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Abstract

Text usually suffers from typos which can negatively affect various Information Retrieval and Natural
Language Processing tasks. Although there is a wide variety of choices for tackling this issue in the English
language, this is not the case for other languages. For the Greek language, most of the existing phonetic
algorithms provide rather insufficient support. For this reason, in this paper, we introduce an algorithm for
phonetic matching designed for the Greek language: we start from the original Soundex and we redesign
and extend it for accommodating the Greek language’s phonetic rules, ending up to a family of algorithms,
that we call Soundexg;. Then, we report various experimental results showcasing how the algorithm
behaves in different scenarios, and we provide comparative results for various parameters of the algorithm
for revealing the trade-off between precision and recall in datasets with different kinds of errors. We also
provide comparative results with matching using stemming, full phonemic transcription, and edit distance,
that demonstrate that Soundex; performs better (indicatively, it achieves F-Score over 95% in collections
of similar-sounded words). The simplicity, efficiency, and effectiveness of the proposed algorithm make it
applicable and adaptable to a wide range of tasks.

Keywords: Phonetic algorithms; Greek language; Phonetic matching; Phonemic matching

1. Introduction

Misspelled and mispronounced words can negatively affect various tasks in Information Retrieval
(IR), and Natural Language Processing (NLP) tasks such as indexing, retrieval, autocomple-
tion (Fafalios et al. 2012), entity recognition (Yadav and Bethard 2018), question answering
(Dimitrakis et al. 2019), structured data integration (Mountantonakis and Tzitzikas 2019), and
phonetic interfaces in general (Kaur et al. 2020). Moreover, the existing approaches for produc-
ing word embeddings (like Word2Vec Mikolov et al. (2013), Glove Pennington et al. (2014),
and BERT Devlin et al. (2018)) have limited applicability to malformed texts, which contain a
non-negligible amount of out-of-vocabulary words (Piktus et al. 2019), meaning that they cannot
provide embeddings for words that have not been observed at training time.

To tackle such cases, stemming and edit-related distances (e.g., the Levenstein distance
Levenshtein (1966)) are usually employed (e.g., Medhat et al. (2015)). However, these methods
are not always sufficient: we cannot apply stemming to person and location names, while the edit
distance between a word and a misspelled one (that has more than one misspellings) can be too
big (e.g., the edit distance between “Schumacher” and “Soumaher” is 4), thus limiting the value
of edit distance-based matching. Another family of algorithms to deal with this issue is the family
of phonetic matching algorithms. Indeed, phonetic codes have been used in various contexts, for
example, for indexing and retrieving names from a large dataset (Koneru et al. 2016), for SMS
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retrieval (Pinto et al. 2012), for link discovery (Ahmed et al. 2019), for duplicate record detection
(Elmagarmid et al. 2006), and for preserving privacy (Karakasidis and Verykios 2009) and others.

The first implementation of phonetic algorithms dates back to 1918, with the Soundex algo-
rithm (Russell 1918; Russell 1922), which attempts to encode words based on how they sound.
Although there is a plethora of proposed solutions for tackling this issue in the English language
(Soundex, Metaphone, Double Metaphone, Metaphone 3, NYSIIS and others), this is not the case
for the Greek language. In this paper, we propose and evaluate an algorithm that falls to that family
and aims at dealing with such issues for the Greek language. Such an algorithm should be able to
tackle a wider variety of errors with high accuracy. For example, for the word €toipoc (which is
spelled correctly and sounds [étimos]), it should be able to retrieve (match) misspelled variations
of the same word and word sense, like €tipoc ([étimos]), €tipuc ([étims]), ol tnpog ([étimos]),
or similar terms of a different sense like £vtipoc ([éntimos]). Hereafter, we shall use [ ] to enclose
both phonetic and phonemic word transcriptions.

Our approach for designing such an algorithm is to adapt the basic idea of Soundex to the char-
acteristics of the Greek language, for having a baseline method, and then to widen its rules, like
most modern (post-Soundex) phonetic algorithms have done, for accommodating the Greek lan-
guage’s phonetic rules. To this end, we introduce a family of algorithms that we call Soundexgg.
With Soundexgr, we achieve assigning the same code to set of words that should match, like
the set of words { uhvopa, wovnua, wivipa, wobvewpal, the set { e0dofoc, €PdoZoc) and the set
{ evdepo, aPdeppo, aPPdoupo).

Then, we report comparative experimental results that show which variation/configuration
of the algorithm behaves better in the evaluation over datasets with various kinds of errors.
Specifically, the original Soundex algorithm, modified for corresponding to the Greek Alphabet,
achieves an average F-Score equal to 0.64 across different type of errors (letter addition, deletion,
or substitution). The enhanced version that takes into consideration also the Greek phonetic rules
achieves an average F-Score of 0.66. The variation that uses both of the previous versions to find a
match achieves an average F-Score of 0.70, while in a dataset that contains similar sounded words
it reaches F-Score equal to 0.91, while Soundexgr achieves F-Score equal to 0.97. In addition, we
report comparative experimental results with stemming and full phonetic transcription that show
that the proposed algorithm performs better. We also evaluate how the code length affects the
F-Score in datasets of different sizes, types of errors, and word lengths, and we measure efficiency
by applying it over a Greek dictionary. Overall, the effectiveness, the simplicity, and the efficiency
of the proposed family of algorithms makes it applicable to a wide range of tasks.

Although there are works about the phonetic (and phonemic) transcription of Greek words
(e.g., Themistocleous (2011)), to the best of our knowledge, there is no work on using and
evaluating such codes for matching Greek text.

The rest of this paper is organized as follows. Section 2 describes the background and dis-
cusses related work. Section 3 describes the proposed family of algorithms and provides various
application examples for revealing the differences of these variations. Section 4 focuses on eval-
uation, presents extensive comparative results (for various datasets, codes sizes, and matching
methods including stemming, full phonetic transcription, and edit distance), and discusses appli-
cations. Finally, Section 5 concludes the paper and identifies issues that are worth further work
and research.

2. Background and related work

A wide variety of phonetic algorithms exist, many if not all, are descendants of the Soundex algo-
rithm (described in detail in Section 2.1), like Philips (1990); Hood (2002). These algorithms aim
at retrieving misspelled words and improving IR, by generating a coding of the query based on
phonetic pronunciation rules. They are in use mainly in Database Systems to aid in the retrieval
process, as well as in various IR tasks, such as indexing, query autocompletion, and retrieval. They
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are also useful in NLP tasks like Named Entity Recognition and Linking and word sense disam-
biguation in general. Unfortunately, most of them provide at best minimal or no support at all for
the Greek language.

The works that concern the processing of the Greek language in general are not excessive (see
Papantoniou and Tzitzikas (2020) for a recent survey), in comparison to the English language.
However, there are quite a few works on the phonetics of the Greek language which are described
in brief below.

The 1972 book Newton (1972) studies Greek phonology in general, while Epitropakis et al.
(1993) presents an algorithm for the generation of intonation (FO contours) for the Greek Text-
To-Speech system. Fourakis et al. (1999) analyzes the acoustic characteristics of the Greek vowels
(duration, fundamental frequency, amplitude, and others). Along the same line, Sfakianaki (2002)
analyzes the acoustic characteristics of Greek vowels produced by adults and children, while
Trudgill (2009) focuses on the Greek dialect vowel systems. Arvaniti (2007) describes the 2007
state of the art in greek phonetics.

IPAGreek (Themistocleous 2011) is an implementation (available at Themistocleous (2017))
of Standard Modern Greek and Cypriot Greek “phonological grammar.” The application enables
users to transcribe text written in Greek orthography into the International Phonetics Alphabet
(IPA).

Karanikolas (2019) proposes an automatic machine learning approach that learns rules of
how to transcribe Greek words into the International Phonetics Association’s (IPA’s) phonetic
alphabet; however, the suggested method has not been implemented, nor evaluated.

Finally, Themistocleous (2019) describes classification approaches based on deep neural net-
works for distinguishing two Greek dialects, namely Athenian Greek, the prototypical form of
Standard Modern Greek and Cypriot Greek. That work is based on the acoustic features of spoken
language.

Most of the above works focus on acoustic aspects of the language, fewer on the management
of Greek text, and in particular on the problem of retrieval and matching. One algorithm that
could be used for the Greek language, and for the tasks that we mentioned, that is, for matching
over Greek text, is the Beider-Morse Beider (2008), by changing Greek letters to their equivalent
English letters, without taking into consideration Greek phonetic rules, but based on how they
would sound in the American dialect. Another approach would be to take a phonemic transcrip-
tion method, like the one described in Themistocleous (2017), and truncate and/or modify it (i.e.,
group different letters to the same code as a means to assist matching), for being suitable for
approximate matching.

In this paper, we attempt to fill this gap in the literature, that is, propose a general purpose
algorithm for phonetic matching for Greek text, and we evaluate its potential for matching in
various datasets and under different configurations.

2.1 The original Soundex algorithm

As mentioned in the introduction, our approach for designing an algorithm for phonetic matching
for the Greek language is to adapt the basic idea of Soundex to the characteristics of the Greek
language, for having a baseline method, and then to widen its rules for accommodating the Greek
language’s phonetic rules.

Originating back in 1918, developed by Robert C. Russell and Margaret King Odell, Soundex
algorithm had a simple set of rules. It generates a code by ignoring vowels and the letter & if not
at the start of the word, and encoding consonants based on how they sound, generating a code of
just four characters length. Specifically, the steps of the original Soundex algorithm are

(i) keep the first letter unencoded,

(ii) remove all occurrences of a, e, h, i, 0, u, w, y, except when they appear as the first letter of
the word,
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Table 1. Consonants Replacement
in the Soundex

b,f,p,uv—1

€, 9,j,k,q,8,X,2—> 2
d,t—3

[— 4

m,n—>5

r— 6.

(iii) replace consonants after the first letter as shown in Table 1,
(iv) remove adjacent duplicate digits,

(v) produce a code of the form Letter Digit Digit Digit by ignoring digits after the third one (if
needed), or by appending zeros (if needed).

For example, the name SMITH will be encoded to S530 as well as the names SCHMIDT and
SMYTH, while both ROBERT and RUPERT yield R163. However, imprecise results are possible,
for example, BLACK and BAILS yield the code B420.

Christian (1998) described the problems to the original Soundex, ignoring different spellings
of letters in different contexts and letter combinations. Other issues include the ignoring of vowels
if not at the start of the word and the short generated code. All these issues greatly harm Soundex
precision levels.

The first usage of the algorithm was to retrieve people names from a large dataset, while today
Soundex algorithm or its descendants can be found in various systems, for example, for SMS
retrieval (Pinto et al. 2012), for indexing names (Raghavan and Allan 2004), for link discovery
(Ahmed et al. 2019), for duplicate record detection (Elmagarmid et al. 2006), for record linkage
(da Silva et al. 2020), etc.

Moreover, it has been adapted for various languages, including the Thai language
(Karoonboonyanan et al. 1997), the Arabic language (Yahia et al. 2006; Shedeed and Abdel 2011;
Ousidhoum and Bensaou 2013), the Vietnamese language (Nguyen et al. 2008), the Chinese lan-
guage (Li and Peng 2011), the Indian language (Shah 2014; Gautam et al. 2019), the Assamese
language (Baruah and Mahanta 2015), the Spanish language (del Pilar Angeles et al. 2015), and
others.

2.2 Other related algorithms
Several algorithms after Soundex, sprawled from the core idea of it, group letters by their
pronunciation, aiming at improving the original algorithm. Some of the most renowned
ones are
Metaphone (Philips 1990): Applies a transformation to the original word, before the word is
encoded through letter pronunciation buckets and a vast set of phonetic rules. Subsequently, vari-
ous improvements were made to it: Philips (2000) creates a primary and a secondary encoding for
a given word and applies rules based on the origin language of the input word, while Philips (2013)
added configurable rules to the algorithm, as well as it further improved foreign word retrieval.
Caverphone (Hood 2002): Applies transformations to the word that may be larger than 2-gram
at a time to produce an encoding. It was originally created based on accents in a specific area of
New Zealand.
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BMPM (Beider 2008): Before a set of phonetic rules are applied to the word, there is an
identification process of the origin of the word, and then the corresponding language rules are
applied.

MRA (Match Rating Approach) developed by Western Airlines in 1977 had a simple set of
phonetic rules, providing through a set of comparison rules to go along the encoding.

Other phonetic algorithms produce more than one encoding to the word in order to enhance
Soundex retrieval. In general, these algorithms aimed to cope with the shortcomings of the original
Soundex that were described in Section 2.1 and improved it, as Koneru et al. (2016) suggest, in
terms of precision which is the main shortcoming of the Soundex algorithm.

3. The algorithm Soundexgg (and variations)

This section is organized as follows: at first, in Section 3.1, we describe in brief the requirements.
Then in Section 3.2, we describe the basic idea of the new algorithm that we call Soundexgg, while
in Section 3.3 we detail the exact steps of this algorithm. For reasons of comparative evaluation, in
Section 3.4, we define a variation that we call Soundex" that shares the same principles of the
original Soundex algorithm but without any word preprocessing before the encoding of the word.
Finally, in Section 3.5, we introduce another variation for phonetic matching (Soundexg)lgn P ) that

uses both Soundexgg and Soundex4".

3.1 Requirements for the Greek language.

The basic idea of the original Soundex algorithm can be easily translated to a Greek version.
Indeed, a simple version would be to adopt the exact same rules as Soundex, as described in sec-
tion 2.1, with Greek consonants. However, we wanted to tackle the shortcomings of the original
Soundex (described in Section 2.1), hence to consider letter contexts, letter combinations, and
generally grammar rules specific to Greek. Moreover, while the original Soundex was implemented
for use mainly on names, we would like an algorithm for regular words as well. This means that we
would like to achieve high precision for regular (frequent) words (to avoid having a lot of words
having the same code), while for names we would like to achieve high recall (i.e., low percentage
of false-positives), since they occur more rarely.

For example, we would like an algorithm that would correctly group 8éAaca with 8éAaooa
(both sound [fdlasa]), pvupo with povnua (both sound [minima]), aitnua with €tipe or
¢tolpa (all sound [étima]), and eVkoAa with €pkora (both sound [efkola]). The algorithm
should retrieve all such cases with minimal noise and as high recall as possible.

3.2 The basic idea of Soundexgg

Here, we describe our algorithm that we call Soundexgg. As in the original Soundex, we keep an
encoding length of just four characters. As we shall see in the experiments reported in Section 4.5,
if we increase the length from 4 to 5 we get a higher precision by 5-10% percent; however, the
recall is decreased 10-15%. However, in larger datasets, a bigger length can be more appropriate
(detailed experimental results are given in Section 4.10).

As discussed in Section 2.1, Soundex has a precision issue, which originates from the combi-
nation of short code of just four characters and not taking in to account any lexical context. In
order to improve the precision levels of the Soundex algorithm, we have to focus on these. On the
contrary to Soundex, in Soundexgg, we take into account a more rich set of rules, corresponding
to the phonetic rules of Greek language. Below we describe the key points and subsequently we
describe the exact steps.

Before a word is encoded, we preprocess it and generate a different word form. The preprocess-
ing operations include identification of the cases when a vowel sounds as a consonant in Greek,
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Table 2. Phonetic rules

consonant bigrams replacements

2-gram 1-gram
U b
vt d
YXYY g
TO.;.E.Z. . i
rome ¢
G O

vowel bigrams replacement

2-gram 1-gram
oL €
OL,EL L
oL o

grouping of pairs of vowels based on how they sound, intonation removal, and dismantling of
digrams to single letters. When this procedure finishes, the word is encoded.

For example, umaive that sounds [béno], will be transformed to bevo and finally it will be
encoded to b*7$, while the name I't &vvng (that sounds [janis]) will be transformed to T'vovi and
then it will be encoded to y@97 (more examples will be given later on).

Another difference is that Soundex ignores vowels; however, Soundexgr does not ignore vow-
els, instead it groups them into three categories based on how they sound, in particular to o, o, M,
in order to improve the precision of the algorithm.

The last letter of the word is ignored if it is a consonant, specifically if it is a ¢ or v, as it does
not add much value to the word.

3.3 The exact steps of Soundexgp

The Soundexgpr algorithm and the procedures that are used by the algorithm are given in
pseudocode in Alg. 1.

In the first part, we preprocess the word, applying to it syntax and grammar rules of the Greek
language. Specifically, in UnwrapConsonantBigrams(word), we change common Greek conso-
nant digrams with their equivalent, identically pronounced single letters. This is based on the
substitutions shown in Table 2 (top part).

Then, in TransformVowelsToConsonant(word), we continue with identifying if the Greek
Letter v is acting as a vowel or as a consonant. This distinction needs to be made only if the letter
beforeis aor £, and the subsequent consonant falls in the category of Tables 4 and 5. For example,

a0Ewv [dfkson] (u: consonant-g),
avtodc [aftos] (v: consonant-¢),

oA [avli] (v: consonant-B),
EVEe L voc [éfksinos] (v: consonant-¢),
E0SoEoc [évdoksos] (v: consonant-f),
eveEio [eveksa] (v: consonant-B).
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Algorithm 1: Soundexgg
Input: word
Output: An encoding of word

procedure Soundexgr(word)
w <—UnwrapConsonantBigrams(word)
w <TransformVowelsToConsonants(w)
w <—RemoveLast(w)
w <—GroupVowels(w)
w <—Removelntonation(w)
code <—SoundexEncode(w)
code <—RemoveDuplicates(code)

NN A A

code <—TrimLength(code, 4)
return code

—_ =
—= O

: end procedure

procedure UNWRAPCONSONANTBIGRAMS(word)

for all digram in word do
if digram =’ then Replace(digram, 'b’)
else if digram = 'vt’ then Replace(digram, 'd’)
else if digram € {"y«’,"yy’} then Replace(digram, 'g’)
else if digram € {'t0’, 1’} then Replace(digram, 'c’)
else if digram € {0/, ¢’} then Replace(digram, ")
else if digram € {'k0’, 'k <’} then Replace(digram, '¢’)
end if

end for

R AN L R T

._.
e

return word

—_
N =

end procedure

procedure TRANSFORMVOWELSTOCONSONANTS (word)
for letter in word do
if letter =’v" and previous =’ or previous ='¢’ then
if next is Silent (Table 5) then
Replace(letter, ¢)
else if next is Loud (Table 4) or next is Vowel then
Replace(letter, ='p’)
end if
end if
end for

R A A o TS

— =
»M» =22

return word

end procedure
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: procedure GROUPVOWELS (word)
Replace(word,’d’ — ')
Replace(word, ¢’ — '¢’)

Replace(word, I’ — ')

if digram =ou’ then Replace(digram, ")
else if digram € {’el, "o’} then Replace(digram, 'V’)

1

2

3

4

5: for all digram in word do
6

7

8 else if digram ='ov’ then Replace(digram, "o’)
9

: end if
10: end for
11: Replace(word, 'v/,'v/,"V, "0, ', ', 7, T — V)
12: Replace(word,’o',’ &', — '0o’)
13: return word

14: end procedure

1: procedure REMOVELAST(word)

2 if word.lastLetter ='c’ or word.lastLetter =’V then
3: Replace(word.lastLetter,”")

4 end if

5: end procedure

After that, we remove letters "¢ or “v'if they are the last letter of the word, as such letters do
not add much value to the world.

In GroupVowels, we change common Greek vowel digrams with their equivalent, identically
pronounced, single letters. This is based on the substitutions shown in Table 2 (bottom part).

In RemoveIntonation(word) (line 6), we remove possible remaining tones (if any); this is the
last step of the word preprocessing phase.

In SoundexEncode(word) (line 7), we encode the word through the letter-digit pairs in
Table 3. After translating the original word to a code, we remove adjacent duplicate digits in
RemoveDuplicates(code) (line 8) and trim length to four characters or assign Os to the end of
the code if the code is smaller than four characters in trimLength(code,4) (line 9).

A few examples that show the outcome after each step of the algorithm are shown in
Table 6.

To summarize the rules applied, Table 2 shows the 2-gram groups that produce similar sounds
to a single letter, and as a result they are transformed to the corresponding single letter in the word
preprocessing operation. Table 3 shows the complete set of phonetic buckets that are applied to
the word as the final step in the encoding of the word. Table 4 shows the Loud category of the
consonants in Greek which are used in order to identify if v acts as a consonant, specifically a
B, while Table 5 shows the Silent category of the consonants in Greek which are used in order
to identify if v acts as a consonant, specifically a ¢. Note that the distinction to Loud and Silent
concerns consonant phonemes. The silent ones contain those of Table 5 plus vk, UR, vt, T
however, the last three are not needed for understanding the interpretation of v, and this is the
reason why they are not included in Table 5.
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Table 3. Soundexgr buckets

Soundex buckets

Group Code
B.p,m,b 1
S 5
5,7.9,d 3
C0.E e 4
e i
A 6
Y 7
o s
o 9
o 3
o @

Table 4. Loud consonants
in Greek

Loud consonant

3.4 The algorithm Soundexgy"®

For reasons of comparative evaluation, here we define another algorithm, that we call
Soundex?%", that shares the same principles of the original Soundex algorithm, but without any
word preprocessing before the encoding of the word. Specifically, the algorithm ignores vowels,
has an encoding length of four characters, and does not encode the first letter. The only common
aspect between this algorithm and Soundexgp is that it uses the same buckets from which the
final encoding is generated, as shown in Table 3. Similarly to the original Soundex, we adopt the

following steps:
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Table 5. Silent consonants

in Greek

Silent consonant

0

Table 6. Examples of Soundexgr code generation, through different stages

Original Word €unelpoc  volg  eudepoc  BlaAeiuo SLdhvpa QUNGY  owyd  aBY6  auyouAdnuo
UnwrapConsonant ébelpog volc  eudiepog SloAretuo dudhupar aukdy  oawYS  aBY6  auyoLAda
Bigrams

Transform Vowels To ¢bewpog volg  eBdepog Slohhetpo Stdhupo afBrdv  afyd ofyd afyouldoaa
Consonants

Removelast ébelpo voU eBdepo SlahAeipo Sudhvpo oBAD oafByo oaByéd afByouhdio
GroupVowels  ebio  vo  choseo  owhua  bwhws  ofio  afvo  afvo  afvohaax
SoundexEncode c1@8& v$ c19*8*  3@966@Q79  3@IY6QTI «16% 128 «l2$  «128695Q@9
RemoveDuplicates c1@8& v$ c19*8* 3@9679 3@9679 «16% 2128 «l2$  «12$695@9
TrimLength cl@8 v$00 €19* 5Q@96 5@96 «16$ 128 o128 128

(i) keep the first letter unencoded,

(if) remove all occurrences of a, €, 1, N, v, o, » except when they appear as the first letter of

the word,

(iii) replace consonants after the first letter as shown in Table 7,

(iv) remove adjacent duplicate digits,

(v) produce a code of the form Letter Digit Digit Digit by ignoring digits after the third one (if
needed), or by appending zeros (if needed).

For example, this algorithm would encode avyé to «200 and afyo6 to a120, which are two
identically sounded words, but with different encoding results. This evidences the superiority of

naive

Soundexgg in comparison to Soundex " (more such examples are included in Section 4.1).

3.5 Phonetic matching with Soundexg, ©

With Soundexgr we consider that two words w and w’ match, denoted by w < w/, if they have

the same code, that is, if Soundexgr(w) = Soundexgr(w'). Analogously, with Soundex

https://doi.org/10.1017/51351324922000018 Published online by Cambridge University Press
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Table 7. Consonants Replacement in

naive
the Soundexgy

B0t —>1
Y, X — 2
17,3, —3
0,6, 0,§—>4
K—>5
A—6
w,v—>7

p— 8.

In order to maintain both precision and recall levels as high as possible, here we introduce
another variation for phonetic matching, that we call SoundexcGolT ? The idea is to use both
Soundexcr and Soundex“a" for keeping recall levels as high possible, without precision drop-
ping. Specifically, this method uses both Soundexgg and Soundex“4"¢ in combination during the
matching process, that is, the query and the text are encoded with both the implementations, and
if either one of them matches, then it is considered a match, that is:

w & wif (Soundexgr(w) = Soundexgr(w')) OR (Soundexg‘gve(w) = Soundex’é‘g"e(w’))

4. Evaluation
At first (in Section 4.1), we provide some indicative examples showcasing the merits of the codes

and the differences between Soundexg‘gve and Soundexgg. Then (in Section 4.2), we describe an
evaluation collection that we have created containing datasets (Dataset A - Dataset D) with
various types of errors and the metrics that we use for comparing the performance of various
options (in Section 4.3). Subsequently (in Section 4.4), we report the evaluation results and dis-
cuss the related trade-offs (in Section 4.5). For further understanding of the performance of these
codes, we also compare them with the lemmas produced by Greek stemmer (in Section 4.6), and
we report measurements over a Greek dictionary (in Section 4.7). Furthermore (in Section 4.8),
we provide and evaluate a method that yields a full phonetic transcription. In Section 4.9, we
compare all methods, including the full phonemic transcription, plus edit distance-based meth-
ods, over an extended dataset of similarly sounded words Dataset D/, while in Section 4.10 we
report the results of a series of experiments at different scales for understanding the factors that
determine the optimal code length (Dataset E-Dataset H). Subsequently (in Section 4.11), we
discuss efficiency, and finally (in Section 4.12) we discuss applicability and describe an application
that showcases the benefits of Soundexgp for approximate matching.
An overview of the datasets that are used for evaluation purposes are given in Figure 1.

4.1 Indicative examples

Here, we provide a few indicative examples for understanding the behavior of Soundex%"* and

Soundexcg. Specifically, Table 8 provides examples where both Soundex?%" and Soundexgr
tackle correctly various misspellings, that is, they assign the same code to all word variations.
Now Table 9 provides examples where Soundex{;;" fails to assign the same code, while

Soundexgg succeeds on providing the same code to all relevant word variations.
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Dataset A Dataset B Dataset C Dataset D
(random additions) || (random deletions) | | (random substitutions) || (similarly prenounced words)
293 seed words 293 seed words 293 seed words 150 words in total
2500 words in total || 2500 words in total 2500 words in total I bigger of

Dataset Dext
(similarly pronounced words)
500 words in total

Greek Dictionary o v
574,883 words 40 rules ft"; deriving words Dataset E, 1y,
k‘i'\:d s ;?Zc:r":rs — 1.4K correct words,
7.6K words in total

Dataset F
* —_— 2.8K correct words
Dataset E |
subset of i
574K distinct Greek Words 15.2K words in total
>3 million forms of Greek words Dataset G
with various kinds of errors 5.8K correct words

30.4K words in total

Dataset H
Series of 15 datasets with
sizes from 1K to 29K words

Figure 1. An overview of the datasets used for evaluation purposes.

4.2 Evaluation datasets (Dataset A — Dataset D)

There are various kinds of errors, for more see the extensive survey Kukich (1992), below we
summarize the main ones. Human-generated misspellings sometimes tend to reflect typewriter
keyboard adjacencies, for example, the substitution of “b” for “n” (in Greek § and v). However,
errors introduced by Optical Character Recognition (OCR) are more likely to be based on con-
fusions due to featural similarities between letters (depending on the font), for example, the
substitution of “D” for “O” (in Greek, we may encounter analogous problems with various groups
of letters like O, ®, 2, as well as A, A, A, and E, ¥ and T, V). We may also have the so-called
typographic errors, for example, “spell” and “speel” (in greek \mn6tng and mooTNC), where it is
assumed that the writer knows the correct spelling but simply makes a motor coordination slip.
There are also cognitive errors, for example, “receive” and “recieve” (in Greek @UAAo and VIO
each having a different meaning), due to a misconception or a lack of knowledge on the part of the
writer. We can also encounter phonetic errors, for example, “abyss” and “abiss” (in Greek prjvupa
and pOvnua, duxhido and Suchelda, xahbtepa and xodAitepa) that are a special class of cogni-
tive errors in which the writer substitutes a phonetically correct but orthographically incorrect
sequence of letters for the intended word.

Apart from mistakes, there are words with more than one correct form, for example, avy6 and
of3y0, and the same applies also for entity names, for example, the city of Heraklion is written as
Hpdochewo but also as Hpdochelov, while the city of Athens is written AV#va but also Adrjvou.

Overall, according to Kukich (1992), nearly 80% of problems of misspelled words can be
addressed either by addition of a single letter, or replacement of a single letter or swapping of
letters. As the authors of Koneru et al. (2016) propose in their evaluation of various phonetic
matching algorithms, we provide a similar evaluation collection for the Greek language that con-
sists of datasets that contain words corresponding to various kinds of errors. Specifically, below
we describe each of the four evaluation datasets that we have created. The set of words in each
of these datasets contains verbs, nouns, adjectives, and proper names. The first three datasets,
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Table 8. Indicative good examples for both Soundexg‘ﬁ’,""e

and Soundexgr

naive

word Soundexgp Soundexgr
Odaracon — 0740 0969
LN — 0740 0969
Oaraon — 0740 0969
pnupa - 1880 L@T@
povnpa - 1880 L@T@
ivia — w880 L@T@
uof\;elua o — MQBO v @@7@
Tatgikt — 1434 c94@
t&uf((m o - ”t4v34 o ”c9v4‘@ v
.T&uf(;tKl.,. e 1434 [ 594@
K0pOVOLOC — «!84 1$8$
Kopo\)mog e K'84 [ ngs
Tavvng — 840 y@97
Fwwng e y840 B y@97
Flaw\mg e yg40 I y@97
avadiatdoom — 833 o793
awgwwgu e a833 . . a793 .

Dataset A,Dataset B, and Dataset C, were created for checking how the algorithms behave
in various kinds of errors (additions, deletions, and replacements) that can occur to a word, while
last one, Dataset D, was created for evaluating letter buckets, that is, for testing the behavior of
the matching in common errors.

In particular, Dataset A contains words produced by a single random letter addition to a
random position in a word, for example, from the set of words axpida, wpdplo, emppenceic we
produce words like oxpmida, wphdplo, emitppeneic. Errors of this kind can happen by typing an
extra keystroke. In Dataset B, the same procedure is used for deletions, that is, a letter is deleted
from a random position, for the same set of words, for example, this dataset contains words like
oxida, wpdpo, emippneic. Again errors of this kind can happen during typing, that is, by a missing
keystroke, or a typo (missing double letter). In Dataset C, we have random letter substitution in
a random position, for example, in our example, we get words like a0pidar, wpdpwy, edippenceic.
Again errors of this kind can happen during typing by one wrong keystroke (recall keyboard
adjacencies, OCR errors, typographic, and cognitive errors).

Each of the above datasets contains 2500 words, generated from the same 293 unique words,
that is, 7500 words in total. The generation of the erroneous words is random, that is, it does
not consider any context or expected errors or typos. Finally, Dataset D contains 150 words
comprising groups of similarly pronounced words, such as moA0, toAlol, TohAY, mwhel and
@OANO, @iho, pUAO, created manually. The motivation for creating this dataset was to capture
some common errors, that is, frequently occurring spelling mistakes.
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Table 9. Indicative examples where Soundex2%*® fails

while Soundexgr succeeds

naive

word Soundexgp Soundexgr
avyd — @200 al2$
apyd — al20 al2$
QUYONAKLOL — 0276 al2$
apra — 120 «l29
avya — 0200 «l29
£TOLILOG — €384 e3@7
altnog — 384 e3@7
aVEwv — 480 ald$
adpgov — al48 ald$
£0d0E0¢ — €344 £13$
eBdotog — €134 £13$
Badpa — 6800 6917
0appa — 0180 6917
foupootikd  — 0843 6917
Eépo - £100 £*8$
VK‘GOVLL"V)OW o . Kv‘.“,o [ 2*85
oBehiag — 0174 0l*6
;Béxﬁaé. e u,l74 [ 01*6
oﬂsh(mog e 0174 I v.(v).l;G.v .
Bayyéing — B274 B95*
Baws)\ng e 5257 I 595* .
Bawm)\ng e 5257 I ”595*” .

4.3 Evaluation metrics

We shall use two basic metrics to evaluate the effectiveness of the algorithms, namely Precision
and Recall. Precision is the portion of words that are retrieved and are relevant to the

query, while Recall is the portion of relevant words that were retrieved, formally: Precision =
|(relevant)N\(retrieved)| __ |(relevant)N(retrieved)|
Gretri , Recall =
retrieved)| |(relevant)|
“relevant” mean in our context. Each of the 293 unique words (of the first three datasets) is con-

sidered as query. For each such word w, the corresponding set of words in each dataset, that is, the
words derived by making one modification, is considered as the set of relevant words.

For example, for the word axp(8a, the set of relevant words is oyxpida, onctplda, oxppida
(from Dataset A), axpld, axpia, xplda (from Dataset B), and ox(da, oxplpa, expida (from
Dataset C). For each query word, the set of retrieved words is considered the set of all words in
all datasets that have the same code. Then, for each dataset individually, we calculate the average

. Let us now explain what “query”, “retrieved”, and
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1 I¥Soundexgr 10 Soundexga]%”e 0o Soundexg’gp
0.8 — .
g
= 0.6
i3]
g 04
A
0.2
0
Dataset A Dataset B Dataset C Dataset D

Figure 2. Precision levels for each collection.

1 I Soundexcr U0 soundexytive [0 Soundexyy? -
0.8
= 0.6
g
0.4
0.2 H
0
Dataset A Dataset B Dataset C Dataset D

Figure 3. Recall levels for each collection.

Precision and average Recall, based on the Recall and Precision of each of the N queries, that is,

- =N | Precision; >N Recall;
Precisiongyg = HTI and Recallyyg = —='5— L

4.4 Evaluation results over Dataset A — Dataset D

At first, we should note that if instead of applying any approximate algorithm, we apply exact
match, then obviously we get Precision equal to 1, but the Recall is very low (around 0.1), as only
one of the “relevant” words is fetched (of course the bigger the buckets of the group of words is
in the evaluation datasets are, the lower the recall becomes). In Dataset A (the letter addition
collection), Soundexgr achieved 0.83 precision and 0.42 recall, while Soundex’é‘ﬁ"e 0.80 and 0.45,

respectively, while Soundexgg[ P achieved precision 0.74 and recall 0.56, as seen in Figure 2 (for
precision) and Figure 3 (for recall).

In Dataset B (the letter deletion collection), Soundex/“4"* had a slight drop in precision to
0.75, and an increase in recall that reached to 0.57, while Soundexgr remained on the same
level, with 0.82 and 0.45, respectively. Soundexg}z1 ? maintained a high precision level of 0.70 and
achieved the higher recall 0.68, as seen in Figure 2 (precision) and Figure 3 (recall). The drop
in the precision of Soundex“4"* with the recall increasing is quite expected, since Soundex?%"
ignores some letters and therefore it can handle better the deletion of a letter, while Soundexgg is
more rigid to such errors.

In Dataset C (the letter substitution collection), Soundexgﬁve achieved precision 0.69 and
recall 0.34. The lower scores are due to the more narrow set of phonetic rules. On the other
hand, albeit a drop in the scores, the Soundexgg algorithm maintained the same level of score
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comp

I1Soundexgr 0 Soundexg“}%“e 0o Soundex,

0.8
0.6
0.4
0.2

F-measure

Dataset A Dataset B Dataset C Dataset D

Figure 4. F-measure levels for each collection.

as in all three sets, with precision 0.80 and recall 0.39. In substitution, Soundexg}g” P did not
manage to make a difference, as it combined the better results of Soundexgg with the worse of
Soundex?4", achieving precision 0.67 and recall 0.49, as seen in Figure 2 (precision) and Figure 3
(recall). Generally, the algorithms behave better when the error is ordinary to the common Greek
Language, meaning that the word is still sounding as the correct one.

In Dataset D, the collection of similarly pronounced words, which comprises the main cases
that a phonetic algorithm should be able to tackle both Soundexgﬁ"e and Soundexgr got sim-
ilar high scores, specifically Soundex?%" achieved precision 0.88 and recall 0.92, while the
Soundexgp achieved precision 0.96 and recall 0.98, as seen in Figure 2 (precision) and in Figure 3
(recall). The combination of the above algorithms, that is, Soundexglzn P manages to maintain the
high scores specifically precision 0.86 and recall 0.98, as its scores are dependent on the two imple-
mentations. These scores show that the buckets are sufficient, with Soundexgr having slightly
greater precision and recall score.

To sum up the results, we can see in Figure 4, that Soundex/" achieves F-Score (note that
F-Score, else called F-Measure, is the harmonic mean of precision and recall, that is, F-Score =
2%%) equal to 0.57, 0.65, 0.46, and 0.90 in Dataset A, Dataset B, Dataset C, and
Dataset D, respectively. Soundexgr achieves F-Score scores equal to 0.56, 0.58, 0.53, and 0.97,

respectively, and the combination of the two Soundexg)g' P achieves 0.64, 0.69, 0.56, and 0.91,

respectively, which shows that the Soundexg}g” ? behaves better in general.

Both Soundexgr and Soundexg‘ﬁw achieved similar results. They work well when the error

does not alter the generated code at a crucial point for the code. Both crucial points would be
bellow four characters, and the error involving a consonant for Soundex/;"¢, and a random,

unexpected consonant or vowel that is not handled in the preprocessing of the word for the
Soundexgg. Since Soundexg’g’ ? includes both implementations in the retrieval process, it shares
the same issues but manages to have higher recall values while not sacrificing greatly in precision.
Using both codes can increase recall levels by 0.05 to 0.20, while the precision suffers a drop from
0.10 to 0.20, comparing to Soundexgg. The algorithms work well in retrieving words, if the error
in a word is based on the same phonetic rules (of Table 3) or are caught in the preprocessing stage,
when we make both the query and the text as mispronounced as possible, especially Soundexgg.
For example, for a query like katefaive, it would correctly retrieve kateféve, katalfaive,
katePaivo, kateunévo, katepevo, katePPai ve but not kathaive, ktePaive, patefal ve.
This is the case because, a single letter addition/deletion/substitution will change the Soundex
code, and Soundex does not have a similarity metric in the comparison process.
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Table 10. Average F-Score (over Dataset A,Dataset B,Dataset C,Dataset D) for differ-
ent lengths of Soundexgr

Soundexgr F-Score

Length Dataset A Dataset B Dataset C Dataset D Avg F-Score
1 0.11 0.12 0.11 0.41 0.18
2 0.37 0.36 0.36 0.72 0.45
3 0.57 0.60 0.56 0.90 0.65
4 0.56 0.58 0.53 0.97 0.66
5 0.47 0.51 0.42 0.98 0.59
6 0.40 0.45 0.35 0.98 0.54
7 0.36 0.43 0.29 0.98 0.51
8 0.35 0.42 0.28 0.98 0.50
9 0.34 0.41 0.27 0.98 0.50
10 0.34 0.41 0.26 0.98 0.49
15 0.34 0.41 0.26 0.98 0.49

4.5 Discussion of the revealed trade-offs as Regards the Length of the Codes (over
Dataset A —Dataset D)

While testing the algorithm, we observed that simple changes affect the achieved precision and
recall. For instance, changing the length of the encoding of Soundexgr from 4 to 6 would greatly
improve precision from 0.80 to over 0.90, while dropping recall from 0.40-0.45 to 0.25-0.30.
Although Soundex algorithms are used mainly in context where recall matters the most, it is
wise to choose the algorithm that suits better the requirements of the application context, that
is, whether emphasis should be given to precision or recall. We also noticed that by leaving the
first letter unencoded, as the original Soundex, we get a slight increase in the precision (by 0.05-
0.10), and a decrease in the recall by 0.05. Finally, splitting all the letters to more categories would
also increase precision and decrease recall.

To better understand how the length of the Soundexgr codes affects the obtained F-Score, we
computed the F-Score over all datasets for code length starting from 1 up to 10, and the length 15.
The results are shown in Table 10. The rightmost column shows the average F-Score over each of
the four datasets. We can see that length 4 yields the best average F-Score.

To better understand how Precision and Recall are affected by the length of the code, Figure 5
shows for each dataset the Precision, Recall, and F-Score for each length from 1 to 10. In the
datasets that correspond to various kinds of errors, that is, in Dataset A (the letter addition
collection), Dataset B (the letter deletion collection), and Dataset C (the letter substitution
collection), we can see clearly that as the code length increases, the precision increases but the
recall decreases. The code length where the F-Score is maximized in these three datasets is 3. In
Dataset D (the collection of similarly pronounced words), we can see that as the length increases,
the precision increases as well, reaching its maximum at length 5. The recall level does not decrease
as the code length increases (as it happens in the previous three datasets) because, even with big
code length, the set of all relevant words are those that sound the same and all of them are retrieved
because Soundexgpr succeeds in assigning them the same code. In this dataset, the length that
maximizes F-Score is 5 and any bigger length.

More experiments on the selection of the codes’ length are given and analyzed in Section 4.10.
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Dataset A Dataset B

1.00

0.00 0.00
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
s PTOCISION s Recall F-Measure Predsion Recall F-Measure
Dataset C Dataset D
1.00 1.00 —_—
050 / < 050
0.00 0.00
1 2 3 4 5 66 7 8 9 10 1 2 3 4 5 6 7 8 9 10
wPrecision -Recall F-Measure w— Precision Recall F-Measure

Figure 5. Precision, Recall, and F-Score evaluation metrics on Dataset A (top left), Dataset B (top right), Dataset C
(bottom left), and Dataset D (bottom right) for Soundexgr code lengths 1 to 10.

4.6 Comparison with stemming

Apart from comparing the various variations of Soundexgr we decided to compare the group-
ing of words that it is obtained through Soundexgg, with the grouping that it is obtained by a
Stemmer for the Greek language. In general, stemming refers to the process of reducing inflected
(or derived) words to their word base or root form. Note that the stem is not necessarily the
morphological root of the word in the sense that if two related words map to the same step,
then even this stem is not a valid root?, and it is sufficient for the task of matching and retrieval.
Consequently, the strong point of using a stemmer for the problem of matching is that it can suc-
cessfully identify morphological variations of the same word, and thus it can match word forms
that are orthographically and phonetically quite different; however, the weak point of using a
stemmer for matching is that it cannot tackle typos (stemmers have not been designed for over-
coming typing mistakes) and cannot be applied to named entities (persons, addresses, places,
companies, etc).

We used one stemmer of the Greek language, specifically the Mitos Greek Stemmer
(Karamaroudis and Markidakis 2006) described in Papadakos et al. (2008) and applied it over
the same datasets. The results for Precision, Recall, and F-Score are shown in Figure 6, 7, and 8
respectively.

We can see that stemming has higher precision (as expected), that is, if two words have the
same stem then with high probability they belong to same category of words; however, the recall
is very low (as expected), since it cannot tackle misspellings that sound the same. Consequently,
stemming has a poor F-Score in comparison to Soundexgg; only in Dataset C stemming has
comparable performance (with performance similar to that of Soundexg%"e). Overall, Soundexgg
is significantly better for the problem at hand, in comparison to using an ordinary stemmer.

Finally, we should note that we tried also the scenario where we first apply stemming and then
apply the Soundex (over the stemmed words); however, the results were worse.

%as it happens for the English language with the Porter stemmer https://tartarus.org/martin/PorterStemmer/ for the English
language
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Figure 6. Precision levels for each collection (also for stemming).
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Figure 7. Recall levels for each collection (also for stemming).
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Figure 8. F-measure levels for each collection (also for stemming).

More comparative experiments with stemmer-based matching are given in Section 4.9, as well
as in the series of experiments described in Section 4.10.

4.7 Measurements over a Greek dictionary

A dictionary is not a kind of dataset for evaluating phonetic algorithms, since it neither contains
misspelled words nor persons’ last names, location names, etc. However, we decided to perform
some measurements for getting one idea about the distribution of codes (and for measuring effi-
ciency). For this purpose, we used the WinEdt Unicode dictionary for Greek®. That dictionary

bGreek WinEdt Unicode Dictionary, version 2008-10-03, downloaded April 26, 2020, size 2,089 KB,
http://www.winedt.org/dict html.
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100000

10000 w {

7,577 Soundexg, codes 109,453 stems

Figure 9. Frequency of Soundexgg codes (left), and lemmas of the stemmer (right) over the dictionary.

contains Greek words and their morphological variations, as well as fist names and acronyms, for
example, it contains ['édvvne, [dvvn, AEL It is actually a list of words, and in total it contains
more than half a million Greek words (specifically 574,883). The total number of characters of
these words is 6,279,813; hence, the average word size is 10.92 characters and the smallest word(s)
have a length 3, while the bigger one has a length 27 ( oTpoYyYLAOXOULAOUELALEVTOLVGAY).

Since the average number of characters per word is 10.92, while each Soundexgr code com-
prises four characters, the size of these codes correspond to the 36% of the size of the original
dictionary (or we will have 36% increase in the dictionary size if we decide to store also the
Soundexgg code for each word). Using the stemmer that we mentioned in Section 4.6, the average
stem size is 7.46. That means that the size of these stems correspond to the 68% of the size of the
original dictionary (or we will have 68% increase in the dictionary size if we decide to store also
the stem for each word).

The number of distinct Soundexgg codes is 7577, that is, in average each code corresponds to
574,883/7577 = 75.87 words. The number of distinct stems is 109,453, that is, each stem corre-
sponds to 574,883/ 109,453 = 5,25 words. In comparison to Soundexgg, the number of lemmas is
109,4530/7577 = 14.44 times more than the number of Soundexgg codes.

The distribution of neither Soundexgr codes, nor stems, is uniform, as expected. There are
codes with only one word, while the more “populated” code corresponds to 11,681 words (corre-
sponding to words starting from yy1q, a frequent prefix in Greek). Analogously, the min number
of words per stem is 1, while the max number of words per stem is 257 (corresponding to the
lemma ta&). The distributions of the frequencies of Soundexgr codes, and stemmer lemmas,
over the distionary, are shown in Figure 9, where both Y-axes (of the left and right plot) are in
log scale. The 10 more frequent codes are shown in Table 11, while the 10 more frequent stems at
Table 12.

Of course, and based on the task at hand, one might decide to use longer Soundexggr codes if
he wants to improve precision over recall, as discussed in Section 4.5.

4.8 Other variations: Full phonemic transcription

It is not hard to see that the same rules, with small changes, can be used for deriving the full
phonemic transcription of a Greek word. With “phonemes,” we refer to the mental categories that
a speaker uses, rather than the actual spoken variants of those phonemes that are produced in the
context of a particular word (note that phonetic transcription specifies the finer details of how
sounds are actually made).

Specifically, we can use only the following three steps of Alg. I:

w <—UnwrapConsonantBigrams(word)
w <TransformVowelsToConsonants(w)
w <—GroupVowels(w)
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Table 11. More frequent
Soundexgr codes

code frequency
k939 11681
7989 8207
n84 5396
T*8@ 4756
n$6@ 4399
£979 3953
al$3 3949
n*39 3933
a*1$4 3857
18$3 3595

Table 12. More frequent

stems

code frequency
T 257
oo 235
apg 233
Koy 212
Ao 209
Bao 208
ToU 194
Yool 190
ToE 176
0pE 159

The rest steps of Alg. 1 are not needed, that is, we skip the step of removing last chars
(RemoveLast), the step of encoding (SoundexEncode), and the step of duplicate elimination
(RemoveDuplicates).

With the above three steps, the changes that are required for producing a full phonetic tran-
scription of Greek words are minimal. The first change is that in GroupVowels(w) the grouping is a
bit different, specifically we group “ou” to“u” (instead of “0”). The second change is that instead of
mapping both 15’ and “t{’ to “c” we map the first to “ts” and the second to “dz”. Finally, instead
of using greek letters for the phonetic transcription we can use latin letters whenever possible, in
any case the selection of the characters in the phonetic transcription does not affect the matching

process. A few examples are given in Figure 10:
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word Soundex%V¢  soudexgr ~ Dhonemic Transcription
avybd  — 2200  «l2% aAvVYO
afyd  — al20  «l2$ aAVYO
c0dofoc — €344  €13$ evdogoc
eBdoloc  — cl34 €13$ evdogoc
Aavotpdyouda — A83!  A@97 lianotrayuda
otpoyyvloxovlovptalbvtovocoy  — 6312 ©38% strogilokulurialodusan

Figure 10. Indicative examples of full phonemic transcription.

We have implemented the above version, and it is included in the public release of the
SoundexGR family of algorithms (described in Section 4.11). Another important question is how
the exact phonetic (phonemic) transcription would behave in the evaluation datasets (described
in Section 4.2). The results are not that good, specifically:

in Dataset A (the letter addition collection) we got F-Score =0.17,

in Dataset B (the letter deletion collection) we got F-Score =0.31,

inDataset C (the letter substitution collection) we got F-Score =0.23, and

in Dataset D (the collection of similarly pronounced words) we got F-Score = 0.93. We observe
that full phonetic transcription behaves well only in Dataset D achieving F-Score 0.93; however,
that score is lower than 0.97 that is achieved by by Soundex[“4"*. As expected, in the rest evaluation
datasets, the exact phonetic transcription behaves much worse since it cannot tackle the cases of

letter additions, deletions, and substitutions.

Overall, the average F-Score across all evaluation datasets of Soundexgp for length 4 is equal to
0.66 (as shown in Table 5), while the average F-Score across all evaluation datasets of full phonemic
transcription is 0.41 (=(0.1740.314-0.234-0.93)/4).

Additional experiments with matching using full phonemic transcription are given in
Section 4.9, and in the series of experiments described in Section 4.10.

4.9 Comparing all variations over Dataset D

To provide an overview of the effectiveness of the aforementioned methods, we decided to pre-
pare an extended version of Dataset D for containing more variations for each word. The derived
dataset, denoted by Dataset D%, contains in total 500 words, in particular it contains 125 words
in their orthographically correct form plus 3 misspellings for each one of these. All of the mis-
spellings sound the same with the correct one. We have tried to include words that are frequently
misspelled as well as typographic errors that do not, however, change the way they would sound.
An excerpt of this dataset is shown in Figure 11.

Over this dataset, we evaluated all aforementioned methods, plus some more, 10 in total meth-
ods, in particular exact match, Soundexg‘ﬁ"e, Soundexgg, Soundexggl P stemming (as described
in Section 4.6), Soundexgg over the results of stemming, full phonemic transcription (as described
in Section 4.8), and matching based on the edit distance Levenshtein (1966) with tolerance K
ranging from 1 to 3. For instance, edit distance with K =2 means that two words match if

their edit distance is less than or equal to 2. The code length for Soundex%", Soundexgr,

and Soundexg}g1 P was equal to 4. The results are shown in Table 13, where the highest values

of Precision, Recall, and F-Score are written in bold. By inspecting the values, we can understand
the behavior of these methods, and we can see that Soundexgr achieves the highest F-Score (0.97).
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Table 13. Evaluating 10 matching methods over Dataset D&

Method Precision Recall F-Score
1 exactMatch 1.0 0.25 0.40
2 Soundexgp 0.95 0.99 0.97
3 Soundexave 0.92 0.91 0.91
4 Soundexgg"” 0.88 0.99 0.93
5 Stemmer 0.94 0.30 0.46
6 Soundexgr over Stemmer 0.85 0.79 0.82
7 Full phonemic transciption 1.0 0.66 0.80
8 Edit Distance <1 0.97 0.58 0.73
9 Edit Distance <2 0.78 0.84 0.81
10 Edit Distance <3 0.52 0.93 0.67

BYoaowo, Biowvo, Bdouvo, Bictvvo

O ewua, Brdhupa, Budhotua, Bidheyda
rakippota, moipola, maklpla, makelpeia
nopdheun, mapdndn, mopdhurn, napdheupdn
TANuudpa, TANUOEY, TANUicEd, TAOYLOIRN
WpdpLo, 0pdEL0, WEBEELD, 0EYEOLO

Figure 11. Excerptfrom Dataset D,

4.10 Experiments at different scales—On selecting the length of the codes (over Dataset E -
Dataset H)

In Section 4.5, we have seen that the length 4 yields the best average F-Score over the four eval-
uation datasets. Questions that arise are: Does the optimal length depend on the size of the
dataset? Should we use shorter codes in smaller datasets, and larger codes in larger collections?
One approach for tackling these questions is to make the experiments (like those reported in
Table 10) but instead of considering the entire evaluation datasets, to consider only parts of these
datasets starting from very small parts and reaching to the entire evaluation datasets. For this pur-
pose, we performed experiments after having limited the number of words to be considered from
each dataset, starting from 200 words up to 2000 words with increment step equal to 200.

For each such dataset size, we have evaluated Soundexgg code lengths starting from 2 up to
12. The experimental results, as regards average F-Score, are shown in Figure 12(top plot). The
left Y-axis corresponds to the code length (from 2 to 12), while the right Y-axis corresponds to
the average F-Score (across the four evaluation dataset parts). The X-axis shows the dataset sizes
(from 200 to 2000 words with step equal to 200), and for each such size the X-axis has 11 ticks
each corresponding to one code length (from 2 to 12).

Figure 12(top plot) reveals the following general pattern: as the code length increases, the
F-Score increases reaching a peak around 0.7 (usually for code length 3 or 4) and then it is
decreased and ends up to 0.5. Figure 12 (middle and bottom plot) shows the average Precision
and average Recall that helps us to explain the distribution of the average F-Score. From these
measurements, we could say that the size of the dataset is not very decisive (at least for the consid-
ered sizes in this experiment, i.e., for 200 to 2000), since we can see that the size of the dataset does
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Collection Size, CodelLength and F-Score
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Figure 12. Average F-Score (top), Precision (middle), and Recall (bottom) as a function of code length (left Y-axis, blue dots)
and dataset size (X-axis) of Soundexgg inDataset A,Dataset B,Dataset C,andDataset D.
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o Johd, YowAd, Yorhd

o Xdpng, Xdpug, Xdppve

® QTOTAPE, AMOTUPE, ATMOTHEAL, AMWTAPE, ANTOTHEE

® ETUPPETG, EMUPPETAG, UTUPPETNS, ETUPPENOS, ENTURENOS

o Mndduyng, Mnduyug, Amddmyue, Autddnyug, Aunddnyug, AuTnéTony) LS

® TEOCUTIOYRUPOUOLY, TEOCNTOYPUPOUOLY, TEWONTOYEAVOUOUY, TEWONTOYPAUMUOUY, TEOCTTOYP0U-
MU0V, TEEOCTTIOYPAUOUOUY

® cTEPOONUOTY, ETEPOBUUATY, ETEPODNUATY), ETEROONUOTEL, AUTEROINUOTOL, ETEPWDINUOTOL, ETEPHINUDTOL,
ETEPOONUDTOL, ETTEPODNUOTOL

® JdevTpoPuTELHTAY, davTEOPNTEVHTAY, BEVTEOPNTERSTAY, BEVTPOPNTEQPSTAY, DEVTEWPNTEVOTAY, DEVTPW-
PNTELOTAY, BEVTIPOPNTELMTAY, BEVVTPOPNTELHTAY

Figure 13. Excerpt from Dataset E1 ax—7.6K-

not affect significantly the F-Score. It is not hard to see that it is not only the size of the dataset
that matters, but also the length of the words, a quantity that does not depend on the dataset size:
even in small datasets too, short codes or too long codes harm the F-Score that we achieve and
this is evidenced by the measurements, that is, through the low F-Score values that we get for very
short and very long codes in Figure 12(top plot). To test this hypothesis, and further understand
what affects performance, we designed the experiment that follows.

Datasets with bigger word size variations. By exploiting the experience from creating (manually)
the Dataset D, we decided to use the dictionary of Greek words (mentioned in Section 4.7 that
contains 574,883 distinct words) for producing larger datasets for further evaluation and experi-
mentation related to the size of the codes. For each word of that dictionary, we produce a bucket
that contains variations of the word with various kinds of errors. We decided to include words that
contain more than one errors, not only because there are many frequent misspellings that contain
more than one error, for example, pOvnua instead of MMVVUY, BéAAacw instead of OéAaooa,
but also for evaluating cases that cannot be captured easily by the edit distance. Therefore, we
have included various errors that do not affect the way the word sounds, so the emphasis is given
on orthographic errors.

Specifically, for producing such errors, we have created around 40 rules for capturing vari-
ous cases. Most of them are replacement rules, with conditions on the characters that should not
appear before or after the character to be replaced. For instance, the rule Rule ({o,a,e},,0,-)
replaces « with v only if the letter before t is not one of ©:%€, since in that case we have a
diphthong and such an error would not be common. Analogously, the rule Rule ( -,0,0,{v,0,L,(})
replaces o with w only if the character after o is not one of the lists, since in that case we have a
diphthong too. The set of rules is not supposed to produce all possible errors, but they can cap-
ture pretty well various kind of common errors; therefore, the variations they produce can be
used for the evaluation of approximate matching. To ensure that for each word (also for the very
small ones) we have at least one misspelled word, we have included one rule that doubles a middle
consonant. Let call this dataset Dataset E.

The words in the original dictionary are ordered by their size. To create a dataset that covers
all word sizes we used step 400, that is, we peek one word every 400 words of the dictionary. The
resulting dataset, that we will denote by Dataset Ej 4x—76k, has 1438 distinct correct words 7608
words in total, and the average size of the blocks is 5.29, that is, in average the dataset contains
more than four misspellings per word. A small excerpt from the produced dataset is shown in
Figure 13.

Over this dataset, denoted by Dataset E; 4x_7.6k, we run the experiments and the results are
shown in Table 14. At first, we observe that exact match achieves F-Score 0.37, stemming 0.40,
while full phonemic transcription 0.86. Edit distance achieves its maximum F-Score, that is, 0.9,
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Table 14. Evaluating 10 methods over Dataset E1 ak—7.6x

Method

Precision

Recall

F-Score

Soundexgr (4)

exactMatch

Soundexave (4)

1.0

0.23

0.96

0.37

0.76

2-vi
3-vi

4-vi

Soundexgr (5)

Soundexgve (5)

 Soundexgg.

Soundexgr (7)

Soundexgr (8)

Soundexgr (10)

comp 4)

| Soundexge "W .0

Soundexgy " (5)

Soundexgr (6)

Soundex(ave (6)

comp (6)

Soundex2ave (7)

comp )

| Soundexge " (T

Soundexaie (8)

Soundexgy " (8)
Soundexgr (9)
Soundex(aive (9)

comp )

 Soundexgy ™ (9).

Soundex2&¥e (10)

Soundexgy " (10)

0.96

0.90

0.97

0.95
0.98

0.98

0.97
0.99
0.98

0.97

0.98

0.88

0.98

0.96

0.87

0.98
0.95

0.88

0.98

0.95

0.87

0.98

0.95

0.87

0.98

0.90
0.87
0.94
0.91

0.94
0.96
0.92

0.97
0.97

0.92
0.97
0.97

0.92

0.97

10

Soundexgr (11)

Soundexgy " (11)

Soundexgve (11) .

Stemmer

Full phonemic transciption

Edit Distance <1

Edit Distance <2

Edit Distance <3

Edit Distance < 4

0.99

0.95

0.80

0.99

0.98 0.98

0.25

0.75

0.44

0.69

0.87

0.95

0.40
0.86
0.60
0.82
0.90

0.87
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Table 15. Evaluating 10 methods over Dataset F2 gk—15.2«

Method Precision Recall F-Score
1 exactMatch 1.0 0.22 0.37
2-i Soundexgr (4) 0.5 0.96 0.65
3-i Soundexave (4) 0.61 0.89 0.72
4 Soundexgy " (4) 0.40 0.98 0.57
2-ii Soundexgr (12) 0.99 0.95 0.97
3-ii Soundexave (12) 0.96 0.87 0.91
4-j Soundexgy " (12) 0.96 0.98 0.97
5 Stemmer 0.96 0.25 0.40
6 Full phonemic transciption 0.99 0.75 0.85
7 Edit Distance <1 0.99 0.43 0.60
8 Edit Distance <2 0.98 0.69 0.81
9 Edit Distance <3 0.91 0.86 0.89
10 Edit Distance < 4 0.71 0.95 0.81

with K < 3. Notice that Soundexgp is better than all the above options for any code length equal

or greater than 6. The optimal F-Score is, that is, 0.98, is achieved with Soundexp ? and code
length equal to 10. This length is longer than what we expected; however, this can be explained by
the fact that the dictionary contains a lot of big words.

To produce a larger dataset, we reduced the step to 200 and we produced Dataset Fy gx—152K
that contains 2875 correct words and 15,297 total words (average bucket size 5.32). The results
of the experiments are shown in Table 15. We observe a slight drop in precision and F-Score for
length 4; however Soundexgg with code length equal to 12 preserves the very high F-Score (0.97).

To produce an even larger dataset, we further reduced the step to 100 and produced
Dataset Gsyx_30.4k that contains 5749 correct words and 30,824 words in total (average bucket
size 5.36). The results of the experiments and the results are shown in Table 16. We observe a fur-
ther drop in precision and F-Score for length 4; however, for code length equal to 12, Soundexgr
preserves the very high F-Score (0.97).

The previous datasets (Dataset E; 4x—76x — Dataset Gs7x—30.4k), Which were derived by
picking words from the beginning up to the end of the dictionary, covered the entire spectrum
of word lengths. However, longer words are less frequent; therefore, it is sensible to make experi-
ments starting from the beginning and without gaps, for considering all short- and medium-sized
words, which are expected to contain the frequent ones. The resulting dataset is probably harder
for matching, not only because there are many small words making precision hard to achieve, but
also because many morphological variations of the included words will be included (since Step
1 was used), so it is more challenging to achieve high precision. For this reason, we performed
experiments of Soundexgpg for all code lengths from 2 up to 12 for dataset sizes starting from
1000 words to 29,000 words with dataset increment step 2000 (words, not rows). The resulting
series of 15 datasets contain letters with words up to 6 letters.

The results are given in Figure 14. Notice that the right vertical axes start from 0.5 for F-Score,
0.3 for Precision, 0.8 for Recall, to make more evident the differences. In Figure 14(top plot), we
observe that Recall is not essentially affected by neither dataset size nor code length. In Figure 14
(middle plot), we observe that (as expected) the Precision is lower and it is affected by the size
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Table 16. Evaluating 10 methods over Dataset Gs 7x—30.4x

Method Precision Recall F-Score
1 exactMatch 1.0 0.22 0.36
2-i Soundexgr (4) 0.36 0.96 0.52
3-i Soundexave (4) 0.46 0.88 0.61
4-i Soundexgy " (4) 0.26 0.98 0.41
2-ii Soundexgr (12) 0.99 0.95 0.97
3-ii Soundex&ve (12) 0.93 0.87 0.90
4-j Soundexgy ™ (12) 0.92 0.98 0.95
5 Stemmer 0.92 0.24 0.38
6 Full phonemic transciption 0.99 0.75 0.85
7 Edit Distance <1 0.96 0.43 0.60
8 Edit Distance <2 0.97 0.68 0.80
9 Edit Distance <3 0.86 0.86 0.86
10 Edit Distance < 4 0.61 0.95 0.74

of the collection. In Figure 14 (bottom plot), we observe that F-Score is affected by the size of
the collection (i.e., it decreases as the dataset size increases) but achieves 0.7 for code lenghs > 8.
In general, we observe (as expected) that in this series of datasets that contains small words, the
F-Score is lower than what in Dataset Gsyx—30.4x. This evidences that not only the size of the
vocabulary and the kind of errors but also the size of the words affect the effectiveness of matching.

Synopsis and general remarks. Figure 15 illustrates the main results, that is, it shows each dataset
and its characteristics, as well as the best F-Scores obtained by Soundexgr and other matching
methods.

A few general remarks follow:

« The bigger the collection is, and the longer words it contains, the longer the codes should
be (to preserve precision). The same is true for the tolerance of edit distance-based match-
ing. In a context where retrieval of high precision is required (e.g., in the retrieval of user
comments within a voice-based conversational interaction, as in Dimitrakis et al. (2018)),
longer codes can be selected, while in an application context where recall is more impor-
tant (e.g., in patent search), shorter ones could be more appropriate. The performance also
depends on the kind of errors that expect and their relative percentage (e.g., long codes are
good if we have several orthographic errors, not random errors).

« If one wants to select the best option in a particular application setting, apart from the
above analysis, one can perform ad hoc experiments, and for this reason the code for run-
ning the aforementioned experiments with various sizes of codes has been made publicly
available. Moreover, and to facilitate comparative results, we have uploaded the full dataset
that contains 574,883 distinct Greek words and 4.32 misspellings per word in average, in
total more than 3 million forms of Greek words (3,063,143) at Tzitzikas (2021).

4.11 Implementation and efficiency

As regards efficiency, using a machine with 1.8 GHz i7, 4MB cache, and 16 GB of RAM,
Soundexgr encodes the words of each set of 2500 words in 2.5 s, meaning each word takes 1

https://doi.org/10.1017/51351324922000018 Published online by Cambridge University Press


https://doi.org/10.1017/S1351324922000018

Natural Language Engineering 1333

Collection Size, Code Length and Recall

14 1
12 j ﬂ j U 0,98
0,96
10 ‘ﬂ j 0,94
8 0,92
0,9
6 0,88
4 0,86
0,84
z 0,82
0 o oo ocQcocQocoQocooococoooo s

Collection Size, Code Length and Precision

14 1
12 0,9
10 08
8 07
6 V 06
4 0,5
2 0,4
0 03
§8EE8EEEEEEEEEEpEEEEREEEE
Collection Size, Code Length and F-Score
14 0,85
12 08
10 0,75
8 0,7
6 0,65
4 06
2 0,55
0 05

Figure 14. Recall (top), Precision (middle), and F-Score (bottom) as a function of code length (left Y-axis, blue dots) and
dataset size (X-axis) of Soundexgg in Dataset H.

ms to be encoded, while Soundex?%" in 0.4 s, meaning that it needs 0.016 ms per word. Since

Soundexg);1 P uses both the implementations to encode a word, it needs 1.016 ms per word.

To compute the Soundexggr codes for each word of the dictionary described in Section 4.7,
that is, for more than half a million words, our implementation (using Java 8) takes less than 2 s
(specifically 1,684 msecs) using a machine with 1.9 GHz i7, 8MB cache, and 16 GB of RAM.

An implementation of all algorithms, as well as the evaluation datasets, are publicly available at
https://github.com/YannisTzitzikas/SoundexGR. Moreover, a tool (editor) for aiding the designer
to select the method to be applied is also provided: it shows all codes for the words of the input

text, a screenshot is given in Figure 16.
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Dataset B Dataset C Dataset D
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500 words in total
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Greek Dictionary D Soundexgp (7) = 0,97
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kinds of errors
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5.8K correct words Full phonemic .85
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Series of 15 datasets with
sizes from 1K to 29K words

Soundexgp (>8) =0.7
—

Figure 15. A synopsis of the main evaluation results.
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Figure 16. A tool for visualinspection of the produced codes, approximate matching, and others.

4.12 Applications

The simplicity and efficiency of the proposed algorithm makes it applicable to a wide range
of tasks. It can be exploited whenever we want to find matchings between (written or spoken)
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UNVUUETOV, WVUIOAMOUOU, WWLAALOTIXOS, WVILOALOTIXG, UVHIOMOTIXG, WVioAlo TS,
UVILOAOTIXE, UIVLHOMOTIXES, UNVOUATOC, WIVIHOMOMO, WIVIHOMOMOS, UNVOUTd,
UVLIOMGTH, UNVOUATE, WWUAAGTAS, WNVORATOS, WVILOALSTIXY, UVILOMOTXOD,

WVILONO TNV, UHVUUS, WVILONGTO!, WvahoTieo0g, uivuud

Figure 17. Suggestions for the mispelled word }lOfVELHO( based on length code =6.

descriptions in Greek. In general, these phonetic codes can be used for tackling Out-Of-
Vocabulary (OOV) words, a problem that occurs frequently and in various contexts. Indeed, the
phonetic codes can be exploited for supporting various kinds of matching, depending on the con-
text. As shown in Section 4.10, the way to handle the OOV problem depends on various factors
(collection size, kind and percentage of errors, and word lengths). To verify it in a pure match-
ing context, we implemented a prototype matching service where the user enters a word, and the
system performs lookup in the dictionary of Greek words (mentioned in Section 4.7 that con-
tains 574,883 distinct words), and if the word is not found, then it suggests to the user a number
of approximate matches. Note that this problem is easier in a context where also the frequen-
cies of words are available (e.g., in query autocompletion in web searching); however, we wanted
to inspect the behavior of matching if no usage information is available. We implemented the
approximate matching by returning all words of the dictionary that have the same Soundexgg
code with the word entered by the user. As expected, the returned words depend on the length of
the codes that are used. For instance, for the mispelled word potveua the system, with Soundexgr
code length equal to 12, returns two suggestions Wivupa, uivupd. Notice that the edit distance
of these words is 4 and 5, making clear the differentiation (and benefit) of this matching in com-
parison to edit distance-based matching. We obtain the same two suggestions for any code length
between 7 and 12.

However, if we further reduce the length to 6, then we get the 23 suggestions shown in
Figure 17.

This suggests that the phonetic codes can be used for more sophisticated services as well, for
example, if the number of words with the same code is high then we can rank them according to
their edit distance. The returned ranked list will include words that sound the same but may have
several orthographic mistakes (therefore would be not returned by the edit distance) which will
be subsequently ranked with respect to edit distance allowing in this way to control the number
of suggestions. An example for the word dtdhipa is shown in Figure 18, demonstrating that rank-
ing with edit distance over the Soundexgr codes gives better results than applying directly edit
distance, as the latter includes totally irrelevant words.

Furthermore, since the codes can be computed once (something that is not possible with the
edit distance), this offers a more efficient method for computing approximate matches.

To support the process of designing such services, the application allows testing the above ser-
vices using various code lengths. It also offers a method that takes as input one word and produces
various misspellings, enabling the user to easily pick misspellings for checking the approximate
matching (as shown in the bottom part of Figure 16).

4.12.1 Indicative Application Contexts
Below, we sketch how these codes can be used for tackling the problem of Out-Of-Vocabulary
(OOV) words in various contexts.

« Autocompletion Services. Each work w in the list of possible query completions (corre-
sponding to the frequent queries according to the query logs) can be accompanied by its
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¥ SoundexGR v0.1 = u] x
i User Input & Tool Bars Output
et APPROXIMATE MATCHES FOR & éAtpa &
Bldhipa (i Approximate Matches (words having the same
SoundexGR codes with "&idaAhipa”): 10 matches

[6iahbpata, Siaheippatog, Siailpatog, Bi&heippa,
SiaAheippdtev, SrtaAeippata, Sidivpa, SLaAvpatd,
- S aivpa, Siadvpatev]

Phonemic Operations

= B B * Ranking of the above 10 words wrt Edit distance
SoundexGR SoundexGRNaive Phonemic APPLY ALL v

(shewing the Edit Dist of each woxd):

Code length: |7 |+ {31&dhvpa=1, Sidheippa=2, BL4Avpa=2, Biahvpata=4,
5LoAvpata=4, Siaiipatog=5, Siaieippata=6,
SLaAvpdtev=6, Sitakei{pparog=7, Sitadeipparwv=T}

Misspelling and Matching Operations
* Approximate Matches directly from the Dictionary
Produce Misspellings ordered by Edit distance (less than 3):214 matches
{Siahvpa=1l, SiéAiBa=1l, BivAiloa=2, Si&heypa=2,
t&oipa=2, Sidpnpa=2, Sidhefa=2, Si1UAiLia=2,
Kidhia=2, Si1dhupd=2, pLédia=2, Sidoipo=2,
Siareippa=2, Sidvepa=2, Sir4oipa=2, Sidheya=2,
General Operations Si&8npa=2, Si&onpa=2, Bi1&Ai18o=2, S1&h18e=2,
Clear || Set Output as Input 5iarva=2, Bialwpa=2, Bidvua=3, Biatipd=3,
SivAhtoe=3, SiVAion=3, pdhopa=3, yvadkiva=3,
Mahia=3, opdipa=3, Siaxeva=3, Siaheiyn=3,
Sipapra=3, Siaorpa=3, xidhi=3, talipa=3,

Siaoxt{a=3, Nadpa=3, Biahefav=3, Biaveiia=3,

Figure 18. Demonstrating approximate matching methods.

Soundexgg code. If the user’s input contains a word »’ that is not in C, instead of search-
ing for words with small edit distance, the words that have the same Soundexgg can be
prompted as well. To support letter-based suggestions, a trie data structure (like the one in
Fafalios and Tzitzikas (2015)) of Soundexgr codes can be used for parallel traversal as well,
that is, for each letter that is typed by the user we traverse both the trie of frequent queries
and the trie of the Soundexggr codes of these queries, and eventually we suggest to the user
completions based on the contents of both tries.

« Retrieval Services. Each work w in the Vocabulary V of an Inverted File can be accom-
panied by its Soundexgg code. If the user’s query contains a word w’ that is not in V (for
instance, Cucerzan and Brill (2004) reports that misspellings appear in up to 15% of web
search queries), instead of searching only for words with small edit distance, the words that
have the same Soundexgr can be used as well. Subsequently, the Soundexgg codes of the
words can also be exploited for producing the snippets of the hits that will be displayed
in the search results. The snippet of a hit is a small excerpt of that document that con-
tains most of the query words that is computed at query time using sequential text search.
Consequently, if the locally stored textual contents of the indexed documents are encoded
using Soundexgg, then that would speed up the sequential search required for selecting the
snippet to display. Other modern applications of real-time searching, for example, meth-
ods for linking text to a knowledge base of fact-checked claims (as in Maliaroudakis et al.
(2021)), for aiding the detection of fake news, can also be benefited by phonetic matching.

« Named Entity Identification. Modern methods for Named Entity Extraction rely on pure
NLP methods and knowledge-based methods (Mountantonakis and Tzitzikas 2020). The
extraction of named entities is usually based on lists of entities (e.g., Countries, etc) which
comprise the names of the entities (and alternative names, as in Linked Open Data). Such
lists can also contain the phonetic codes of these names to speed up matching and to tackle
morphological variations. Indeed, the recent survey by Singh et al. (2020) shows that the
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components of modern Question Answering systems (that heavily rely on entity identifi-
cation) are very vulnerable to the morphological variations of the words in the questions
that refer to entities.

« Word Embeddings and ML. As mentioned in Piktus et al. (2019), the existing approaches
for producing word embeddings cannot provide embeddings for words that have not been
observed at training time. For instance, for the English language, Satapathy et al. (2017)
used the Soundex algorithm to convert out-of-vocabulary to in-vocabulary and analyzed
its impact on the sentiment analysis task, while Satapathy et al. (2019) proposed a concept-
based lexicon that exploits phonetic features to normalize the out-of-vocabulary concepts
to in-vocabulary concepts (Huang et al. 2020). An analogous direction could be investi-
gated for the Greek language, since there are already proposals for creating embeddings for
the Greek language, for example, the ensemble method described in Lioudakis et al. (2019),
the method for named entity recognition from Greek legislation described in Angelidis
et al. (2018), while an evaluation of Greek Word Embeddings is described in Outsios et al.
(2019), that does not include the more recent Greek BERT Koutsikakis et al. (2020). Out-
Of-Vocabulary (OOV) words need to be tackled in all cases, for instance, the dictionary
that we used contains around 500K Greek words, while Greek BERT Koutsikakis et al.
(2020) contains embeddings for only 35K words.

In general, applications of phonetic encoding algorithms are widely used in modern informa-
tion technology, both in the original and modified forms, a detailed list is given in Vykhovanets
et al. (2020).

5. Conclusion

We introduced a family of phonetic algorithms for the Greek Language by adapting the original
Soundex to the characteristics of the Greek Language, and widening the rules, as most modern
phonetic algorithms have done. In particular, we introduced Soundexgg and a simpler variation
called Soundex“4", both producing codes of four characters. In brief, before a word is encoded,
it is preprocessed and this preprocessing includes identification of cases when a vowel sounds
as a consonant in Greek, grouping of vowels that make a different sound when paired together,
intonation removal, and dismantling digrams to single letters. Moreover, we defined Soundexggl P
that combines the previous two in the matching process.

To identify which rules have a positive impact on the algorithm, in different error scenar-
ios, we comparatively evaluated these algorithms. To this end, we constructed four evaluation
datasets: one with similarly sounded Greek words and three more depending on the kind of error
that can happen to a word (letter addition, deletion, or substitution), containing 7650 words in

total. The algorithms achieve (precision, recall) metrics that range in (0.90-0.96, 0.40-0.98) for

comp

Soundexgg, (0.69-0.88,0.34-0.92) for Soundexg‘ﬁve, and (0.66-0.86, 0.50-0.98) for Soundex " .

To synopsize, Soundex P achieves F-Score equal to 0.91 in the dataset with the similar-sounded
words. We have also seen that these algorithms behave better (over the evaluation collection)
than a Greek stemmer, and we have tested their efficiency over a Greek dictionary comprising
more than half a million words. Furthermore, we have seen that the Soundexgr performs much
better in comparison to a full phonetic transcription. In an extended dataset that contains com-
mon errors, we have seen that Soundexggr achieves the highest F-Score (0.97), outperforming
also edit distance-based matching. In bigger datasets (that include long words), Soundexgg pre-
serves its superiority but with code length equal or greater than 6, while the length that gives
the optimal F-Score is 12. The effectiveness, the simplicity, and the efficiency of the proposed
algorithm makes it applicable to a wide range of tasks. The length of the codes can be config-
ured according to the desired precision-recall performance, and we believe that the experimental
results reported in this paper provide help for such configuration; we have seen that the size of
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the vocabulary, the distribution of word sizes, and the type and percentage of errors determine
the code length that gives the optimal performance. Moreover, we have seen that these codes
can be used in combination with other methods for approximate matching for achieving more
sophisticated matching methods that can be more effective, and even more efficient. The imple-
mentation of the algorithm, a stand-alone application for approximate matching that can support
the designer on selecting the code length to use, as well as the evaluation datasets, are available at
https://github.com/YannisTzitzikas/SoundexGR. Moreover, and to facilitate comparative results,
we have created and made public the GMW (Greek Misspelled Words) dataset Tzitzikas (2021), a
dataset that contains 574,883 distinct Greek words and 4.32 misspellings per word in average, in
total more than 3 million forms of Greek words.

One direction that is worth research is to investigate whether these phonetic codes could be
exploited in various deep learning models for NLP for the Greek language (e.g., Lioudakis et al.
(2019) for word embeddings, Angelidis et al. (2018) for named entity recognition from Greek leg-
islation), for making these models more tolerant to misspelled or mispronounced words. Another
topic that is worth research is to compute n-grams of such phonetic codes over various corpora
and then evaluate whether they can further improve the handling of Out-of-Vocabulary words.
Along the same line, since our work is not for word sense disambiguation, for example, the word
A6y Lo in the two phrases “AdyLa Tev avBpemwv” and “n AdyLa mapddoor” will be assigned
the same phonemic code even if the meaning is different, N-grams and other more recent meth-
ods, either over the original words or over their phonemic transcription, could be investigated in
the future for identifying the right sense of a word occurrence.

Acknowledgment. The authors would like to thank Katerina Papantoniou for her feedback and for proof-reading the paper,
and the anonymous reviewers for their fruitful comments and suggestions.
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