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Abstract
Precise and efficient grasping detection is vital for robotic arms to execute stable grasping tasks in industrial and
household applications. However, existing methods fail to consider refining different scale features and detecting
critical regions, resulting in coarse grasping rectangles. To address these issues, we propose a real-time coarse
and fine granularity residual attention (CFRA) grasping detection network. First, to enable the network to detect
different sizes of objects, we extract and fuse the coarse and fine granularity features. Then, we refine these fused
features by introducing a feature refinement module, which enables the network to distinguish between object and
background features effectively. Finally, we introduce a residual attention module that handles different shapes of
objects adaptively, achieving refined grasping detection. We complete training and testing on both Cornell and
Jacquard datasets, achieving detection accuracy of 98.7% and 94.2%, respectively. Moreover, the grasping success
rate on the real-world UR3e robot achieves 98%. These results demonstrate the effectiveness and superiority of
CFRA.

1. Introduction
Grasping is a fundamental skill for robots and has been applied in various domains such as manufac-
turing, health care, and domestic settings [1–3]. To achieve precise and efficient manipulation, grasping
detection is a pivotal step. In the face of intricate scenarios involving objects of diverse shapes, sizes,
and types, robots often exhibit a low success rate in grasping detection. As a result, achieving robust
and reliable grasping remains a significant challenge [4].

To address these challenges, there have been extensive works on grasping detection [5, 6]. Grasping
detection methods are typically categorized into analytical and data-driven approaches [7]. Analytical
methods based on templates are effective but heavily rely on the intrinsic properties of the robot and
the physical models of objects. Le et al. [8] employed learning-based template matching algorithm for
grasping. Studies [9] directly detected the edge map of objects, but these methods are designed based
on specific tasks and are susceptible to human subjective factors.

With the advancement of high-performance computers, data-driven methods have shown brightly
and attracted the attention of many researchers [10, 11]. For example, Lenz et al. [12] employed a slid-
ing window to extract the grasping information of objects and used a classifier to assess the grasping
likelihood of each area. Meanwhile, studies [13–15] utilized anchor box-based approaches to predict
numerous candidate grasping rectangles. Nevertheless, these methods depend on pre-setting the size of
the anchor box, which is both time-consuming and limits the adaptability to objects of different sizes
in real-world environments. To address the limitations of relying on existing rules or templates, Cheng
et al. [16] utilized a U-shaped architecture comprising fully convolutional layers to predict grasping
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rectangles. This network excels in pixel-level prediction but overlooks the feature extraction about dif-
ferent object sizes, lacking finer features from images. Advancements in computer vision have spurred
research efforts to explore the multi-scale image features and crucial grasping regions. For instance, Yu
et al. [17] employed diverse convolutional kernels to extract multi-scale features, incorporating spatial
attention mechanisms to learn weights for different spatial regions. Zhai et al. [18] introduced a local
refinement module to predict grasping key points and integrated residual connections to optimize global
features but overlooked the critical grasping regions and failed to consider object similarities among dif-
ferent training samples. Additionally, Kumra et al. [19] proposed a GRCNN network, which enhances
accuracy by stacking residual modules after initial feature extraction. However, these methods still have
several limitations: (1) Insufficient consideration for the fusion and refinement of multi-scale features
in original images capturing objects of varying sizes. (2) Lack of emphasis on critical grasping regions
within objects. The attention mechanism exhibits high computational complexity, and stacking residual
modules leads to increased network parameters, resulting in slower inference speed. (3) Overlooking
the correlation in feature extraction among different training samples, particularly among objects of
different shapes.

To address the above challenges, this paper proposes a coarse and f ine granularity residual attention
grasping detection network (CFRA), comprising three core modules: coarse and fine granularity fea-
tures fusion (CF), feature refinement (FR), and residual attention (RA). The network inputs RGB images
and outputs grasping center position, angle, quality, and gripper opening width. CF extracts coarse and
fine granularity features from the original image, achieving macro-level observation of the object’s posi-
tion and micro-level assessment for optimal grasping rectangles. FR repairs diverse granularity features
to enhance object–background distinction. RA considers training sample correlations with an external
attention mechanism. The main contributions of this paper are summarized as follows:

We propose a refined grasping detection network to fuse multi-scale visual features shown in Figure 1.
Additionally, the feature refinement module enables the network to distinguish between objects and
backgrounds more effectively. We introduce a novel residual attention module, which not only enables
the network to focus on critical regions of the object but also extracts different features depending on
different objects in a low-parameter manner. We validate CFRA on both Cornell and Jacquard datasets,
as well as real-world applications. These results demonstrate that the CFRA network achieves refined
detection with outstanding performance.

The rest of this article is organized as follows. Section 2 presents an overview of related work on
grasping detection networks. Section 3 formulates the problem. Section 4 detailedly describes the CFRA
network. In Section 5, we implement a series of experiments to demonstrate the superiority of the model
CFRA. Finally, Section 6 concludes this work.

2. Related work
2.1. Grasping detection
In recent years, with the development of computer vision, various deep learning algorithms for grasping
detection have emerged [12, 19, 20]. These methods typically input RGB images and employ convolu-
tion neural networks (CNN) to generate a series of grasping candidate rectangles. The optimal box is
usually selected based on the quality score. For instance, Yu et al. [21] introduced the EfficientNet, strate-
gically adjusting specific hyperparameters to enhance the performance of grasping detection. Kumra
et al. [22] proposed a lightweight CNN to achieve grasping detection. However, these approaches still
encounter challenges arising from the diverse shapes of objects. Regression-based grasping detection
methods are effective solutions [23–25]. Cheng et al. [23] directly regressed and encode the grasping
angles. Similarly, [24] treated grasping angle prediction as a regression classification task, combining
center sampling and regression weights to improve grasping detection accuracy. Although these methods
exhibit specific performance, they fail to consider different granularities of image features, potentially
overlooking crucial information and leading to coarse grasping rectangles.

https://doi.org/10.1017/S0263574724001929 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001929


Robotica 3

2.2. Coarse and fine features fusion
Preliminary feature extraction methods are crucial for grasping detection tasks. Earlier approaches pri-
marily rely on CNN for feature extraction [12, 13], which always extracts coarse-grained features and
neglects fined details in images. To improve the performance and efficiency of the model’s feature extrac-
tion, some works employ pre-trained models such as ResNet [26], CLIP [27] as feature extractors to
accelerate model convergence. For example, Wang et al. [28] used ResNet to extract the original image
features and then located the key areas of the object based on the transformer framework, which increases
network parameters and decreases inference speed. To address these limitations, researchers have shifted
their focus toward different granularity features and critical grasping regions. Methods emphasizing the
refinement of image features have emerged. Yu et al. [17] proposed an attention mechanism and selec-
tive kernel (SK) convolutional network to enable the network to not only fully focus on grasp regions
but also flexibly adjust them based on the object’s size. Zhai et al. [18] optimized and de-duplicate
multi-scale feature maps, improving network detection accuracy and real-time performance. To reduce
the limitation of the grasp detection rectangle measurement, Li et al. [29] introduced a Gaussian-guided
training method and utilized a global–local feature fusion approach to direct the network’s attention
toward grasping regions. Cheng et al. [16] achieved pixel-level dense prediction of grasp poses, obtain-
ing optimal grasping regions through a non-maximum suppression strategy to fully consider the features
at each pixel level. However, the experimental results fail to satisfy the performance requirements in the
real world.

2.3. Residual attention mechanisms
In the evolving field of computer vision, Bahdanau et al. [30] first introduced attention mechanisms to
mimic human visual and cognitive systems. This innovation enables neural networks to autonomously
learn and selectively focus on crucial parts of input data, suppressing irrelevant features and enhanc-
ing the model’s robustness and generalization. Li et al. [31] integrated attention mechanisms into grasp
detection, enabling each neuron to dynamically adjust its receptive field size according to multi-scale
input information. This adaptation captures crucial features for accurate detection. However, this work
is inspired by self-attention, resulting in high computational complexity. To address the O(n2) compu-
tational complexity of the self-attention mechanism and the neglect of sample correlations, Guo et al.
[32] proposed an external attention method, which utilized only two concatenated MLP structures and
memory units, reducing the computational complexity to O(n) while implicitly considering correlations
between different samples. In grasping detection, it is necessary to select different features based on the
shape of objects. Liu et al. [33] improved the SOLOv2 instance segmentation model by incorporating the
Channel Attention Module and Spatial Attention Module. Despite this, work enhances grasping detec-
tion accuracy but lowers the inference speed. Thus, balancing between minimizing network parameters
and ensuring attention to crucial grasp regions remains a challenge.

3. Problem formulation
Grasping methods based on grasping rectangles have been extensively studied [13, 21, 34]. In this paper,
we use it to describe the detection pose of the target object. The network inputs the RGB image I ∈R

c×h×w

and outputs the grasping detection results, which can be defined as follows:

G = {Q, cos (2�), sin (2�), W} (1)

where Q denotes grasping quality, � denotes the gripper rotation angle, and W denotes gripper open-
ing width. The size of Q, �, and W is the same as the input image. The optimal grasping pose
g = (x, y, θ , w, q) can be formulated as follows:
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Figure 1. The overview of CFRA network. Above: the network implementation process. Below: the
network details of each module.

(x, y) = arg max (Q)

θ = 1

2
arctan

sin (2�)

cos (2�)
|(x,y)

w = W |(x,y)

q = Q |(x,y)

(2)

where (x, y) represents the coordinates of the center of the grasping rectangles, w denotes the gripper
opening width at this coordinate, θ stands for the gripper’s rotation around the z axis at this coordinate,
and q denotes the grasp quality. The height of the grasping box corresponds to the size of the grippers,
which is typically known and does not require prediction [35].

After hand-eye calibration, the grasping pose identified in the image coordinate system can be con-
verted to the robot’s base coordinate system. The target pose is then sent to the robot controller, which
performs path planning and grasps the object.

4. Approach
This paper proposes a grasping detection network named coarse and f ine granularity residual attention
(CFRA), which can be used for grasping detection in household scenes. The network architecture is
shown in Figure 1, comprising three primary modules: coarse and fine granularity features fusion (CF),
feature fefinement module (FR), and residual attention module (RA). Within the CF module, we combine
various convolutional kernels and SK module to extract multi-scale features, which ensures refined
image feature extraction. Subsequently, in FR, we utilize a deep separable (DS) convolution network
to refine the fused features, enabling the network to discern between background and object features.
Lastly, we leverage the RA module, and the network selectively focuses on critical grasping regions,
employing residual connections to reuse prior features, thereby enabling precise and efficient grasping
detection.
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Figure 2. The architecture of coarse and fine granularity features fusion module.

4.1. Coarse and fine features fusion module
In practical grasping detection, smaller objects often demand smaller convolutional kernels to extract
features, while larger objects benefit from slightly larger kernels to capture crucial edge information.
Therefore, we use two branches to extract features of the input image, as illustrated in Figure 2. The
upper-level branch of the network extracts coarse-grained features, employing a tandem of large-sized
9 × 9 and 7 × 7 convolutional kernels to extract coarse-grained feature O = T(I) from the input image
I ∈R

c×h×w (3 × 224 × 224). Simultaneously, the lower-level branch focuses on fine-grained feature
extraction, utilizing two layers of smaller 5 × 5 and 7 × 7 convolutional kernels to capture finer features
Õ = T ′(I). Here, T and T ′ denote feature transformations after two convolutional layers. To accurately
predict grasping rectangles, we introduce the SK module [17] to extract features further, benefiting from
its adaptability in adjusting receptive field sizes to handle multi-scale features. Besides, we introduce
residual connections to reuse finer features Õ, which can also mitigate potential issues such as gradient
vanishing and dimensionality errors associated with increased network depth. Finally, fuse the feature,
as shown in the following:

E = Õ ⊕ Conv(sk(Õ)), (3)

where sk represents the result of the feature map obtained from the SK module. The initial fused features
are represented by E, which is processed through the ReLU function and is finally fused with coarse-
grained feature O, and U represents the final fused feature as follows:

U = 0.5 × O + 0.5 × ReLU(E). (4)

Thus, realizing different granularity feature extraction from the input image facilitates future grasping
detection work.

4.2. Feature refinement module
The coarse and fine granularity features extracted may contain redundant information, particularly in
scenarios where the object shares similar colors with the background or possesses a regular shape. In
such cases, the output features of the CF might be difficult to distinguish them. To address this challenge,
we utilize FR to suppress the weight of background features, enabling the network to discern between
the background and the object features. This module takes features previously output features U by the
CF as input, as depicted in Figure 3.

We also use a dual-branch network structure to process feature U. First, We use two depth-wise sep-
arable convolutions in the two branches to adjust the weights of the output features U, with convolution
kernels of 1 × 1 and 3 × 3, respectively. Subsequently, we utilize two 3 × 3 and 1 × 1 kernel sizes con-
volution in two branches to refine features further. For DS convolutions with a 1 × 1 kernel size, we
utilize a 3 × 3 convolutional kernel; for DS convolutions with a 3 × 3 kernel size, we apply a 1 × 1
convolutional kernel. This facilitates a reduction in the network’s parameter, consequently improving
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Figure 3. The structure of feature refinement module.

inference speed [18]. Additionally, leveraging alternative convolutional kernels enables the network to
capture features across different scales adaptively. The formula is as follows:

F1 = C3(DS1(Flocal)),

F2 = C1(DS3(Flocal)),
(5)

where Ci denotes a convolution operation, i represents the kernel size of the convolutional layer, and
DSj denotes depth separable convolution, with j indicating the kernel size of the DS convolutional layer
and representing the output feature map. The extracted features undergo summative fusion and use the
softmax function to be normalized, as follows:

F = SoftMax(F1 + F2), (6)

where F represents the features obtained by FR. The augmentation of refinement modules enhances
the network’s capacity to perceive the object, allowing for the introduction of additional contextual
information. However, this also results in increased parameters. Conversely, fewer refinement modules
minimize the impact on the fused features. Consequently, we chose two FR layers.

4.3. Residual attention module
In grasping detection, deeper networks yield richer features, but training becomes more challenging
due to potential issues like gradient vanishing and explosion. Residual connections are often employed
to address these challenges. Previous studies, such as Kumra et al. [19], utilized five residual connec-
tions to identify grasping detection rectangles. However, each residual connection layer encompasses
590,592 substantial parameters, significantly limiting the network’s prediction speed. Furthermore,
attention mechanisms effectively guide the network’s focus on critical grasping regions. Nevertheless,
self-attention mechanisms entail a computational complexity of O(n2) and overlook training sample rela-
tionships. Hence, inspired by the external attention, we propose an RA module, as depicted in Figure 4.
This module comprises solely two residual connection layers and one external attention layer. The first
residual connection layer takes in the output of FR module to further extract object features. The external
attention layer uses the attention mechanism to focus the network on the key areas of the object, and the
last residual connection layer ensures that the image features are not lost. Thus, it not only ensures net-
work training well but also aids in directing the model’s attention toward crucial regions. Additionally,
it considers feature extraction disparities for objects of various sizes and shapes during the detecting
process [32]. The following is a detailed introduction to the external attention module.

External attention consists of two additional, small, learnable, and shared memory units. It is realized
through two cascaded linear layers and two normalization layers. Its computational complexity is roughly
equivalent to a 1 × 1 convolution, significantly lower than a single residual module.
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External attention initially computes the affinity between the query and an externally learnable key
memory to generate an attention map. Subsequently, this attention map refines the feature map by
element-wise multiplication with another externally learnable value memory. Notably, the memory units
contain fewer elements than the input features, resulting in computational complexity linearly related
to the input’s element count. Both memory units undergo computation through linear layers and are
optimized via backpropagation. They operate independently for individual samples while being shared
across the entire dataset, serving as a robust regularization mechanism that enhances the attention mech-
anism’s generalization capabilities. The primary goal is to learn discriminative features prevalent across
the dataset, capturing rich information while filtering out irrelevant details in other samples. For instance,
when detecting elongated objects, where optimal grasp rectangles tend to align parallel to the object’s
edges, multiplying the memory unit with the original features accentuates edge features, facilitating the
grasping rectangles parallel to the elongated object, thereby imposing precise constraints.

External attention calculates the attention between input pixels and external storage units as follows:

A = (α)i,j = Norm(FMT),

Fout = AM,
(7)

where i,j is the similarity between the i-th feature and the j-th row of M, respectively, with M being an
independently learnable parameter matrix acting as a memory for the training dataset. A denotes the
attention map inferred from learned dataset-level prior knowledge. After normalization, A is utilized to
update the input features within M based on their similarity scores according to A.

In practice, we employ two distinct memory units, Mk and Mv, serving as keys and values to enhance
the network’s capacity. The computational formula is as follows:

A = Norm(FMT
k ),

Fout = AMv.
(8)

In self-attention, softmax is applied to normalize the attention map. As the attention map is sensitive
to the scale of the input features, we adapt double normalization, independently normalizing rows and
columns as follows:

(α̃)i,j = FMT
k ,

(α̂)i,j = exp(α̃i,j)/
∑

k

exp(α̃k,j),

αi,j = α̂i,j/
∑

k

α̂i,k.

(9)

After the residual attention module, the image size is reduced to 56 × 56. To more effectively extract
the coordinates of the grasp rectangles center, the gripper opening width w, the angle of rotation θ

around the z axis of the gripper, and the grasp quality q, we employ transposed convolution operations
to upsample the image.
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4.4. Loss function
We chose the smooth L1 loss as a loss function, defined as:

L(Gi, Ĝi) = 1

n
∗

k∑
zk, (10)

where zi is computed by the following formula:

zk =
⎧⎨
⎩

0.5(Gik − Ĝik )
2, if

∣∣∣Gik − Ĝik

∣∣∣ < 1∣∣∣Gik − Ĝik

∣∣∣ − 0.5 otherwise
, (11)

where Gi ∈ {q, θ , w} represents the predicted values generated by the network and Ĝi is the ground truth.
The total loss of the CFRA network is:

L = λ1zq + λ2zθ + λ3zw, (12)

where zq, zθ , and zw correspond to the loss functions for quality, angle, and width, respectively. All of
these are smooth L1 losses. This paper selects λ1 as 1.2, and λ2 and λ3 are both set to 1.

5. Experiments and results
5.1. Dataset
a) Cornell
The Cornell dataset comprises 1035 RGB-D images and 240 objects. Each image corresponds to a
single object, with 5110 positive grasps and 2909 negative grasps annotated. It is not enough to train
the network using only these images, as deep learning networks demand extensive data for robust per-
formance, particularly to mitigate overfitting risks. Thus, we apply preprocessing during the training.
Initially, images are cropped to a size of 3 × 224 × 224 pixels. Subsequently, the dataset is augmented by
incorporating random rotations and random zoom. For images subjected to rotation and width adjust-
ments, the ground truth for the grasp region is set to the rotation angle to ensure accurate prediction
during training.

b) Jacquard
The Jacquard dataset comprises 54,000 RGB-D images and 11,000 objects, with each image annotated
with a series of positive grasp rectangles. In total, there are approximately 1.1 million grasp rectangles.
In contrast to the Cornell dataset, the Jacquard dataset is characterized by a sufficiently large number of
images that do not require data augmentation.

5.2. Implementation details
The CFRA network is trained on a single NVIDIA 3090 24 GB GPU for both the Cornell and Jacquard
datasets. The experiments are conducted on Ubuntu 18.04 and PyTorch 1.13 with CUDA version 11.2.
The optimizer is Adam, with a learning rate of 1e-4, and the number of epochs is set to 50. The batch
size for the Cornell dataset is configured as 8, whereas, owing to the larger scale of the Jacquard dataset,
a batch size of 16 is utilized during training. During the training phase, 90% of the dataset is allocated
for training, while the remaining 10% is set aside for testing to assess the network’s performance.

5.3. Evaluation metric
Building on prior research [36], we utilize the commonly adopted Jacquard index and Angle threshold as
evaluation metrics to ensure fair comparisons. A predicted grasp candidate is considered correct under
the following conditions:
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Table I. Comparison results on the Cornell dataset.

Algorithm IW (%) OW (%) Speed (ms)
SAE, struct. reg [12] 73.9 75.6 1350
AlexNet, MultiGrasp [15] 88.0 87.1 76
GRPN [37] 88.7 - 200
GG-CNN [20] 73.0 69.0 19
ResNet-50 [22] 89.2 88.9 103
ZF-net [38] 93.2 89.1 -
GraspNet [39] 90.2 90.6 24
ROI-GD [34] 93.6 93.5 40
MultiGrasp, ResNet-50 [14] 96.0 96.1 120
FCGN, ResNet-101 [13] 97.7 96.6 117
FCNN [40] 96.6 95.4 20
GR-ConvNet [19] 91.5 95.5 20
SKGNet [17] 93.2 97.7 35
Ours 94.4 98.9 26

1) The difference between the predicted grasp angle and the ground truth grasp angle is within 30◦.
2) The Intersection over Union (IoU) score between the predicted grasp and the ground truth grasp

is greater than 0.25, as defined by the following formula:

J(gp, gt) =
∣∣gp ∩ gt

∣∣
gp ∪ gt

. (13)

5.4. Results and analysis
For comprehensive performance comparisons with related works, both image-wise (IW) and object-wise
(OW) evaluations are conducted on the Cornell and Jacquard datasets.

1) Image-wise evaluation (IW): All images in the dataset are randomly split into training and val-
idation sets at 9:1. While objects in the validation set may have been seen during training, their
positions and orientations are randomized. The IW evaluation aims to assess the network’s ability
to predict objects in different poses.

2) Object-wise evaluation (OW): All images are split based on object instances, with objects used in
testing not present during the training process. Object-wise split aims to evaluate the network’s
generalization ability when faced with new objects.

a) Results on Cornell dataset
The CFRA network is trained and tested using both IW and OW. The evaluation indicators are as
described in Section 5.3. A comparative analysis with previous grasp detection networks under the
same experimental conditions is presented in Table I. The input to the CFRA network is RGB images,
and it achieves 94.4% and 98.9% detection accuracy in IW and OW, respectively. The processing speed
reaches 26 ms. CFRA represents a 3% improvement compared to GR-ConvNet. Compared to the state-
of-the-art SKGNet, the CFRA network demonstrates a 1% increase in detection accuracy and faster
processing speeds, highlighting superior performance. Additionally, compared to FCNN, the CFRA net-
work exhibits a 2% improvement in OW evaluation, making it more suitable for diverse object grasping
detection. The experimental results underscore the effectiveness of the CFRA network in both accuracy
and efficiency aspects.

https://doi.org/10.1017/S0263574724001929 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001929


10 Zhenwei Zhu et al.
psar

G
ytilau

Q
elgn

A
htdi

W

Figure 5. Grasp detection results of CFRA on the Cornell dataset. The first row is the best grasp
rectangle predicted by CFRA. The second to the last rows are the images of grasp quality, rotation
angle, and opening width, respectively.

The visual results of the CFRA network’s detection on the Cornell dataset are illustrated in Figure 5.
The first row presents the grasp rectangles predicted by the CFRA network, demonstrating its ability to
accurately predict optimal grasp positions for regular objects and irregular shapes, like lollipops and cir-
cular objects. The second row displays visualizations of grasp quality, showcasing the CFRA network’s
proficiency in extracting image features and distinguishing between objects and backgrounds. The third
and fourth rows depict predicted grasp angles and widths, demonstrating the CFRA network’s accurate
predictions of rectangles of various sizes and shapes on the Cornell dataset. The visualizations affirm
the network’s capability to handle diverse grasp scenarios and highlight the effectiveness of the CFRA
model.

To facilitate a comprehensive demonstration of network detection performance, we compare the
detection results with GR-ConvNet and SKGNet, as shown in Figure 6. Notably, the objects being
detected are unseen during training. From the results, it is evident that when predicting the grasp
for a toothbrush, both GR-ConvNet and SKGNet exhibit misalignment in predicted grasp rectangles.
Moreover, in terms of grasp quality, only GR-ConvNet and the CFRA network demonstrate the abil-
ity to effectively differentiate between objects and the background. When predicting the grasp for a
chalk, SKGNet fails to accurately predict the grasp rectangle, and GR-ConvNet predicts rectangles
that are noticeably larger. Consequently, the CFRA network not only effectively distinguishes between
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Table II. Comparison results on Jacquard dataset.

Algorithm Accuracy (%) Speed (ms)
Jacquard [41] 74.2 -
GG-CNN [20] 84.0 19
FCGN, ResNet-101 [13] 91.8 117
GR-ConvNet-RGB [19] 91.8 20
Efficient Grasping-RGB [35] 91.6 16
SKGNet [17] 93.2 35
Ours 94.2 26
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GR-ConvNet SKGNet GR-ConvNet SKGNetOurs Ours

Figure 6. Comparison studies on the Cornell dataset. The first row is the best grasp rectangles predicted
by the networks. The second to the last rows are the images of grasp quality, rotation angle, and opening
width.

background and objects but also predicts reasonably sized grasp rectangles, showcasing its superior
performance in both object recognition and grasp prediction.

b) Results on Jacquard dataset
We also validate CFRA on the Jacquard dataset. The input images are resized to 300 × 300, resulting
in a detection accuracy of 94.2%. Upon reproducing FCGN, GR-ConvNet-RGB, Efficient Grasping-
RGB, and SKGNet, the CFRA network achieves an accuracy improvement of over two percentage points
compared to the current state of the art, as illustrated in Table II.

Visualization of partial detection results on the Jacquard dataset is presented in Figure 7. Considering
the varying sizes and shapes of all objects, the CFRA network demonstrates excellent performance in
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Figure 7. Grasp detection results of CFRA on the Jacquard dataset. The first row is the best grasp
rectangle predicted by CFRA. The second to the last rows are the images of grasp quality, rotation
angle, and opening width, respectively.

terms of grasp quality, grasp angle, grasp width, and position. The network accurately locates the target
objects and precisely predicts optimal grasp positions, showcasing its effectiveness in handling diverse
objects and grasp scenarios.

To illustrate the predictive capabilities of the CFRA network on the Jacquard dataset further, we con-
duct a comparative analysis with GR-ConvNet and SKGNet. Several objects from the Jacquard dataset
are selected for visualization, as depicted in Figure 8. Notably, when predicting the grasp for scissors,
SKGNet’s predicted grasp rectangle fails to facilitate a successful grasp, while GR-ConvNet’s predicted
grasp rectangle is noticeably larger. In contrast, the CFRA network demonstrates a more refined grasp
rectangle prediction. For the prediction of small building blocks, only the CFRA network accurately
predicts the optimal grasp position, while the other two networks fall short. These visualized results
demonstrate the superiority of the CFRA network in accurately predicting optimal grasp positions,
especially for challenging objects such as scissors and small building blocks.

5.5. Experiments in clutter scenes
Real-world scenarios are typically complex and seldom involve only a single object [42]. To validate the
object grasping detection capabilities of the CFRA network in complex scenes, we test the performance
of CFRA, GR-ConvNet, and SKGNet on a multi-object dataset. We utilize the dataset proposed in [14],
which is characterized by cluttered scenes with multiple objects in each image. The detection results
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Figure 8. Comparison studies on the Jacquard dataset. The first row is the best grasp rectangle pre-
dicted by CFRA. The second to the last rows are the images of grasp quality, rotation angle, and opening
width, respectively.

of the CFRA, GR-ConvNet, and SKGNet networks are presented in Figure 9. In multi-object grasp
detection, the CFRA network accurately predicts grasp rectangles for each object, enabling the robotic
arm to perform accurate grasping. In contrast, GR-ConvNet accurately predicts grasp rectangles for
some regularly shaped objects but struggles with circular objects like tape and cups, producing tilted
grasp rectangles that hinder successful grasping. For SKGNet, the predicted grasp rectangles are slightly
larger, as observed in the case of elongated yellow blocks or a mouse. For circular objects like tape
and cups, the predicted grasp rectangles have inaccurate center positions, preventing effective grasping.
These results highlight the superior performance of the CFRA network in multi-object grasp detection,
especially in scenarios involving diverse shapes and objects.

5.6. Ablation experiments
In this section, we validate the effectiveness of the three core modules: coarse and fine features fusion
(CF), feature refinement (FR), and residual attention (RA). We conduct experiments by removing each
of these modules individually and evaluating the network performance on the Cornell and Jacquard
datasets. The experimental results are presented in Table III. The results indicate that the removal of
the CF module alone leads to a 6.8% accuracy decrease on the Cornell dataset and a 1% decrease
on the Jacquard dataset. When the LR module is removed individually, the accuracy drops by 7.9%
on the Cornell dataset and 3.3% on the Jacquard dataset. Notably, removing the RA module alone
results in a substantial accuracy decrease of 27% on the Cornell dataset and 8% on the Jacquard
dataset. These findings demonstrate the significant contributions of each module throughout the entire
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Table III. Ablation experiments results.

CF LR RA Cornell (%) Jacquard (%) Speed (ms)√ √
92.1% 93.2% 22√ √
91.0% 91.5% 25√ √
71.9% 86.2% 23√ √ √
98.9% 94.2% 26
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Figure 9. Comparison studies on the Clutter dataset. The first row is the best grasp rectangles predicted
by the networks. The second to the last rows are the images of grasp quality, rotation angle, and opening
width.

network training process, with the RA module having the most substantial impact on the network’s
performance.

5.7. Experiments in real world
In this experiment, we establish a robot grasping experimental platform to validate the performance of
the grasp detection network CFRA in the real world, as illustrated in Figure 10. The platform comprises
a UR3e robotic arm, a Robotiq140 gripper, and a Realsense D435i camera. On the right side, it displays
the objects used during real-world experiments.

In real-world experiments, all objects are randomly placed, and the robot attempts to grasp the objects
based on the predicted grasp rectangle with the highest quality score. The camera underwent precise
hand-eye calibration. The robot makes 100 attempts at grasping to evaluate real-world grasping perfor-
mance. The quantitative results are presented in Table IV. The “speed” column represents the time taken
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Table IV. Comparison results on real world.

Algorithm Success rate (%) Speed (ms)
MultiGrasp, ResNet-50 [14] 89 (89/100) 120
SAE, struct. reg [12] 89 (89/100) 1350
GG-CNN [20] 92 (110/120) 19
GR-ConvNet [19] 95.4 (334/350) 20
SKGNet [17] 96 (96/100) 35
Ours 98 (98/100) 26

Figure 10. Overview of the robotic grasping platform and objects from real world.

(a) 

Single-object environment: grasping a screwdriver

(b) 

Single-object environment: grasping a tape

(c) 

Multi-object environment: grasping a marker

(d) 

Multi-object environment: grasping a yellow block

Figure 11. Screenshots of robotic grasping experiments. (a) and (b) illustrate the grasp processes for
a single-object scenario involving a screwdriver and tape. (c) and (d) illustrate the grasp processes for
a multi-object scene, involving a marker and yellow block.
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for the neural network to predict the grasp rectangles. According to the table, the CFRA model achieves
a grasp success rate of 98%, outperforming existing models. The results underscore the effectiveness of
the CFRA model in real-world grasping scenarios.

The qualitative results are illustrated in Figure 11, where (a) and (b) illustrate the process of grasping
and placing a screwdriver and tape in a single-object environment. Figures (c) and (d) depict the process
of grasping and placing a marker and building blocks in a multi-object environment. It is evident that
the CFRA network successfully achieves both object detection and grasping in real-world scenarios.

6. Conclusion
In this paper, we introduced a novel grasp detection neural network, CFRA, which inputs RGB images in
robotic work scenarios and outputs the grasping poses. The network mainly consists of three modules:
coarse and fine granularity fusion module extracts refined features to enable network to predict objects
of different sizes, feature refinement module helps the network differentiate between background and
object features, and residual attention effectively reduces parameters and enhances detection speed. To
demonstrate the generalization and robustness of the CFRA network, extensive experiments were con-
ducted on Cornell and Jacquard dataset, achieving detection accuracy of 98.7% and 94.2%, respectively.
Furthermore, the network is deployed on a real-world UR3e robot to validate its practical applicability,
which achieves a grasping success rate of 98%. The comprehensive experimental results highlight the
superior adaptability of the CFRA network.
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