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Abstract

Suppose that G is a finite solvable group. Let t = nc(G) denote the number of orders of nonnormal
subgroups of G. We bound the derived length dl(G) in terms of nc(G). If G is a finite p-group, we show that
|G′| ≤ p2t+1 and dl(G) ≤ �log2(2t + 3)�. If G is a finite solvable nonnilpotent group, we prove that the sum
of the powers of the prime divisors of |G′| is less than t and that dl(G) ≤ �2(t + 1)/3� + 1.
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1. Introduction

A finite group is said to be a Dedekind group if all its subgroups are normal. Such
groups were precisely classified by Dedekind in [6]. Groups having only a few
nonnormal subgroups can be considered close to Dedekind groups. There are many
results about such groups that characterise the structure of finite groups with a small
number of conjugacy classes of nonnormal subgroups (see [3–5, 7, 9–11]). There are
also explorations based on the number of orders of nonnormal subgroups.

Let G be a finite group. For convenience, we introduce the notation,

nc(G) = the number of orders of nonnormal subgroups of G.

Obviously, nc(G) = 0 if and only if G is a Dedekind group. Passman in [12] classified
finite p-groups, all of whose nonnormal subgroups are cyclic, including finite p-groups
with nc(G) = 1. Later, Berkovich and Zhang in [2, 13] classified finite groups with
nc(G) = 1, and An in [1] classified finite p-groups with nc(G) = 2. These results
are mainly concerned with the structure of G. In particular, Passman in [12] gave
several interesting properties of finite p-groups based on the orders of their nonnormal
subgroups, which served as inspiration for this study.
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The aim of this paper is to estimate the derived length of a finite solvable group G
in terms of nc(G). We examine nilpotent groups (Section 2) and solvable nonnilpotent
groups (Section 3). In fact, the derived length of a nilpotent group with nc(G) = t is
less than the derived length of p-groups with nc(G) = t. Therefore, we consider finite
p-groups instead of nilpotent groups.

In [12], Passman showed that, for a finite p-group G, if the maximal order of
nonnormal subgroups of G is pm, then |G′| ≤ pm, and hence the nilpotent class
c(G) ≤ m + 1. Also, it is trivial that nc(G) ≤ m. We obtain the following result.

THEOREM 1.1. Let G be a p-group. If nc(G) = t, then dl(G) ≤ �log2(2t + 3)�.

Assume that G is a finite solvable nonnilpotent group. We establish an upper bound
for the derived length dl(G) in terms of nc(G).

THEOREM 1.2. Let G be a solvable nonnilpotent group. If nc(G) = t, then the derived
length dl(G) ≤ �(2t + 2)/3� + 1.

Let G be a finite solvable group with |G| =∏k
i=1 pαi

i . For convenience, we define

sp(G) =
k∑

i=1

αi.

For the remainder of this paper, all groups are finite and we refer to [8] for standard
notation concerning the theory of finite groups.

2. The p-groups with nc(G) = t

In this section, we bound the order of G′ and the derived length dl(G) for a p-group
G in terms of the number of orders of nonnormal subgroups nc(G). We begin with four
lemmas.

LEMMA 2.1 [2, Lemma 1.4]. Let G be a p-group and let N � G. If N has no abelian
normal subgroups of G of type (p, p), then N is either cyclic or a 2-group of maximal
class.

LEMMA 2.2 [12, Lemma 1.4]. Let N be a minimal nonnormal subgroup of a p-group P.
Then N is cyclic.

Suppose that G is a group and N � G. Note that nc(G/N) is the number of orders of
nonnormal subgroups of G containing N. The following lemma is easy but important,
and it will frequently be used later in the paper.

LEMMA 2.3. Let G be a group. Assume that N is a normal subgroup of G. Then
nc(G/N) ≤ nc(G). Moreover, if nc(G/N) = nc(G), then the orders of all nonnormal
subgroups of G are divisible by the order of N.

PROOF. Obviously, the projection of the nonnormal subgroups of G/N onto G are
still nonnormal, and hence nc(G/N) ≤ nc(G). If there exists a nonnormal subgroup
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[3] Nonnormal subgroups of solvable groups 123

of G whose order is not divisible by |N |, then nc(G/N) < nc(G). This completes the
proof. �

Let G be a p-group. We say that H1 > H2 > · · · > Hk is a chain of nonnormal
subgroups of G if each Hi � G and if |Hi : Hi+1| = p for 1 ≤ i ≤ k − 1. Passman in
[12] used chn(G) to denote the maximum of the lengths of the chains of nonnormal
subgroups of G, and proved that if chn(G) = t, then sp(G′) ≤ 2t + �2/p�. It is trivial
that chn(G) ≤ nc(G). In the next lemma, we weaken the condition.

LEMMA 2.4. Let G be a p-group. If nc(G) = t, then sp(G′) ≤ 2t + 1.

PROOF. Let G be a p-group and assume that nc(G) = t. If G has no elementary abelian
normal subgroup of order p2, then, by Lemma 2.1, G is either a cyclic group or a
2-group of maximal class. It is easy to see that sp(G′) ≤ nc(G) + 1 and the result
follows.

Now, suppose that there exists an elementary abelian normal subgroup N of order
p2. In this case, we perform induction on t. If t = 0, clearly, G is Dedekind and
sp(G′) ≤ 1, as required. Next, suppose that t ≥ 1. We consider the factor group G/N.
Assume that M is a nonnormal subgroup of minimal order of G. Then M is cyclic
by Lemma 2.2. Let |M| = pm. We claim that nc(G/N) ≤ t − 1. If pm ≤ p2, it follows
from Lemma 2.3 that nc(G/N) ≤ t − 1. Conversely, if pm > p2, then G/N has no
nonnormal subgroups of order pm−2. Otherwise, there exists a noncyclic nonnormal
subgroup of order pm of G, which contradicts the minimality of M. Thus, according to
Lemma 2.3, we have nc(G/N) ≤ t − 1, as claimed. Here, by induction on t, it follows
that sp((G/N)′) ≤ 2(t − 1) + 1. Therefore,

sp(G′) ≤ sp(N) + sp((G/N)′) ≤ 2t + 1.

The proof is complete. �

COROLLARY 2.5. Let G be a nilpotent group. If nc(G) = t, then sp(G′) ≤ 2t + 1.

PROOF. Let Pi ∈ Sylpi
(G) and assume that G = P1 × P2 × · · · × Pk with nc(G) = t. If

k = 1, the result is trivial by Lemma 2.4. Now, let k ≥ 1. We assume that G = H × Pk.
Since nc(G) = t, we have nc(H) < t/2 and nc(Pk) ≤ t/2. By induction on k, it follows
that sp(H′) < t + 1 and sp(Pk

′) < t + 1. Therefore, sp(G′) ≤ 2t + 1. �

We denote by c(G) the nilpotent class and use Gi and G(i) to denote the ith terms of
the lower central series and the commutator series for a group G, respectively. We are
now ready to prove Theorem 1.1

PROOF OF THEOREM 1.1. Let G be a p-group and assume that nc(G) = t. By
Lemma 2.4, we see that |G′| ≤ p2t+1 and thus c(G) ≤ 2t + 2. It suffices to show that
G(i) ≤ G2i for i ≥ 1 since, by induction on i,

G(i) = [G(i−1), G(i−1)] ≤ [G2i−1 , G2i−1 ] ≤ G2i .
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Note that 1 = G2t+3 = G(dl(G)) ≤ G2dl(G) . Consequently, 2dl(G) ≤ 2t + 3, that is, dl(G) ≤
�log2(2t + 3)�. This completes the proof. �

3. The solvable nonnilpotent groups with nc(G) = t

In this section, we investigate the solvable nonnilpotent groups with nc(G) = t and
prove the main result of this paper.

First, we state the characterisation of finite groups with nc(G) = 1 and provide a
basic fact about nilpotent groups.

LEMMA 3.1 [13, Theorem 2.3]. Let G be a finite group. If all nonnormal subgroups
of G possess the same order, then G is a finite p-group or G = 〈a〉 � 〈b〉, where
o(a) = p2, o(b) = p1

n1 , p1, p2 are primes with p1 < p2 and [a, bp1 ] = 1. Moreover, if
G = 〈a〉 � 〈b〉, as stated, then all nonnormal subgroups of G are of order p1

n1 .

LEMMA 3.2 [8, Lemma 5.1.2]. Let G be a group and let N ≤ Z(G). Then G is nilpotent
if and only if G/N is nilpotent.

For solvable nonnilpotent groups, we have the following further conclusion based
on Lemma 2.3.

LEMMA 3.3. Let G be a solvable nonnilpotent group. Then there exists a minimal
normal subgroup N such that nc(G/N) ≤ nc(G) − sp(N).

PROOF. By Lemma 2.3, nc(G/N) ≤ nc(G). First, we claim that there exists a minimal
normal subgroup N of G such that nc(G/N) < nc(G). Let Pi ∈ Sylpi

(G). Noting that
G is nonnilpotent, we may assume that P1 is a nonnormal Sylow subgroup of G. If,
for i ≥ 2, there exists a Sylow subgroup Pi such that Pi is nonnormal, we may assume
that P2 is nonnormal. Then nc(G/N) < nc(G) is always true for any minimal normal
subgroup N � 1. Otherwise, by Lemma 2.3, the orders of both P1 and P2 are divisible
by the order of N, so that N = 1, which is a contradiction. On the other hand, if Pi � G
for all i ≥ 2, we may take N ≤ P2. According to Lemma 2.3 again, nc(G/N) < nc(G)
since the order of P1 is not divisible by the order of N. This proves the claim.

Since N is a minimal normal subgroup of G, it follows that N is an elementary
abelian p-group and proper subgroups of N are nonnormal subgroups of G. There are
sp(N) − 1 nonnormal subgroups of G contained by N. Thus,

nc(G/N) ≤ nc(G) − (sp(N) − 1).

Here, if nc(G/N) = nc(G) − sp(N) + 1, then, similarly, both the orders of P1 and P2
are divisible by p, which is a contradiction. Hence, nc(G/N) ≤ nc(G) − sp(N) and the
proof is complete. �

The next crucial lemma establishes an upper bound on the order of G′ in terms of
nc(G) for a solvable nonnilpotent group G.
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LEMMA 3.4. Let G be a solvable nonnilpotent group. If nc(G) = t, then sp(G′) ≤ t.

PROOF. Assume that nc(G) = t. The proof will be done by induction to t. If t = 1, then,
by Lemma 3.1,

G = 〈a〉 � 〈b〉,

where o(a) = p2, o(b) = p1
n1 and p1, p2 are different primes. Since G/〈a〉 is cyclic, we

have sp(G′) = 1.
Now, let t ≥ 2. According to the proof of Lemma 3.3, it suffices to show that there

exists a minimal normal subgroup N such that nc(G/N) < t.

Case 1: G/N is nonnilpotent.
In this case, since nc(G/N) < t, it follows that sp((G/N)′) ≤ nc(G/N) by induc-

tion on t. In addition, |G′| = |G′ ∩ N ||(G/N)′| because (G/N)′ � G′/(G′ ∩ N). Hence,
|N ||(G/N)′| is divisible by |G′|. Therefore,

sp(G′) ≤ sp(N) + sp((G/N)′) ≤ sp(N) + nc(G/N).

By Lemma 3.3, nc(G/N) ≤ nc(G) − sp(N), and hence

sp(G′) ≤ sp(N) + nc(G/N) ≤ nc(G) = t.

This completes the proof in Case 1.

Case 2: G/N is nilpotent. In this case, we consider the following two situations.

Case 2a: there exists a minimal normal subgroup M such that M � N.
Since G is a nonnilpotent group, it follows that G/M is also nonnilpotent. Other-

wise, since G/(M ∩ N) � G/M × G/N, we see that G/(M ∩ N) is nilpotent. However,
G/(M ∩ N) � G is nonnilpotent, which is a contradiction. Now, assume that |M| = pm

and |N | = qn, where p, q are different primes. We consider two cases, namely, m ≥ 2
and m = 1. If m ≥ 2, since N1M1 � G for all 1 < M1 < M and 1 ≤ N1 ≤ N, then

nc(G/M) ≤ nc(G) − (m − 1)(n + 1) ≤ nc(G) − m.

Here, it follows easily by induction that sp((G/M)′) ≤ nc(G/M). This condition is
similar to Case 1 and it follows that

sp(G′) ≤ sp(M) + nc(G/M) ≤ nc(G).

Now suppose that m = 1, that is, |M| = p. If there exists a nonnormal subgroup H
such that |H| is not divisible by p, then nc(G/M) ≤ nc(G) − 1 from Lemma 2.3, and so
sp((G/M)′) ≤ nc(G/M) by induction. As before, the result holds. On the other hand,
if, for every subgroup H of G whose order is not divisible by p, H is always normal,
then we may assume that G = KP, where K is a Hall p′-subgroup of G. Obviously, all
subgroups of K are normal and P is nonnormal. We consider the following two cases.

(i) If there exists a minimal normal subgroup T of G contained in K satisfying
T � N, then G/T is nonnilpotent. It suffices to show that nc(G/T) ≤ nc(G) − 1 by
Lemma 2.3, and thus sp((G/T)′) ≤ nc(G/T) by induction. As before, the result holds.
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(ii) If N is a unique minimal normal subgroup of G contained in K, then K is a
group of prime power order. It follows from Lemma 2.1 that K is either a cyclic group
or a 2-group of maximal class. In addition, since every subgroup of K is a normal
subgroup of G, it follows that K is either a cyclic group or a quaternion group Q8.
We claim that K is cyclic. Otherwise, K � Q8. Note that N ≤ Z(G) ∩ Q8 and G/N is
nilpotent. According to Lemma 3.2, G is nilpotent, which is a contradiction. Now, let
K be a cyclic group of order qr with r ≥ 2. For 1 ≤ K1 ≤ K, it follows that K1P1 is
nonnormal as P1 ≤ P and P1 � G. Also, there exists a maximal subgroup M of P that
is normal in P, but MK1 is a nonnormal subgroup of G for 1 ≤ K1 < K. Hence,

nc(G/K)(r + 1) + r ≤ t.

By Lemma 2.4, sp((G/K)′) ≤ 2(t − r)/(r + 1) + 1. Note that nc(G) = t ≥ 2r + 1 and
r ≥ 2. Therefore,

sp(G′) ≤ sp(K) + sp((G/K)′) ≤ r +
2(t − r)
r + 1

+ 1

≤ r(r + 1) + r(t − r) + (r + 1)
r + 1

≤ r(t + 1) + t − r
r + 1

= t.

Case 2b: N is a unique minimal normal subgroup of G.
In this case, G/H is nilpotent for 1 � H � G. We can assume that G/N = P1 � P2

with N ≤ P1. Let |N | = p1
k. Then there are k − 1 nonnormal subgroups of G contained

in N. Clearly, if NK is nonnormal in G for K ≤ G, then K � G. Note that P2N � G but
P2 is a nonnormal subgroup of G. Moreover, we can always find gN ∈ Z(G/N) such
that g ∈ G − N and gp ∈ N since G/N is nilpotent. Also, 〈g〉N � G but 〈g〉 is nonnormal
in G. Therefore,

2nc(G/N) + (k − 1) + 1 + 1 ≤ t.

It follows that nc(G/N) ≤ (t − k − 1)/2 and, by Lemma 2.5, sp((G/N)′) ≤ t − k. Hence,

sp(G′) ≤ sp(N) + sp((G/N)′) ≤ k + t − k ≤ t.

The proof is complete. �

Next, we will prove Theorem 1.2. To do this, we need the following lemma.

LEMMA 3.5. Let G be a solvable group. If sp(G) = n, then dl(G) ≤ �(2n + 2)/3�.

PROOF. We prove the result by induction on n. If n = 1, the result is trivially true.
Assume that n ≥ 2. If sp(G/G′) ≥ 2, then sp(G′) ≤ n − 2. It follows that dl(G′) ≤
�(2n − 2)/3� by the inductive hypothesis applied to G′. Hence,

dl(G) ≤ �(2n − 2)/3� + 1 ≤ �(2n + 2)/3�.

In this case, the proof is complete.
Now, let sp(G/G′) = 1, that is, sp(G′) = n − 1. We may assume that dl(G) = k + 1

where k ≥ 2. Then G(k) > 1. Also, suppose that N is a maximal abelian normal
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subgroup of G containing G(k). If sp(N) ≥ 2, we see that sp(G/N) ≤ n − 2. Application
of the inductive hypothesis to G/N yields dl(G/N) ≤ �(2n − 2)/3�. Thus,

dl(G) ≤ �(2n − 2)/3� + 1 ≤ �(2n + 2)/3�,

and the result follows.
The remaining case is where sp(N) = 1, which implies that N = G(k). Since G/N =

NG(N)/CG(N) � Aut(N) is cyclic, it suffices to show that N = G(k) ≤ Z(G′). Hence,

N = G(k) ≤ Z(G(k−1)).

Now G(k−1) is nonabelian since G(k) � 1. We claim that sp(G(k−1)) ≥ 3. Otherwise,
G(k−1) is a nonabelian group of order pq with p � q. Since G(k−1)/G(k) is cyclic, it
suffices to show that G(k−1) is an abelian group, which is a contradiction. Hence,
sp(G/G(k−1)) ≤ n − 3. Apply the inductive hypothesis to G/G(k−1). Then dl(G/G(k−1)) ≤
�(2n − 4)/3�. Therefore,

dl(G) ≤ �(2n − 4)/3� + 2 = �(2n + 2)/3�.

The proof is complete. �

Finally, we are ready to prove Theorem 1.2.

PROOF OF THEOREM 1.2. Suppose that G is a solvable nonnilpotent group with
nc(G) = t. From Lemma 3.4, sp(G′) ≤ t, and hence, by Lemma 3.5,

dl(G′) ≤ �(2t + 2)/3�.

Hence, dl(G) ≤ �(2t + 2)/3� + 1. The proof is complete. �

In addition, if G be a solvable nonnilpotent group, the number of prime divisors of
|G| can be bounded by nc(G). For convenience, we use π(G) to denote the number of
prime divisors of |G|.

COROLLARY 3.6. Let G be a solvable nonnilpotent group. If nc(G) = t, then π(G) ≤
t + 1.

PROOF. Assume that π(G) ≥ t + 2. Since G is a solvable group, G possesses a Sylow
system S. Suppose that S = {P1, P2, . . . , Pt+2, . . .}. Note that G is nonnilpotent and we
may assume that P1 is a nonnormal Sylow subgroup of G. Let

T = {P1P2, P1P3, P1P4, . . . , P1Pt+2}.

Obviously, for 1 ≤ i ≤ t + 2, P1Pi is a subgroup of G. If, for the set T , there are two or
more normal subgroups of G, then P1 is a normal subgroup, which is a contradiction.
Thus, at most one normal subgroup is contained in the setT and it follows that nc(G) ≥
t + 1. This contradicts the hypothesis and the proof is complete. �
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