ex. 10.4.2].
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6.5. RESONANT LOCAL SYSTEMS

Now let L be a nontrivial resonant local system on M. Such a local system corre-

sponds to a point 1 6¼ t 2 ðC
	
Þ
4 satisfying t1t2t3 ¼ 1 and t4 ¼ 1. For each such t,

we have H1ðM;LÞ ’ C and H2ðM;LÞ ’ C3. Representation and Gauss–Manin con-

nection matrices corresponding to the loop a 2 p1ðB; bÞ in resonant local system

cohomology may be obtained by methods analogous to those used in the nonreso-

nant case above.

Define X:L5
! L3 and U:R5 ! R3 by

X ¼

x1x2 � 1 0 0
x2 � 1 0 0
0 x2 � 1 0
0 1� x1 x3 � 1
0 0 1� x2

2
66664

3
77775 and U ¼

y1 þ y2 0 0
y2 0 0
0 y2 0
0 �y1 y3
0 0 �y2

2
66664

3
77775:

As before, X � D1
¼ 0, and U � m1 ¼ 0, and U is the linearization of X. For each

t 2 ðC	
Þ
4 satisfying t1t2t3 ¼ 1 and t4 ¼ 1, we have rank XðtÞ ¼ 3. So the projection

C
5
’ K26H2ðM;LÞ ’ C

3 may be realized as the specialization XðtÞ.
Via X:K2

L ! L3 and U:A2
R ! R3, the chain maps F�:K�

L ! K�
L and O�:A�

R ! A�
R

induce �FF:L3
! L3 and �OO:R3 ! R3, given by

�FF ¼

x1x2 0 0
0 x1x2 1� x3
0 0 1

2
4

3
5 and �OO ¼

y1 þ y2 0 0
0 y1 þ y2 �y3
0 0 0

2
4

3
5:

Specializing yields the representation matrix C2ðtÞðaÞ and the corresponding Gauss–
Manin connection matrix �OO2

ðkÞðaÞ in the second cohomology of the resonant local

system L.
Using the universal complex K�

L and the conditions satisfied by a point t 2 ðC	
Þ
4

inducing the resonant local system L, one can show that the representation matrix

C1ðtÞðaÞ in first cohomology is given by C1ðtÞðaÞ ¼ t1t2½ �. The corresponding

Gauss–Manin connection matrix is, of course, �OO1
ðkÞðaÞ ¼ l1 þ l2½ �.

Remark 6:6. For this arrangement, every local system L is combinatorial. Given

L, there are weights k 2 C
4 for which the local system cohomology H	ðM;LÞ is

quasi-isomorphic to Orlik–Solomon algebra cohomology H	ðA�; ak^Þ. Thus, for

such weights, the combinatorial connection matrices in the cohomology of the Orlik–

Solomon algebra coincide with the Gauss–Manin connection matrices in local sys-

tem cohomology computed above.
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