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Abstract. In an earlier paper we developed an a gorithm for computing all integral points on elliptic
curves over the rationals Q. Here we illustrate our method by applying it to Mordell’s Equation
y? = 2®+kfor0 # k € Z and draw some conclusions from our numerical findings. In fact we solve
Mordell's Equation in Z for al integers k within the range 0 < |k| < 10000 and partialy extend
the computations to 0 < |k| < 100000. For these values of k, the constant in Hall’s conjecture
turnsout to be C' = 5. Some other interesting observations are made concerning large integer points,
large generators of the Mordell-Weil group and large Tate-Shafarevi¢ groups. Three graphsillustrate
the distribution of integer points in dependence on the parameter k. One interesting feature is the
occurrence of linesin the graphs.
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1. Introduction
Mordell’s Equation
E:y>=2+k  O#keZ 1)

has a long history. Various methods have been applied to solve it or to prove
some assertions about its number of solutions. An illuminating account of these
endeavorsis given in Mordell’s book [Mo].

Weareinterestedinfinding all integer solutionsof Mordell’sEquation for alarge
range of parameters k. The numerical results obtained are then used to estimate
the constant in Hall’s conjecture and to illustrate in three graphs the distribution
of integer points. Until recently, Mordell’s Equation could be completely solvedin
rational integers only for parameters k£ € 7 within the range (see [LF])

k| < 100
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and — with certain exceptions— within the range (see [SM])
100 < k£ < 200

aswell as for some specia higher values of £, e.g. kK = —999 (see [Ste]). ' Small’
solutions, i.e. solutions with |y| < 109, were computed for the much larger range

|k| < 10000,

(see[LJB]).

However, recent progress in the theory, the availability of very efficient algo-
rithmsbased on the theory and advanced computer technol ogy enable usmeanwhile
to completely solve Mordell’s Equation in rational integersfor

|k| < 10000

and for almost all £ € Z within the interva
|k| < 100000.

Here ‘almost all’ means for all but about 1000 curves for which we could not
find any integer point with first coordinate less than 10%® in absolute value. This
range of the parameter & is already large enough to provide suitable data to test
the constants in Hall’s conjecture [Ha]. Our theoretical findings lead to a bound
for the coordinates of integer points which is exponentially worse than the bound
established by Stark ([Sta], cf. also [Sp]). That is why we do not elaborate on this
topic here.

Themethod for determining all integer pointson elliptic curvesover therationals
is based on ideas of Lang and Zagier [Za] and was described already in our paper
[GPZ1]. In this article, we use Mordell’s Equation to illustrate our method, and
we briefly explain the point search by sieving, not explained in [GPZ1]. The
determination of all integer points has two ingredients. The first is an efficient and
unconditional algorithm for computing the rank and abasis of the group of rational
points E(Q) of an elliptic curve E over the rationals Q developed in [GZi]. The
second isan explicit lower bound for linear formsin elliptic logarithms established
by David [Dav]. We mention that essentially the same method was also used by
Stroeker and Tzanakis [STz]. However, they do not employ Manin’s conditional
algorithm described in [GZi].

Thenumerical results obtained include curveswith large Tate—Shafarevi € groups,
curves with large generators and curves with large integer points. In his review of
the paper [LJB] (see MR 33#91), Cassels claims that the largest integer solutions
within therange |k| < 10000 are (for £ > 0 or k < O, respectively)

1775104° — 2365024 826° = —5412,
939787° — 911054 064° = 307.
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However, we found the larger solutions

6369039% — 16073515093? = —7 670,
110781 386% — 1166 004 406 095> = 85609.

One experimental observation derived from thetablesisthat therank r of Mordell’s
curves grows according to

_ log || )
“O<|Ioglog|k||2/3 |

Three graphs illustrate the distribution of integer points for different parameters
k. The graphs give rise to some interesting theoretical observations. For lack of
space, not al of the numerical data we obtained could be reproduced here. The
corresponding algorithms were implemented in the computer algebra package
SIMATH.!

We have extended our algorithm and calculations to S-integral points on
Mordell’s Equation. A preliminary report on this is given in [GPZ2]. (See dso
[G])

2. Determination of a basis

In this section we will introduce an algorithm to determine the torsion group, the
rank and abasis of the free part of the Mordell-Weil group E(Q). Theagorithmis
conditional inthat it isbased on thetruth of the conjectureof Birch and Swinnerton—
Dyer [BSD].

However, by the work of Coates-Wiles, Greenberg, Gross—Zagier, Rubin and
Kolyvagin (see [CW], [Gre] [GZal, [Rul], [Ru2], [Kol], [Ko2]) for ranksr = O
and r = 1, the conjecture is a theorem provided the curve in question is modular.
TheMordell curveshave complex multiplication by thering of integersof Q(v/—3)
and thus are, a fortiori, modular. On the other hand, Cremona [Cr] has developed
a method to determine the rank of an élliptic curve over Q, if the 2-part of the
Tate-Shafarevic group is trivial. With these results, we were able to show that the
ranks conjecturally obtained by our algorithm are the true ranks for al parameters
k within the range |k| < 10000 with the exception of two curves. The exceptions
are the curves (1) for & = —7954 and 8206. In these cases, the conjectured
rank of £//Q is2 and the order of the Tate—ShafareviC group is conjectured to be 4.
However, in thesetwo cases, a 3-descent yields the correctnessof theranks (and the
Tate—-Shafarevi€ groups aswell). Therefore, our numerical resultsfor |k| < 10000
are in fact independent of any conjecture.

1 Additional data as well as the SIMATH package can be obtained via ftp under the address
ftp.math.uni-sh.de in /pub/simath.
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We will use an example (see Section 2.1) taken from [BMG] to illustrate the
execution of our algorithm. Thefloating point valueswill be given with an accuracy
of eight decimal digits.

For an arbitrary elliptic curve E over Q we denote by

N the conductor,
R theregulator,
[l the Tate—Shafarevi€ group,
w1 thereal period,
¢y thepth Tamagawa number.

Conjecture of Birch and Swvinnerton-Dyer

(i) Therankr of E/Q isequal to the order of the zero of the L-series L(E, s) of
E/Q at the argument s = 1.
(ii) Thefirst nonzero termin the Taylor-expansion of the L-seriesis

LB, s)  Q-#IL-R
| _ .
slg]l(s -7 (#Ewas(Q)? Pllj\[fcp’

where Q2 = ¢y - w1 With ¢, := number of connected components of E(R).

2.1. THE TORSION GROUP

For computing the torsion subgroup of E(Q) for Mordell’s curve, we use the
following proposition which is due to Fueter [Fu].

PROPOSITION 1. Let k = m® - ko, wherem, ko € Z and kg is free of sixth power
prime factors. Then the torsion subgroup of E: y? = z2 + k over Q is

Z/67 if ko =1,

oo 7|37 if kg isa square different from 1, or kg = —432,
"=\ /27 if ko isa cube different from 1,

{O} otherwise,

the points of order 2 being (—a, 0) if & = «° and the points of order 3 being (0, +b)
if & = b% and (12m?, £36m3) if k = —432m5.

Hence, the order of the torsion subgroup Eios(Q) is
g < 6.
EXAMPLE. Let

E:y? = 23 — 66688704 2)
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We have the factorization
—66688704 = —26 . 3%. 38503
and thus, by Proposition 1, the torsion subgroupis Eios(Q) = {O}.

2.2. THE RANK

From the first part of the Birch and Swinnerton-Dyer conjecture we conclude that
the rank r of E//Q can be determined as

r=min{p > 0| LV (E, 1) # 0}.

In order to compute the L-series and its derivatives at s = 1, we need to know
the sign C' = +1 of the functional equation of E/Q. It can be computed either by
means of the Fricke involution (see [Cr]) or by evaluating the Hecke equation

C 1
F) = =32t (‘E)
of theinverse Mellin transform

F(z) = Z an €™
n=1

of the L-seriesof E/Q. If

(o) o
then C' = 1; otherwise we evaluate the Hecke Equation at apoint z # i/+/N and
derivethe value of C. Conjecturaly
0= (-1,
(cf. [BS]).
EXAMPLE. First, we determine the conductor

N = 214476 429 456

by an algorithm of Tate [Ta]. After having evaluated 360000 coefficients of the
Fourier series F'(z) in our example we find the approximation
~ 1
F (—) = 37647.904
VN

of F(i/v/N) so that the sign of the functional equation must be C' = +1 (since
F(i/v/N)=0if C = -1).
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We also get the approximation L of the L-series of E/Qas=1
L(E, 1) = 0.00000009

and we ‘conclude’ (see the remark below) that L(E, 1) = 0.
For the first, second and third derivative of the L-seriesat s = 1 we obtain the
approximations

e

(U (E,1) = 0.00000018,
L@ (E,1) = 0.00000003,
L) (E,1) = 0.00000005,

and, again, we concludethat L) (E,1) = Ofor p = 1, 2, 3.
Our approximation of the fourth derivative of the L-seriesat s = 1is

L¥W(E, 1) = 11576.437.

Thuswe conjecturethat therank of £/ over Q isr = 4. Wethen prove by general
2-descent that the rank isindeed r = 4.

Remark. In order to provethat the pth derivative of the L-seriesof E/Qats = 1
is zero, we assume that » = p isthe rank of E/Q and insert the values for » and
L((E, 1) into the estimate (4) given below for the regulator R. With this upper
bound for R we try to compute abasis of F(Q). If we are not ableto find a basis,
the rank must be larger than p and thus L(®) (E, 1) = 0.

In general, we use three different methods for computing the rank: thefirst part
of the Birch and Swinnerton-Dyer conjecture, general 2-descent or 3-descent via
isogeny. Our results are unconditional for |k| < 10.000. (For details, see[G]).

2.3. DETERMINING A BASIS OF THE FREE PART

In the former section, we showed how to determine the rank » of £/Q. Therefore,
in the sequel, we may suppose that r is known. From the second part of the Birch
and Swinnerton—Dyer conjecture, we derive an upper bound R’ for the regulator R
of E/Q, assuming that |11 isfinite.

Now, the algorithm for determining a basis of the Mordell-Weil group is based
on the following fundamental theorem.

THEOREM 1 (Manin). Let

or 2r _
Yr Tr
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where v, denotes the volume of the r-dimensional unit ball and
O<pr<--  <pra

arethefirst r — 1 successive minima of thelattice £(Q) in E(Q) ®z R (see[Mal).
Then the set

{P € E(Q)\Ews(Q | h(P) < B}
generates a subgroup E(Q) of £(Q) := E(Q) / Eirs(Q) of finite index.
Proof. See [Ma].
Note that 111 can be replaced by alower bound 0 <y} < w1 defined by
, | 0 it Ms = {P € E(Q)\Fwrs(Q) | h(P) < 25} isempty,
= p1 = min{h(P) | P € My} otherwise,

where ¢ is an upper bound for the difference between the Weil height / and the
Néron-Tate height h on E(Q), i.e. (cf. [GPZ1])

|h(P) —h(P)| <6 VPeE(@Q).

The symmetric bilinear form associated with the Néron-Tate height on E(Q) will
also be denoted by 4. If we want to apply the above theorem, we have to find all
points of bounded Néron-Tate height 4(P) < B on E/Q. At first sight, this seems
to be impossible since we do not know where to search for these points nor when
we havefound them all. Thisiswherethe ordinary Weil height ( P) defined below
comes into play. It is very easy to find al the points of bounded (ordinary) Weil
height and, since the difference between the two height functionsis bounded by a
constant 6 which does not dependon P € E(Q), weare also ableto find all points
of bounded Néron—Tate height 7.(P) < B and thus a generating set of £(Q):

e Wefind (by asieving procedure, cf. Section 4) al the points
P-(52)
such that
h(P) = log(max{|¢|, ¢?) < B + .
¢ We keep those points P with

hP)<B+4d and h(P)< B.

Thebound ¢ can be computed by using amethod of Zimmer ([Zi1], [Zi2], [Zi3]) or
Silverman ([Si]). For Mordell’s Equation, we derivefrom [Zi2], [Zi3]) the estimate

5 < $log|k| + Llog2, (3)
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which is dlightly better than Silverman’s bound (cf. [SI])
& < 3log|k| + 2.96.

Note that the Néron—Tate height 4 that we use is twice the Néron-Tate height in
Silverman’s paper.

In order to compute the bound B we need to know an upper bound R’ for
the regulator R of E/Q. To this end, we apply the second part of the Birch and
Swinnerton-Dyer conjecture. Assuming oo > #l11 > 1, we have

(B, 1) - (#Bors(Q))?

L
R =
7! -Q-prcp

> R. (4)

Thereal period w; of E/Q canbecomputed by avery efficient method devel oped by
D. Grayson [Gra] using the Gaussian arithmetic-geometric mean. The Tamagawa
numbersc, arealso obtained by Tate'salgorithm [Ta] for determining the conductor
N of E/Q.

EXAMPLE. By Tate's agorithm we get

N = 214476429456 = 2* - 32 . 385932
cp =1, c3 =2, c3gs03 = 1.

The agorithm also returns aglobal minimal equation
E':y'? =z — 1042011

for EZ which is different from our model (2). Since, in the course of the algorithm,
it is more convenient to work with a minimal model of E, we will continue our
computationswith themodel E’ of our curve. When we have abasison theminimal
model, we only need to transform the basis points back to the original model via
the birational transformation =’ = (1/2)%z, ' = (1/2)3y.

By (3) we compute

0 = 6.92937829,

whereasthemethod of Silvermanyieldsé = 7.57888769 for the difference between
the Néron-Tate height and the Well height on the minimal model E'.
By the method of Grayson, we compute the real period

w1 = 0.24120501.

Since the discriminant A = —469 059 951 220 272 of (the minimal model of) our
curveis negative, E(R) has only one connected component and thus

Q= w;.
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Weinsert al these valuesin (4) and obtain

,  11576.437-12

S A 024l 1.2.1 98

By asieving procedure we find the point P, € E(Q) listed below and hence
p1 = piy = h((255, 3942)) = 4.13154139.
Combining these results yields

24 . 999.879
=2 TP 46.02
. 4130

and
B+ 6§ :=6.93+ 46.02 = 52.95.

Of course, thisis only an upper bound for our search region. As soon as we have
found r linearly independent points on the curve we stop the search procedure. The
first four linearly independent points (and their Néron-Tate heights) that we find

are
Pp = (255, 3942), h(P1) = 4.1315413974,
P, = (115, 692), h(P;) = 5.2383463867,
P3 = (409/4, 1315/8), h(Ps) = 6.5590924826,
Py = (25275/169, 3334176/2197), h(Ps) = 8.8809956275.

Next, we determine the regulator of the four points Py, P, P3, Py
Reg(P1, P2, Ps, Py) = deth(P,, P,)1<,.0<4 = 999.879

whichisequal to the upper bound R’ for the regulator R obtained by the conjecture
of Birch and Swinnerton-Dyer. If { Py, P», P3, P4} were not abasisof E(Q), then
the size of regulator R of F(Q) would be at most R’ /4 = 249.9697. By inserting
this new upper bound for R and the values yu; = h(P;),1 < i < 3, into formula (4)
wefind

B =571,

but there are only 2 linearly independent points with Néron—Tate height less than
5.71whichisacontradiction to rank(E/Q) > 4. Thus, { P1, P», P3, P4} mustbe a
basisof E(Q).
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We still have to transform the basis points back to the original model (2) of our
curve, viz.
P, — (1020, 31536),
(460, 5536),
(409, 1315),
P, — (101100/169, 26673408/2197).

P2—>

P; —

Note that the Néron-Tate height % is invariant under birational transformations.

Remark. We use the second part of the Birch and Swinnerton-Dyer conjecture
to obtain an upper bound for the regulator, but once we have found a basis we can
prove that these points really form a basis. Thus our calculations are eventually
unconditional.

3. A bound for integer points

Let £/Q beanédliptic curvewithrank r and basis{ P4, . .., P,} of theinfinite part
of E(Q). Then, any point P € E(Q) can be represented as

.
P=> niP+ P, (n;€), ®)
i—1

where P, 1 € Eios(Q) isatorsion point. Our aimisto find an upper bound N € N
such that

Pisintegral = |n;| < N (V1<i<n).

3.1. FINDING AN INITIAL BOUND

In this section we briefly describe the method presented in [GPZ1]. It is based
on an explicit estimation of linear forms in eliptic logarithms. Let r be the rank,
Py,..., P, be abasis and g be the order of the torsion subgroup of the elliptic
curve E/Q defined by Mordell’s Equation (1). Denote by w1 and w the real and
complex period of E, respectively, define 7 = +w,/w1 such that Im7 > 0, and
take )1 to be the smallest eigenvalue of the regulator matrix (A(P,, P,))1< v<r
associated with the basis Py, ..., P,. We designate by u; €] — %, %] the dliptic
logarithm of the point P;. Then, according to [GPZ1], we define

2/k|*® if k<O,
0 =
ckY?  if k>0,
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where ¢ = 5.85.
Let
P = (fa 77) = (p(u)a pl(u)) = anpz + Pr+l € E(Q)

i=1
be any integer point on E/Q parameterized by the Weierstrass p-function, and let
T
u=mng+ anuz +urr1 (n; €Z)
i=1

beitselliptic logarithm. In order to get rid of thetorsion point, we consider the point
P' =g P anditsdliptic logarithm v’ = gu in the corresponding representation

,
v =ng+ Y njui, (nj=g-n;).
i=1
Thefollowing proposition from [GPZ1] gives us lower and upper estimates for the
elliptic logarithm of an integer point.

PROPOSITION 2. Let P = (£, 1) = (p(u), p'(u)) with & > & be an integer
point on E/Q and put P! = gP. Thedlliptic logarithm v’ = gu of P’ satisfies the
estimate

exp{—Ch’”rl <Iog (izlgN> + 1)

1
X (Ioglog (izlgN) + 1)r+ H;":llogVi}
< g - ul
< exp{—AN?+log(g - 1)},
wherethe constant C' (see [Dav]) is given by?

C =29.10%+6. 4% . (p 4 )" +or+123

and
h = log4|k|,
R 3rul
Vi zexpmaX{h(B), h, zm’ } (1<igr),
wilmr
V= 1@%{‘4}’
g2
1 w1

2 Thisexpression for C isacorrection of the value of C' used in [GPZ1].
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Thefollowing theorem, also from [GPZ1], enablesusto find an initial upper bound
for N.

THEOREM 2. Let
P=(&n) =) _nP+P1€EQ
i=1
beaninteger pointon E/Q asin (5) with first coordinateé > &p. Then, the number

N = max {|n;|}

1<i<n
satisfiesthe inequality

2V
N < No:=max{ Ny, ——
N 2 {1,T+1},

where
Ny = 2r+2 /—0102 |Ogr+2/2(02(7" + 2)r+2)

for

|09(90’1)’ 1}

= max
“ { A1

and

¢y = max {%, 109} <%> THZﬁlIogV;.
EXAMPLE. Also by amethod of Grayson, we compute the complex period

wy = 0.12060251 + 0.20888326: and theimaginary part Im 7 = 0.86603868.
The smallest eigenvalue of the regulator matrix is

A1 = 3.20488705.

The dlliptic logarithms of the basis points are

uy = 0.26081931,
up = 0.41475763,
uz = 0.47802466,
ug = 0.34771489.

Then, we have

£o = 2- 66688704Y° = 811.04961324.
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We will need &g to carry out an extra search for points with x-coordinate less than
or equal to &, since the theorem is only valid for those points P = (£,7n) with

§ > &o.

David's constant is
C —29. 106T+6 i 421“2 . (’)" + 1)2T2+9T+12.3 ~25. 10105‘
We also compute the values
h = log(4 - 66688704) ~ 19.40184050,
V1 = exp(h) = exp(19.40184050) ~ 2.7 - 108,

Vo = exp{ > } = exp(32.17732563) ~ 9.4 - 103,
wilmr

Ve — 37ru§ B 19
3 = exp (= exp(42.75259814) ~ 3.7 - 10,

w1
3ru?
Vi = exp{m} = exp(22.61558126) ~ 6.6 - 10°,
1

Vo= V;,
¢; = max{0.93035703, 1} = 1,
co ~ 4.0-105
Our initial bound N> can now be determined. We have
N1 =2%.\/c1-c2-log3(c - 6°) ~ 8.6- 10%
and obtain
Ny = max{Ny,2- £V} = max{Ny,1.5- 10"} = N; ~ 8.6- 10%.

3.2. REDUCTION OF THE INITIAL BOUND

Since, in general, the bound N, > N is very large, we have to reduce it to an
appropriate size. Thisis done by a method of de Weger ([dW]) which is based on
LLL-reduction (see[LLL]).

In order to reduce the bound for IV, we consider the two inequalities

r
!/ !
ng + 5 ;U
i=1

< gch exp{—A\1N?} (6)

and

N <N,
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as a homogeneous diophantine approximation problem. We will only give a brief
description of de Weger’s method and refer the reader to [GPZ1] or [dW] for more
details.

Let Co be a suitable positive integer, viz. Co ~ N3, and T' be the lattice
spanned by the r + 1 vectors

1 0 0
0 0 0
0 9 0 ) O )
0 1 0
| Couy | | Cour | Co

where | Cou; | denotesthelargest integer lessthan or equal to Cou; (1 < 7 < r). The
Euclidean length of the shortest nonzero vector of I' isdenoted by /(I'). Lemma3.7
of [dW] statesthat if IV is apositive integer such that

I(T) > Vr24+5r+4-N,

then (6) cannot hold for N within the range

1 27/3. Cy ~
—lo — < N < N. 7
Y oV (7

If {b1,..., b,y 1} isan LLL-reduced basisfor I', then we have
U(T) > 27072y,

where ||b4]| is the Euclidean length of the shortest vector b;. We take
N =27072)|by[|(Vr2 + 5r + 4)~%.

Thenwereplace N by theleft-hand side of (7) and repeat thisprocedurerecursively
until no further reduction can be achieved.
The task remains to compute al linear combinations

r
Z n;P; + PT-I—la
=1

EXAMPLE. Starting with N>, = 8.6 - 10% and Cy = 10%%® ~ N3, we compute an
LLL-reduced basis of T" with

|64]] = 9.1 - 10%.
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We also determine
N ~ 45.10%

and find the new upper bound N, = 13 for V.

Note that, since Cy = 10%%°, we have to approximate the elliptic logarithms u;
of the basis points P; with an accuracy up to at least 335 digits. A second reduction
yields N = N, = 2 which cannot be reduced any further. Since the torsion group
istrivial, we only haveto test all linear combinations

4
> niP; for|ni| <2(1<i < 4).
i=1

We find the following 8 integer points

(409,1315) = Ps,

(409, —1315) = — P,

(460,5536) = P,

(460, —5536) = — P,

(1020,31536) = P,

(1020, —31536) = — P},

(606365857, 14931454281 967) = 2- Py + P,
(606365857, —14931454281967) = —2- P, — Ps.

The extra search procedure for points (£, ) with £ < o = 811.04961324 yields
the four points

(409, £1315) and (460, +5536)

aready found previously. Thus, the 8 pointslisted above are the only integer points
on E over therationals.

4. Sieving

Thesieving procedureis not explained in [GPZ1]. That iswhy we discussit briefly
here.

In order to find a basis of the Mordell-Weil group, we have to determine all
points

P=(sy) = (é %) EnCEen, (,0)=1=(n,0),
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on the curve (1) such that®

d(P) = logmax{[¢], |¢°k[*} < B, )
where

B':=B+ 4+ 1log4|k|.

Similarly, to find all integer points on E by the method presented we have to test
for all pairs (¢, n) € z2 with |¢| < & whether or not they lie on E. After this
remark we come back to Equation (1) with the extra condition (8). First, we change
the rational eguation

2 3
7 (5) - (&) +
into an equation over the integers
Egin? =€+ %k =1 f(6), )

by multiplying the equation for E with ¢®.
From (8) and (9), we see that we have to consider the equation

Ecin® = fe(€)
for eachinteger ¢ € [1, |exp{B’/2}]] subject to the condition
¢ € max{[~C*k|"°], —|expB']}, |exp B']].

Note that, by regarding (9) asan eguation in thefield of real numbers (i.e. ‘modulo
theinfinite place’), we find that

fg(.%‘) <0

for o < —C?|k|Y3,
We will now show how the sieving of the equation

y2:x3+K, Kez, (20)

intheinterval I = [xo,z1] C Z iscarried out. Here, for the sake of readability, we
write K instead of (8% and keep this number fixed. It is obviousthat if (z, y) € Z2
satisfies (10), then (z, ) is a solution of the congruence

Y2=X3+ K (modm)

® Note that we have replaced the ordinary Weil height h(P) by the modified Weil height d(P)
which is more convenient for our purposes.
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for every positive integer m, where Z, y each denotes the smallest non-negative
residueof theintegersz, y modulo m. Choose someintegersmy, . . . , m; composed
of small powers of the first few prime numbers. (In our implementation we used
my = 6624 =2°.3%.23 my =8075="5%-17-19, m3z = 7007 = 72 - 11-13))
If 23 + k is asquare, then it is a square modulo each m;. Hence, for each m; we
precompuite the residue classes = for which 23 + k is not a square modulo m; and
remove from the interval under consideration al integersin any of these classes.
With the above-mentioned choices of m;, this eliminates about 99.9 percent of all
numbersin any longinterval, and for the remaining small fraction we simply check
directly whether 23 + k is asquare.

REMARK. Of course, this sieving procedure can be applied to any equation of the
form

y? = f(z,2) € Qlx, 2],

where we look only for solutions z, y, z € Z. For example, we applied a similar
method to find points on the quartics

Q: y2 = az® + b3z + cx?2® + dz2® + ez4, a,b,c,d,e €7,

which arethe 2-coveringsof elliptic curves £ /Q inthe method of general 2-descent
(cf. [Cr]). We used these quartics to find large basis points (of Néron—Tate height
larger than 20).

5. Tables

In this section we display some tables that result from our computations based on
the above method. We first applied this method to the Mordell curves

Ey? =234k  0< |kl <10000.

Then, for 10000 < |k| < 100000, we proceeded as follows. Whenever we were
abletocomputeabasisof E/Q, weapplied our algorithmfor determining all integer
points. For some curves, however, we were not able to find a basis. These curves
have rank » = 1 and a large generator. Here ‘large’ means that the Néron-Tate
height is larger than 70.

If therewereany integer point P = (i, y) ononeof thesecurves, itsNéron-Tate
height must be at least as large as the height (> 70) of the (missing) generator.
Since, from (3), the upper bound for the difference between the Weil height and
the Néron-Tate height on E/Q is

§ = 3log|k| + ¥ log2 < 1109100000+ ¥ log2 < 7
(for al |k| < 100000),
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such a point must have first coordinate of absolute value
|z| > exp{70 — 7} = exp{63} > 10%.

But this is very unlikely since the z-coordinate of the largest integer point that
we have found within the range |k| < 100000 is lessthan 4 - 10'°. An alternative
approach for finding agenerator isthe method of Heegner points. Oncethis method
isimplemented all integer points will be found.

5.1. CONJECTURES AND CONCLUSIONS

The large amount of data obtained from our computations gives rise to some
speculations.

From Tables 3 and 7 below, we see that the maximal rank of the Mordell
curves E/Q for |k] < 10000 is 4, and 5 for |k| < 100000. Furthermore, for
|k| < 10,100,1000wefindrk(E/Q) < 1,2, 3, respectively. This suggeststhat the
rank of E/Q grows according to

rk(E/Q) = O(log |k|).
Mestre [Me] found that the rank of any elliptic curve E/Q behaveslike

log N >

k(E/Q) =0 (IoglogN

where N/ denotes the conductor of E/Q (for Mordell’s curves, we have N' =
O(k?)). For each rank r > 0 occurring in our tables we took the smallest positive
and the greatest negativeinteger k such that E: y? = z° + k hasrank r

089 —2351 2089
66265 —28279 28279

r k>0 k<0 minfk]
12 -2 2
215 -11 1
3113 -174 113

4 2

5

In order to find the approximate rate of growth for the rank we applied severa
functionsto these values.

r |k|  log|k| log|k|/loglog || Iog4k2/loglog4k2

12 0.693 —1.891 2.719
21 2.398 2.742 3.3%4
3 113 4727 3.043 4.549
4 2089 7.644 3.758 5.926
5 28279 10.250 4.404 7.092
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However, none of these functions seems to describe the growth rate. The most
suitable function that we found is

|23

r |[k|  log|k|/|loglog |k|
1353

12

211 2.622
3 113 3525
4 2089 4.762

5 28279 5.836

Also, from these tables, we see that the average number of integer points

o(r)

on aMordell curve E of rank r seemsto grow exponentialy in r.

Another observation that we made concerns the distribution of the ranks of the
Mordell curves. Until recently, the common opinion among specialists was that
half of all elliptic curves have rank 0 and half rank 1, with higher ranks occurring
asymptotically for only O percent of all curves. However, numerical work of Zagier
and Kramarz [ZK] calls this belief into question. They examined the family of
elliptic curves

_ #integer pointson al E/Q with rk(E/Q) =r
- #eurves E/Q with rk(E/Q) = r

3+ y3=m, m € Zcubefree
These curves are birationally equivalent to the Mordell curves
y? = 23 — 432m2.

For 0 < m < 70000, and m cubefree, Zagier and Kramarz computed the value of
L(E, 1), and, for 0 < m < 20000, m cubefree, also L'(E, 1) when the sign of
the functional equation was negative. They point out that

6347 curves (38.145 %) haverank O,
8141 curves (48.927 %) haverank 1,
1972 curves (11.852 %) have evenrank > 2,

179 curves ( 1.076 %) have odd rank > 3.

For thisfamily of elliptic curves, the number of curves with rank 1 is considerably
higher than the number of curves of rank 0, and the proportion of curveswith rank
greater than 1 israther large.

Moreover, they detected a constancy of the proportion of curves with ranks
larger than 1 over alarge range of values of m, suggesting that these curves occur
with positive density. Our computations for the Mordell curves E/Q in the range
|k| < 100000 confirm their observation. We even found that the proportion of

https://doi.org/10.1023/A:1000281602647 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000281602647

354 J. GEBEL ET AL.

curves with ranks greater than 1 is still larger, especially for even ranks. The
corresponding results are exhibited in Tables|— and I .

In Tables I~ and I we list the numbers (#) and percentages (%) of curves
of ranks 0, 1,2, 3,4, and 5 for values of & ranging over growing intervals and we
display them separately for negative and positive values of k.

Tablel.”

0>k> r=20 r=1 r=2 r=3 r=4 r=5

—10000 # 3625 4435 1702 228 10 0
% 36250 44350 17.020 2280 0.100 0.000

—20000 # 7211 8831 3437 494 27 0
% 36.055 44.155 17.185 2470 0.135 0.000

—30000 # 10851 13222 5121 757 48 1
% 36170 44.073 17.070 2523 0.160 0.003

—40000 # 14450 17615 6858 1002 74 1
% 36125 44.038 17.145 2505 0.185 0.003

—50000 # 18050 22008 8601 1243 96 2
% 36100 44.016 17.202 2486 0.192 0.004

—60000 # 21694 26390 10266 1521 127 2
% 36157 43.983 17.110 2535 0212 0.003

—70000 # 25324 30758 11969 1799 148 2
% 36177 43.940 17.099 2570 0211 0.003

—80000 # 28966 35122 13654 2082 174 2
% 36208 43.903 17.067 2.603 0215 0.003

—90000 # 32653 39489 15296 2363 197 2
% 36281 43.877 1699 2626 0219 0.002

—100000 # 36278 43857 17010 2635 217 3
% 36278 43.857 17.010 2635 0.217 0.003

Tablel.™
0<k< r=0 r=1 r=2 r=3 r=4 r=5
10000 # 2907 5111 1724 250 8 0

% 29.07 51.11 1724 225 0.08 0.00

20000 # 5889 10147 3398 531 35 0
% 29445 50.735 16990 2.655 0.175 0.000

30000 # 8822 15224 5071 828 55 0

% 29407 50.747 16903 2760 0.183 0.000
40000 # 11755 20290 6754 1118 83 0

% 29387 50.725 16.885 2795 0.207 0.000
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Table1.* (continued)

0<k< r=0 r=1 r=2 r=3 r=4 r=5

50000 # 14702 25360 8428 1412 98 0
% 29404 50.720 16.856 2.824 0.196 0.000

60000 # 17641 30411 10119 1706 123 0
% 29402 50.685 16.865 2.843 0.205 0.000

70000 # 20636 35495 11752 1999 153 1
% 29480 50.656 16.789 2856 0.219 0.001

80000 # 23557 40550 13439 2276 177 1
% 29446 50.688 16.799 2845 0.221 0.001

90000 # 26573 45601 15079 2580 201 2
% 29486 50.668 16.754 2.867 0223 0.002

100000 # 29523 50659 16706 2874 235 3
% 29523 50.659 16.706 2.874 0.235 0.003

As pointed out already, this statistics supports the observations made by Zagier
and Kramarz. As one can also see, the percentage of curveswith rank » < 1 hasa
fairly constant value of about 80.1 percent.

Some other interesting observations can be made. Whereas for negative values
of k& the number of rank O curvesis considerably higher than the number for positive
values of k, the converseistrue for rank 1 curves. This asymmetry remains true if
we consider the distribution of even and odd ranks only for those k£ which are free
of 6-th powers. We display the corresponding dataiin Tablell.

We also mention that Brumer [Br] has recently proved that the average rank of
an elliptic curve, ordered accordingly to its Faltings height, is at most 2.3. This
result is conditional in that it depends on the conjecture of Birch and Swinnerton—
Dyer, the conjecture of Shimura, Taniyamaand Weil and the Riemann hypothesis
for the L-function of an elliptic curve. From Table VII below the average rank of
Mordell’s curveswith |k| < 100000 turns out to be 0.9.

Furthermore, Stewart and Top [StT] showed that there exist positive numbers
C1 and C> such that, if T isareal number larger than C'1, then the number of sixth-
power-free integers k with |k| < T for which Mordell’s curve hasrank at least 6 is
at least

CoTY? [ 10g?T.

5.2. MORDELL’'S EQUATION FOR |k| < 10000

Tables 11 and VII below reveal that rank O curves have at most 5 integral points.
This is, of course, a consequence of Proposition 1 from which we know that
#Fiors(Q) < 6. Itisremarkablethat, in Tables!ll and V11, Mordell’s curves of rank
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Tablell.

k<0 r=0 r=1 r=2 r=3 r=4 r=5 reen rodd

# 35642 43085 16739 2611 217 3 52598 45699
% 36.259 43.831 17.029 2656 0221 0003 53509 46.491
k>0

# 20003 49780 16436 2840 235 3 45674 52623
% 20505 50.642 16.721 2889 0239 0003 46465 53.535

1 with k free of 6th powers have at most 12 integral points, and equality is attained
only for the curve with & = 100. If & is not free of 6th powers, the corresponding
curves have up to 14 integer pointsin the range considered.

Table Il summarizes the results of our computations with the Mordell curves

E:y?=2%+k for0< |k| < 10000.

5.2.1. Some curveswith large generators

In Table IV we list the largest generators of rank 1 curves that we have found (for
|k| < 10000). The points are represented in the following way

Pz(a:,w:(é, %) EmCELC>0, (6,0 =(m¢) =1

We also exhibit the Néron-Tate heights /.(P) of the points P.

5.2.2. Order of the Tate-Shafarevi¢ group

In Table V we list all orders of the Tate-ShafareviC groups that occurred for
|k| < 10000 and the corresponding number of curves. In Table VI we list those &
for which the order of 111 is at |east 16.

In all cases, the structure of the Tate-Shafarevi¢ groupsis

Y/ /
Il ~ — x —, where#lll = n?,
n?Z nz
with the two exceptions
v/ v/ v/

Z
”I_ﬁxﬁxﬁxﬁ fork = —4910 and — 8206.

Note that for r > 2, the orders of the Tate-Shafarevi¢ groups are conjectural.

5.3. MORDELL'S EQUATION FOR |k| < 100000

Table VIl summarizes the results of our computations with the Mordell curves
E:y?=23+k for0< |k| < 100000.
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Tablelll. Summary |k| < 10000.

357

Number of  Number of curves of rank Total
integer number
points 0 1 2 3 4 of curves
0 6459 6884 997 22 14362
1 24 3 27

2 45 2503 1462 108 1 4119
3 4 4

4 99 535 126 760

5 4 3 7

6 24 277 103 6 410

7 2 2

8 12 94 41 1 148

9 2 2

10 8 28 29 1 66

12 1 17 16 2 36

14 1 6 10 1 18

16 5 9 14

18 3 5 1 9

20 4 1 5

22 1 3 2 6

24 1 1 2

26 1 1

28 1 1

32 1 1

) 6532 9546 3426 478 18 20000
The total and average number of integer points

Rank 0 1 2 3 4 al

) 134 5810 8228 2724 228 17124
D(r) 0.021 0.609 2402 5699 12722 0.856

Here we assume that those rank 1 curves for which we were unable to find a
generator (see the introductory remarks of this section) do not have any integer
points. Thisisthe case for about 1000 rank 1 curves.

5.3.1. Somelargeinteger points

In Table VIII welist all integer points P = (z,y) on

E:y? =23+ k for0< |k| < 100000,

withz > 5-107.
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TableIV. Large generators.
k = —9353 h(P) = 140.9808419298

& = 13634551625582851252479616373723356341083952865891\
946306347473

n = 49215901424304585672781522820272883342461091583362\
774789106258579533483727671785124888387815

¢ = 478647123279291655007853483752

k = —7365 iz(P) = 121.3392142866

& = 49767793853829496168364984255047234929742727976545\
161

n = 11102546074544548368664684599551401577404717041573\
939878410384242505241628396986

¢ = 164152949278457509107753

k=-8417  h(P)= 120.5297630755

¢ = 12814285925642005091367277624391093765095489632437\
721

n = 16260886235617336373369419121919585278443520836700\
8500060099029062117903609856

¢ = 25046034789240123314885845

k=-7969  h(P)=111.8099458689

¢ = 2291157583928969147760088047142360067139443658017

n = 23900475080633011267703823446959367517030263821145\
75661401665649622076433

¢ = 304200723106110379993654

k = —4530 h(P) = 110.3580688067

& = 84702914125676251873376378096431226822983986 7531

n = 77955637625350263810470790602942158496257479823491\
8280830708255133471239

¢ = 613551056925673863477

k=-3881  h(P)= 89.6692019429

¢ = 813326642479596225558992634322666199785

n = 23173930488614936556981151794837639882707489217277\
709463851

¢ = 2516095125742235478

6. Graphs

In this section we give three graphical reproductions of the computations of the
Mordell curvesfor k = —10000to 10 000.* Weran asimple C-program on our files
converting the values for k£ and the z-coordinates of the integer points into IATEX-
commands. For the sake of readability, we left out the very large integer points.

4 Thiswas suggested to us by Barry Mazur.
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Table V. Order of I1lI.

#111  Tota k<0 k>0 r=0 r=1 r=2 r=3 r=4

1 17704 8522 9182 4662 9129 3417 478 18
4 1499 835 664 1210 287 2 — —
9 703 568 135 566 130 7 — —

16 74 57 17 74 — — — _
25 12 10 2 12 — — — —
36 8 8 — 8 — — — —

b 20000 10000 10000 6532 9546 3426 478 18

Table VI. Curveswith large order of 111.

#1l =16 k

—9941 —9649 —9565 —9458 9410 9262 —9086 —9054

—8872 —8781 —8566 —8529 —8438 8170 —8169 —8080

—7773 —7729 7542 7458 7169 7045 —-6981 —6945

—6854 —6757 —6506 —6373 —6170 —6117 —6009 —5869

—5830 —5693 5505 5461 5442 5218 —4929 —4749

—4560 —4469 —4462 4329 4102 3949 3803 3713

—3390 —3013 —-2374 2194 1753 1494 1221 3686
4010 4631 4694 5730 6395 6467 6493 7221
7683 8222 8726 8950 9237 9762 9951 9965

—4910 —8206

#I1l =25 k

—9789 —7745 —-7638 —7134 —-6702 —6674 5090 —4777

—4686 —3930 8798 9834

#1l = 36 k

—9978 —9740 9227 —-9194 9185 8053 5414 2957

6.1. MORDELL CURVESFOR |k| < 10000

In the first graph we put the values for k£ and z of all integer points P = (z, y) on
the curves E: y? = 22 + k for —10,000 < k < 10,000 into a coordinate system.
For lack of space, we had to limit the size of the z-coordinates of the integer points
to 13000; there are 136 points with = > 13000 which do not appear in the graph.

We observed at first sight that, for negative values of k&, there are several series
of points which appear to be placed on a line whereas this phenomenon does not
seem to occur for positive k.

https://doi.org/10.1023/A:1000281602647 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000281602647

360 J. GEBEL ET AL.

Table VII. Summary |k| < 100000.

Number Number of curves with rank Total

of int. number
points 0 1 2 3 4 5 of curves
0 65620 77357 14859 723 3 158562
1 45 9 54
2 130 16723 13471 1783 51 32157
3 16 16
4 297 3344 1393 78 5112
5 6 7 1 14
6 55 1519 726 83 2383
7 2 1 3
8 29 346 386 64 1 826
9 4 1 5
10 13 95 204 46 358
12 2 37 115 32 186
14 2 18 77 20 117
16 10 41 23 1 75
18 5 33 14 52
20 3 12 15 1 31
22 4 10 9 23
24 3 6 9
26 1 3 1 5
28 1 1
30 1 1 2 4
32 1 1
36 1 1 2
38 1 1
42 1 1
48 1 1
) 65801 94516 33716 5509 452 6 200000

The total and average number of integer points

Rank 0 1 2 3 4 5 al
Y 335 35522 54319 22960 4062 148 117346
D(r) 0.005 0376 1611 4168 8987 24.667 0.587

We shall show that there areindeed lines in the negative half plane of the graph.
To this end, let us assume that in Mordell’s Equation x, y and & are polynomials
in avariable z over thereals:

z,y, k € R[z].

k=kiz+ Ky (ki k€ R)
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Table VIII. Largeinteger points.

k Rank rp :ty P

28024 4 3790689201 233387325399875
—64432 4 3171881612 178638660 622364
91017 3 1979757 358 88088243191 777
99207 2 1303201029 47045395221 186
—88688 3 1053831624 34210296 678 956
—63604 2 912903445  27582731314539
—44678 3 890838663  26588790747913
30788 2 428895712 8882343339054
14857 3 390620 082 7720258 643465
14668 4 384242766 7531969451458
—71873 2 227449469 3430262 778 906
79721 2 189024 034 2598816054 105
—37071 3 184151 166 2498973838515
11492 2 154 319 269 1917035856 801
55441 4 144185972 1731348576 567
—22189 3 140292677 1661699554612
78454 1 136918715 1602116974677
46747 1 133566 713 1543644740562
—43084 3 128 694 365 1459954419179
—98084 3 121603794 1340975019110
21689 3 115716430 1244779822617
—58295 3 114932 466 1232151436201
69760 3 112749 404 1197212 884 968
8569 2 110781386 1166 004 406 095
20961 3 108997 072 1137947555953
—93664 2 107 994 529 1122283639935
92962 3 106999 199 1106804 177919
20513 2 106011056 1091507542127
25895 3 103289609 1049747744 368
34721 4 86493730 804409 034 061
64809 3 79948 698 714853574601
88538 2 77371607 680569411 759
—57059 3 70078487 586647 298 662
28676 2 69830432 583535 246 338
89750 3 61429931 481470897 421
—54312 2 53519722 391535164 856
50948 2 52219621 377355403503

islinear in z, then, aspolynomialsin z, « haseven degreeand iy hasdegreedivisible
by 3. Let us assume that x is quadratic in z. Without loss of generality, we may
take

t=2°>+a, (a€R).
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6000 7000 8000 9000 10000 11000 12000 z

k=kiz°+ ko, (k1,k2 € R),

and we put

y=22+y2® oz +ys,  (y1,92,93 € R).
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® k 500 1000 1500 2000 2500 3000 3500

Inserting these expressionsfor x, y and k& in Mordell’s Equation (1) and comparing
coefficientsof z¥ for v =5, 4, 3,2,0yields

y1=0, y=3a, y3=0, ki=-3a2 and ky=—ad
Hence, we obtain the quantities x, y and & as polynomials over Q in two variables
aand z

z = 2% +a, k=—a?(32% +a), y = 2(2% + 3a). (11)

On specifying a € Z asafixed integer, we seethat = dependslinearly on &, namely
z = (—4/3a?)(k + %a®), and 7, k and y attain integer valuesfor adl z € Z if a
iseven, and for al z € 2z, if a isodd. Moreover, k is negative for al sufficiently
large values |z|.

However, for negative values of a, the constant k&, as a function of z, attains
positive valuesfor (finitely many) parameters = of small absolute value|z|. In this
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case, there are lines which start in the positive half plane and go up to the negative
half plane. However, they cannot be visualized in our graph. The relation (11)
reflects the general situation if x is a quadratic polynomial. By a more involved
calculation, we obtain a similar result if z is a quartic rather than a quadratic
polynomial in z.

In Graph 2 we depicted the lines
o a=1k=-33r+1) B a=2k=—-3c—2
v: a:3,k:—%(3x+3); 0. a=4, k=-122z — 4.

6.2. HALL'S CONJECTURE

We tried to illustrate M. Hall's conjecture [Ha] graphically. The conjecture states
that, for any integer point P = (z, y) on a Mordell curve E:y? = 23 + k, the
estimate

/2 < ClK]

holds with an absolute constant C. Lang [La] refers to the Hall conjecture in a
weaker form, namely

|$|1/2 < Ca|k|1+e

for any ¢ > 0, with C. depending only on ¢.
In its original form, the Hall conjecture is best possible since Danilov [Dan]
proved the existence of infinitely many integers « and y such that

|23 — 42| < 216,/2|z| — 1080.
In Table IX we listed all Mordell curvesfor which |z|Y/2/|k| > 1.

Table 1X. Hall’s conjecture for |k| < 100000.

k T 2/ |k| k x 2/ k|
1090 28187351 4.87 14668 384242766 1.34
17 5234 4.26 14857 390620082 133
225 720114 3.77 8569 110781386 1.23
24 8158 3.76 11492 154319269 1.08
—307 939787 3.16 618 421351 1.05
—207 367 806 2.93 297 93844 1.038

28024 3790689201 220

Hence, for the Mordell curves with |k| < 100000, Hall’s conjecture is true for
C =5.
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For our graphical illustration of Hall's conjecture in Graph 3, we used the
Mordell curveswith —10000 < k& < 10000. We put the valuesfor k& on the vertical
axis of the coordinate system (with alinear growth rate) and the valuesfor |z| with
aquadratic rate of growth on the horizontal axis.
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