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We study fluctuations of all co-existing energy exchange/transfer/transport processes in
stationary periodic turbulence including those that average to zero and are not present
in average cascade theories. We use a Helmholtz decomposition of accelerations that
leads to a decomposition of all terms in the Kármán–Howarth–Monin–Hill (KHMH)
equation (scale-by-scale two-point energy balance) causing it to break into two energy
balances, one resulting from the integrated two-point vorticity equation and the other
from the integrated two-point pressure equation. The various two-point acceleration terms
in the Navier–Stokes difference (NSD) equation for the dynamics of two-point velocity
differences have similar alignment tendencies with the two-point velocity difference,
implying similar characteristics for the NSD and KHMH equations. We introduce the
two-point sweeping concept and show how it articulates with the fluctuating interscale
energy transfer as the solenoidal part of the interscale transfer rate does not fluctuate with
turbulence dissipation at any scale above the Taylor length but with the sum of the time
derivative and the solenoidal interspace transport rate terms. The pressure fluctuations play
an important role in the interscale and interspace turbulence transfer/transport dynamics
as the irrotational part of the interscale transfer rate is equal to the irrotational part of
the interspace transfer rate and is balanced by two-point fluctuating pressure work. We
also study the homogeneous/inhomogeneous decomposition of interscale transfer. The
statistics of the latter are skewed towards forward cascade events whereas the statistics
of the former are not. We also report statistics conditioned on intense forward/backward
interscale transfer events.
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1. Introduction

Modelling of turbulence dissipation is a cornerstone of one-point turbulent flow prediction
methods based on the Reynolds-averaged Navier–Stokes (RANS) equations such as
the widely used k–ε and the k–ω models (see Pope 2000; Leschziner 2016) and also
of two-point turbulence flow prediction methods based on filtered Navier–Stokes (NS)
equations, namely large eddy simulations (LES) (see Pope 2000; Sagaut 2000). The
turbulence dissipation rate away from walls is intimately linked to the turbulence cascade
(Pope 2000; Vassilicos 2015). The physical understanding of this cascade that, to this
day, has underpinned these prediction methods is based on Kolmogorov’s average
cascade in statistically homogeneous and stationary turbulence. Notwithstanding recent
advances that have shown that the turbulence dissipation and cascade are different
from Kolmogorov’s both in non-stationary (see, e.g. Vassilicos 2015; Goto & Vassilicos
2016; Steiros 2022) and in non-homogeneous turbulence (Chen et al. 2021; Chen &
Vassilicos 2022), Kolmogorov’s cascade is in fact valid only as an average cascade even in
homogeneous stationary turbulence. Turbulence has been known to be intermittent since
the late 1940s (see Frisch (1995) and references therein), and this intermittency has mainly
been taken into account as structure function exponent corrections to Kolmogorov’s
average picture. However, studies such as those by Schumacher et al. (2014) and Yasuda
& Vassilicos (2018) examined intermittent fluctuations without reference to structure
function exponents that require high Reynolds numbers to be well defined and to be
predicted from Kolmogorov’s theory or various intermittency-accounting variants of
this theory (see Frisch (1995) and references therein). Yasuda & Vassilicos (2018)
concentrated their attention on the actual fundamental basis of Kolmogorov’s theory
that is scale-by-scale equilibrium for statistically homogeneous and stationary turbulence,
and not on the theory’s structure function and energy spectrum scaling consequences.
The scale-by-scale equilibrium implied by statistical homogeneity and stationarity is
that the average interscale turbulence energy transfer rate is balanced by nothing more
than the average scale-by-scale viscous diffusion rate, average turbulence dissipation
rate and average energy input rate by a stirring force, irrespective of Reynolds number
(except that the Reynolds number needs to be large enough for the presence of random
fluctuations). It is most natural for a study of intermittency to start with the fluctuations
around this balance, which means that along with the fluctuations of interscale transfer,
dissipation, diffusion and energy input, all other fluctuating turbulent energy change
rates need to be taken into account as well even if their spatio-temporal average is
zero in statistically stationary homogeneous turbulence. The intermittency corrections to
Kolmogorov’s average cascade theory that have been developed since the 1960s (see,
e.g. Frisch 1995; Sreenivasan & Antonia 1997) are often based on the intermittent
fluctuations of the local (in space and time) turbulence dissipation rate, yet Yasuda &
Vassilicos (2018) demonstrated that these dissipation fluctuations are much less intense
than the fluctuations of other turbulent energy change rates such as the nonlinear interspace
energy transfer rate (which is a scale-by-scale rate of turbulent transport in physical
space), the fluctuating work resulting from the correlation of the fluctuating pressure
gradient with the fluctuating velocity and the time derivative of the scale-by-scale turbulent
kinetic energy. Yasuda & Vassilicos (2018) made these observations using direct numerical
simulations (DNS) of statistically stationary periodic turbulence at low to moderate Taylor
length-based Reynolds numbers from about 80 to 170. Even though their Reynolds
numbers were not high enough to test the high-Reynolds-number scaling consequences
of Kolmogorov’s theory, they observed an energy spectrum with a near-decade power
law range where the power law exponent was not too far from Kolmogorov’s −5/3.
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Spatio-temporal fluctuations of energy transfer dynamics

However, they did not observe a significant range of scales where the scale-by-scale
equilibrium reduces to a scale-by-scale balance between average interscale turbulence
energy transfer rate and average turbulence dissipation as predicted by the Kolmogorov
theory for statistically stationary homogeneous turbulence at asymptotically high Reynolds
numbers. This high-Reynolds-number scale-by-scale equilibrium is the hallmark of the
Kolmgorov average cascade and is typically not put in question by existing intermittency
corrections to Kolmogorov’s theory (see, e.g. Frisch 1995).

Given the low to moderate Reynolds numbers of the DNS used by Yasuda & Vassilicos
(2018), their observations concern interscale turbulence energy transfers more than the
turbulence cascade per se if the concept of turbulence cascade is taken to have meaning
only at very large Reynolds numbers. They demonstrated that an interscale transfer picture
appears that is radically different from Kolmogorov’s if the average is lifted and all
spatio-temporal intermittent fluctuations are taken into account. This different picture
involves highly fluctuating processes that vanish on average in statistically stationary and
homogeneous turbulence and are not taken into account by the Kolmogorov theory for that
very reason. We stress once more that Yasuda & Vassilicos (2018) made this demonstration
in statistically homogeneous and stationary turbulence, the very type of turbulence that
Kolmogorov’s theory has been designed for.

It is hard to imagine that the complex turbulence energy transfer picture educed by
the DNS of Yasuda & Vassilicos (2018) does not survive at asympotically high Reynolds
numbers because it is known that the small-scale turbulence becomes increasingly
intermittent with increasing Reynolds number (see, e.g. Frisch 1995; Sreenivasan &
Antonia 1997). A DNS study at higher Reynolds numbers is nevertheless needed to
ascertain this point. However, this is not the study proposed in this paper. In this paper
our aim is to gain deeper insight into the fluctuating energy transfer picture revealed by
the DNS of Yasuda & Vassilicos (2018) and we do this in terms of Helmholtz decomposed
solenoidal and irrotational acceleration fields. Given that the computational cost involved
in this Helmholtz decomposition is high (see following two sections) it is not possible
for us to carry out our study for a variety of increasing Reynolds numbers and thereby
combine it with a Reynolds number dependence study. We therefore limit ourselves to
Reynolds numbers comparable to those of Yasuda & Vassilicos (2018).

The radically different turbulence energy transfer picture that appears when all
intermittent turbulence fluctuations are taken into account exhibits correlations between
fluctuations of different processes: in particular, the fluctuating pressure–velocity term
mentioned above is correlated with the interscale energy transfer rate, and the time
derivative of the turbulent kinetic energy below a certain two-point length r is correlated
with the interspace energy transport rate at the same length r. Yasuda & Vassilicos
(2018) explained the former correlation as resulting from the link between nonlinearity
and non-locality (via the pressure field) and the latter correlation as reflecting the passive
sweeping of small turbulent eddies by large ones (Tennekes 1975). However, this sweeping
(also termed ‘random Taylor hypothesis’) has been studied by reference to the one-point
incompressible NS equation (e.g. Tennekes 1975; Tsinober, Vedula & Yeung 2001) rather
than the two-point Kármán–Howarth–Monin–Hill (KHMH) equation, used by Yasuda
& Vassilicos (2018) in their study of the fluctuating turbulence cascade. The KHMH
equation is a scale-by-scale energy budget local in space and time, directly derived from
the incompressible NS equations for the instantaneous velocity field (see Hill 2002)
without decomposition (e.g. Reynolds decomposition), without averages (e.g. Reynolds
averages) and without any assumption made about the turbulent flow (e.g. homogeneity,
isotropy, etc.). The initial motivation of the present paper is to substantiate the claim of
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Yasuda & Vassilicos (2018) concerning correlations being caused by random sweeping by
translating the sweeping analysis of Tsinober et al. (2001) to the KHMH equation. It is in
doing so that we use the Helmholtz decomposition that Tsinober et al. (2001) introduced
for the analysis of the acceleration field. We apply it to the two-point Navier–Stokes
difference (NSD) equation (which is the equation governing the dynamics of two-point
velocity differences) and the KHMH equation that derives from it. This decomposition
into solenoidal and irrotational terms breaks the NS equation into two equations, one being
the irrotational balance between nonlinearity and non-locality (pressure) and the other
being the solenoidal balance between local unsteadiness and advection that encapsulates
the sweeping. With this decomposition we substantiate all the correlations observed by
Yasuda & Vassilicos (2018) between different KHMH terms representing different energy
change processes, not only those caused by sweeping. In fact, we educe the relation
between interspace turbulence energy transfer/transport and two-point sweeping (i.e. the
random Taylor hypothesis that we generalize to two-point statistics), and we extend the
correlation study to solenoidal and irrotational sub-terms of the KHMH equation that
leads to even stronger correlations than those found by Yasuda & Vassilicos (2018). This
approach sheds some light on the way that two-point sweeping and interscale energy
transfer relate to each other. We then ask whether the scale-by-scale equilibrium that is
at the basis of Kolmogorov’s theory and that disappears when the average is lifted does
nevertheless exist locally at relatively high energy transfer events, a question that leads
us to consider whether two-point sweeping also holds at such events. Finally, we study
the recently introduced decomposition (Alves Portela, Papadakis & Vassilicos 2020) of
the interscale transfer rate into a homogeneous and an inhomogeneous interscale transfer
component. We analyse their fluctuations and the correlations of these fluctuations, both
unconditionally and conditionally on relatively rare intense interscale transfer events.

In the following section we introduce our DNS of forced periodic turbulence. Section
3.1 is a reminder of the application of this decomposition to the one-point NS equation
by Tsinober et al. (2001). In this subsection we also validate our DNS by retrieving the
conclusions of Tsinober et al. (2001) on sweeping and by comparing our DNS results
on one-point acceleration dynamics to theirs. In §§ 3.2 and 3.3 we apply the Helmholtz
decomposition to the two-point NSD equation for the case of homogeneous/periodic
turbulence and in § 3.4 we derive from the Helmholtz decomposed NSD equations
corresponding KHMH equations. Section 3.4 formalises the connection between the NS
and KHMH dynamics, clarifies under which conditions a link exists between NS and
KHMH dynamics and provides results on scale and Reynolds number dependencies of
the KHMH dynamics. By considering the NSD dynamics in terms of solenoidal and
irrotational dynamics, we derive two new KHMH equations. In § 4 we use these two new
KHMH equations to obtain new results on the fluctuating cascade dynamics across scales
both unconditionally and conditionally on rare extreme interscale energy transfer events.
In § 5 we analyse the inhomogeneous and homogeneous contributions to the interscale
energy transfer rate. Finally, § 6 summarises our results.

2. The DNSs of body-forced period turbulence

Our study requires turbulence data from a turbulent flow where the Kolmogorov
equilibrium theory for statistically homogeneous and stationary turbulence is applicable.
We therefore follow Yasuda & Vassilicos (2018) and perform DNS of body-forced periodic
NS turbulence with the same pseudo-spectral code that they used. This code solves
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N 〈Reλ〉t ν/103 kmax〈η〉t 2π/〈L〉t 〈λ〉/〈L〉t Ts/T �T/T

256 112 1.80 1.88 5.6 3.5 21 0.01
512 174 0.72 1.89 5.4 5.2 27 0.12

Table 1. Specifications of the numerical simulations. Here N denotes the number of grid points in each
Cartesian coordinate, Reλ the Taylor-scale Reynolds number, ν the kinematic viscosity, kmax = √

2/3N is
the highest resolved wavenumber, η and λ are, respectively, the Kolmogorov and Taylor lengths and 〈· · · 〉t
denotes a time average; L is the integral lengths calculated from the three-dimensional energy spectrum E(k, t):
L(t) = (3π/4)

∫∞
0 k−1E(k, t) dk/K(t), where K(t) is the kinetic energy per unit mass; Ts denotes the total

sampling time over which converged statistics are calculated by sampling randomly in space–time,�T denotes
the time between samples and T ≡ 〈L〉t/

√
2/3〈K〉t is the turnover time.

numerically the vorticity equation

∂ω

∂t
= ∇x × (u × ω)+ ν∇2

xω + ∇x × f , (2.1)

subjected to the continuity equation

∇x · u = 0, (2.2)

where u(x, t), f (x, t) and ω(x, t) are the velocity, force and vorticity fields, respectively,
and ν is the kinematic viscosity. All fields are 2π periodic in each one of the three
orthogonal spatial coordinates x1, x2 and x3, and x = (x1, x2, x3). The pseudo-spectral
method is fully dealised with a combination of phase shifting and spherical truncation
(Patterson & Orszag 1971). The forcing method is a negative damping forcing (Linkmann
& Morozov 2015; McComb et al. 2015b)

f̂ (k, t) = (εW/2Kf )û(k, t) for 0 < |k| < kf , (2.3)

= 0 otherwise, (2.4)

where f̂ (k, t) and û(k, t) are the Fourier transforms of f (x, t) and u(x, t), respectively,
kf is the cutoff wavenumber, εW is the energy input rate per unit mass and Kf is the
kinetic energy per unit mass in the wavenumber band 0 < |k| < kf . Note that this forcing
is incompressible and has therefore no irrotational part. The addition of a potential,
i.e. irrotational, term to the forcing would effectively just be subsumed into the pressure
required to keep the flow incompressible.

We perform two DNS of forced periodic/homogeneous turbulence with forcing
parameters εW = 0.1 and kf = 2.5 at both simulation sizes 2563 grid points and 5123 grid
points. Average statistics are given in table 1. For these two simulation sizes respectively,
deviations around these averages are as follows: the standard deviations of L are 0.007Lb
and 0.006Lb (where Lb = 2π) and the maximum L values are 0.188Lb and 0.202Lb; the
standard deviations of λ are 2.5 % and 3.7 % of 〈λ〉t; and the standard deviation of kmaxη
are 0.025 and 0.035.

McComb et al. (2015a) performed DNS with the same combinations of N, ν and forcing
as in our simulations. The time-averaged Taylor-scale Reynolds numbers 〈Reλ〉t, the
ratios of the box size to the time-averaged integral length 2π/〈L〉t and the time-averaged
Kolmogorov microscales 〈η〉t are all very similar (and 〈. . .〉t denotes a time average). This
study reports slightly poorer small-scale resolution kmax〈η〉t than ours due to their more
severe spherical truncation for dealiasing.
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We have also verified that the results do not significantly change when the flow is forced
at small wavenumbers with an ABC forcing with A = B = C (Podvigina & Pouquet 1994).
In contrast to the negative damping forcing, this forcing is independent of time and of the
velocity field and is also maximally helical as ∇x × f is parallel to f (Galanti & Tsinober
2000). The helicity input of the ABC forcing has been studied in the context of the energy
cascade in terms of its effect on the dissipation coefficient in Linkmann (2018).

Our Reynolds numbers are relatively limited due to the high computational expense of
our NSD and KHMH post-processing (which is typically at least one order of magnitude
more expensive than DNSs). We detail the computational expense of the post-processing
once the relevant terms have been introduced in § 3.3.

In the following section we show how we apply the Helmholtz decomposition to the
KHMH equation. We start in § 3.1 by applying this decomposition to the one-point NS
equation following Tsinober et al. (2001). In this subsection we also validate our DNS
by retrieving the conclusions of Tsinober et al. (2001), in particular on sweeping, and by
comparing our DNS results on one-point acceleration dynamics to theirs. In §§ 3.2 and
3.3 we apply the Helmholtz decomposition to the two-point NSD equation for the case of
homogeneous/periodic turbulence and in § 3.4 we derive from the Helmholtz decomposed
NSD equations corresponding KHMH equations.

3. Helmholtz decomposition of two-point NS dynamics and corresponding turbulent
energy exchanges

3.1. Solenoidal and irrotational acceleration fluctuations
The Helmholtz decomposition states that a twice continously differentiable three-
dimensional vector field q(x, t) defined on a domain V ⊆ R3 can be expressed as the sum
of an irrotational vector field qI(x, t) and a solenoidal vector field qS(x, t) (Helmholtz
1867; Stewart 2012; Bhatia et al. 2013),

qI(x, t) = −∇xφ(x, t), qS(x, t) = ∇x × B(x, t), (3.1a,b)

where φ(x, t) is a scalar potential and B(x, t) is a vector potential. The Helmholtz
decomposition and its interpretation can be applied to any vector field q(x, t) satisfying
the above conditions, and Tsinober et al. (2001) applied it to fluid accelerations and the
incompressible NS equation.

The solenoidal and irrotational NS equations in homogeneous/periodic turbulence can
be derived from the incompressible NS equation in Fourier space (see Appendix A). After
transformation back to physical space, one obtains

∂u
∂t

+ (u · ∇xu)T = ν∇2
xu + f T, (3.2)

(u · ∇xu)L = − 1
ρ

∇xp + f L, (3.3)

where the superscripts L and T denote fields obtained from longitudinal and transverse
parts of respective Fourier vector fields (see Appendix A for precise definitions and
Pope (2000); Stewart (2012)), p = p(x, t) is the pressure field and ρ is the density.
For any periodic vector field q, qL equals the irrotational field qI and qT equals the
solenoidal field qS (see Appendix A and Stewart 2012). From (3.2)–(3.3), one arrives at
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ac al acS acI ap a aν f 〈Reλ〉t

〈q2〉/(3〈ε〉3/2ν−1/2) 8.47 5.87 5.93 2.55 2.55 2.60 0.05 0.007 112
〈q2〉/(3〈ε〉3/2ν−1/2) 14.28 11.21 11.26 3.03 3.03 3.09 0.05 0.005 174
〈q2〉/〈a2

c〉 1 0.69 0.70 0.30 0.30 0.31 0.0062 0.00081 112
〈q2〉/〈a2

c〉 1 0.78 0.79 0.21 0.21 0.22 0.0038 0.00032 174

Table 2. Normalised average magnitudes 〈q2〉/(3〈ε〉3/2ν−1/2) and 〈q2〉/〈a2
c〉 for NS accelerations and forces

q defined in the fourth paragraph of § 3.1 for our two 〈Reλ〉t. The accelerations and forces q are listed on the
top row, q2 ≡ qiqi, ε denotes the viscous dissipation rate and 〈· · · 〉 denotes a spatio-temporal average.

(Tsinober et al. 2001)

∂u
∂t

+ (u · ∇xu)S = ν∇2
xu + f S, (3.4)

(u · ∇xu)I = − 1
ρ

∇xp + f I, (3.5)

which we refer to as Tsinober equations. Equation (3.4) contains only solenoidal vector
fields and (3.5) contains only irrotational vector fields. Note that in the case of an
incompressible periodic velocity field, the velocity field is solenoidal, i.e. u = uS. This
follows immediately from the scalar potential φ being the solution to ∇2

xφ = 0 with
periodic boundary conditions for ∇xφ, yielding φ = const.

In Appendix C we show that (3.4) is the integrated vorticity equation and that
(3.5) is the integrated Poisson equation for pressure. The procedure presented in
Appendix C for obtaining the Tsinober equations is also used in this same appendix to
obtain generalized Tsinober equations for non-homogeneous/non-periodic turbulence with
arbitrary boundary conditions.

Following the notation of Tsinober et al. (2001), we define al ≡ ∂u/∂t, ac ≡ u · ∇xu,
a ≡ al + ac, ap ≡ −1/ρ∇xp and aν ≡ ν∇2

xu. In such notation, (3.4)–(3.5) are al + acS =
aν + f S and acI = ap + f I . Tsinober et al. (2001) in fact wrote these equations for
statistically homogeneous/periodic NS turbulence without body forces, i.e. with f = 0.
In general, however, the body forcing can be considered, as in the present work, to be
non-zero and typically incompressible, i.e. f I = 0 but f s 	≡ 0, given that a compressible
component of the forcing can be subsumed into the pressure field in incompressible
turbulence. In body-forced statistically stationary homogeneous/periodic turbulence, the
average forcing magnitude 〈 f 2〉, where the brackets denote spatio-temporal averaging,
tends to be small compared with 〈a2

ν〉 when the forcing is applied only to the largest
scales (Vedula & Yeung 1999). Given that 〈 f · u〉 = 〈ε〉, where ε is the local turbulence
dissipation rate, f 2 can be quite small if f is not close to orthogonal to the velocity
field. This is indeed the case with the negative damping and ABC forcings used in this
study. In cases where f is close to orthogonal to the velocity field, which is conceivable
in electromagnetic situations (Lorentz force), f 2 needs to be large enough for 〈 f · u〉 to
balance 〈ε〉. In this study we have not considered such forcings and some of our results
might not be applicable to such situations. Our results for the forcings we used indicate
that 〈 f 2〉 is indeed much smaller than 〈a2

ν〉 (see results from our DNS in table 2) and the
probability to find values of f 2 large enough to be comparable to the other terms in the
Tsinober equations is extremely small (see results from our DNS in figure 1 and table 3)
where we see, in particular, that | f | > 0.1|acS | in 15.3 % and 6.3 % of the spatio-temporal
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Figure 1. Probability density functions (PDFs) P of NS acceleration and force magnitudes q2 for terms q
listed at the top of (a). Here Pmax for the PDF of q2 denotes its maximum value. Results are shown for
(a) 〈Reλ〉t = 112, (b) 〈Reλ〉t = 174.

α 0.001 0.01 0.1 1

Prob(a2
ν > αa2

cS
) (0.893, 0.808) (0.441, 0.308) (0.068, 0.037) (0.004, 0.002)

Prob( f 2 > αa2
cS

) (0.707, 0.476) (0.155, 0.063) (0.008, 0.003) (3 × 10−4, 9 × 10−5)

Table 3. Probabilities of events q2 > αp2 for NS terms (q, p) with α specified on the top row. The two
probability values in the brackets for each (q, p, α) combination refer to 〈Reλ〉t = 112 and 〈Reλ〉t = 174,
respectively.

domain for the two Reynolds numbers, respectively, the percentage being smaller for the
higher Reynolds number. If we consider | f | > √

0.1|acS | ≈ 0.32|acS |, we see that this is
only satisfied in 0.8 % and 0.3 % of the spatio-temporal domain, respectively. Furthermore,
figure 1 and table 3 show that f is also typically much smaller than aν . We can therefore
write al + acS ≈ aν , this being a good approximation in the majority of the flow for the
majority of the time. With acI = ap given that f I = 0, these two equations are very close
to the way that Tsinober et al. (2001) originally wrote them (al + acS = aν and acI = ap
for the f ≡ 0 case) and we can therefore expect our DNS to retrieve the DNS results and
conclusions of Tsinober et al. (2001).

The DNS of Tsinober et al. (2001) showed that aν is typically negligible (i.e. in a
statistical sense, not everywhere at any time in the flow) compared with all the other
acceleration terms in the Tsinober equations, namely al, acS , acI and ap. This is confirmed
by our DNS results in tables 2–3 and in figure 1 that are for similar Reynolds numbers
to those of Tsinober et al. (2001) and where we report root-mean-square values, and
probabilities of various acceleration terms. It is worth noting that aν is not everywhere
always negligible, at these Reynolds numbers at least. For example, |aν | > 0.1|acS | in
44.1 % and 30.8 % of the space–time domain for our lower and higher Reynolds number,
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respectively; and if we consider |aν | > 0.32|acS |, this is satisfied in 6.8 % and 3.7 % of
cases. Note that the DNS results of Tsinober et al. (2001) suggest that the viscous force
typically decreases in magnitude compared with acS as the Reynolds number increases and
our results for our two Reynolds numbers agree with this trend. One may therefore expect
the first of the two Tsinober equations for homogeneous/periodic turbulence with the kind
of forcing we consider here to typically reduce to

al + acS ≈ 0 (3.6)

at high enough Reynolds numbers, the approximation being valid in the sense that the
neglected terms are significantly smaller than the retained ones in the majority of the flow
for the majority of the time. There exist, however, some relatively rare spatio-temporal
events where the neglegted viscous force and/or body force are significant (for example,
as stated a few lines above, |aν | is larger than 0.32|acS | in 6.8 % and 3.7 % of all
spatio-temporal events for our lower and higher Reynolds numbers, respectively) and
where the right-hand side of (3.6) is therefore not zero. In fact, many of these relatively
rare events can be expected to account for some or even much of the average turbulence
dissipation that is a sum of squares of fluctuating velocity gradients. More generally, one
cannot use (3.6) to derive statistics of fluctuating velocity gradients, as in Tang, Antonia
& Djenidi (2022) for example.

The second of the two Tsinober equations, namely

acI = ap, (3.7)

is exact everywhere and at any time and we keep it as it is.
Equations (3.6)–(3.7) suggest similar magnitudes and strong alignment between al

and −acS and equal magnitudes as well as perfect alignment between acI and ap. Such
magnitudes and alignments were observed in the DNS of Tsinober et al. (2001) and are
also strongly confirmed by our own DNS in table 4 (acS and acI are calculated on the basis
of (A1a,b) in Appendix A and aliasing errors associated with nonlinear terms are removed
by phase shifting and truncation Patterson & Orszag 1971). As suggested by previous
DNS and experimental results (e.g. Tsinober et al. 2001; Chevillard et al. 2005; Yeung
et al. 2006), and as also supported by our own DNS results in tables 2 and 4, a ≈ ap and
〈a2

l 〉/〈a2〉 ∼ 〈Reλ〉1/2
t . In fact, the scaling 〈a2

l 〉/〈a2〉 ∼ 〈Reλ〉1/2
t follows from the analysis

of Tennekes (1975) who expressed the concept of passive sweeping by pointing out that ‘at
high Reynolds number the dissipative eddies flow past an Eulerian observer in a time much
shorter than the time scale which characterizes their own dynamics’. It then follows from
(3.6)–(3.7), from 〈a2

l 〉/〈a2〉 ∼ 〈Reλ〉1/2
t and from 〈a2

p〉 ≈ 〈a2〉 that 〈a2
cS

〉/〈a2
cI
〉 ∼ 〈Reλ〉1/2

t
with increasing 〈Reλ〉t, i.e. ac becomes increasingly solenoidal with increasing 〈Reλ〉t.
In this way, the anti-alignment in (3.6) leads to an increasing anti-alignment tendency
between al and ac with increasing Reynolds number, which is consistent with the notion
of passive sweeping of small eddies by large ones, i.e. the random Taylor hypothesis of
Tennekes (1975). These observations and conclusions were all made by Tsinober et al.
(2001). They are now confirmed by our DNS results in table 2 and this reiterates that they
do not require a large Taylor length-based Reynolds number to emerge.

As a final point, it is a general property of isotropic random vector fields q that
〈qI(x, t) · qS(x + r, t)〉x = 0 for any r (including r = 0), where 〈· · · 〉x signifies a spatial
average (Monin, Yaglom & Lumley 1975). Thus, 〈a2

c〉 = 〈a2
cI
〉 + 〈a2

cS
〉 if the small-scale

turbulence is isotropic. Both our DNS and the DNS of Tsinober et al. (2001) confirm
this equality. From this equality and from (3.6), 〈a2

cS
〉/〈a2

cI
〉 ∼ 〈Reλ〉1/2

t , (3.7), a ≈ ap and
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〈Reλ〉t 〈cos(acI , ap)〉 〈cos(a, ap)〉 〈cos(al, acS )〉 〈cos(al, ac)〉 〈cos(ac, ap)〉
112 0.9999 0.972 −0.985 −0.726 0.388
174 0.9999 0.975 −0.990 −0.796 0.308

Table 4. NS average alignments 〈cos(q, p)〉 for NS acceleration pairs (q, p).

〈a2〉 � 〈a2
ν〉 � 〈 f 2〉, we have all in all

〈a2
c〉 ≥ 〈a2

cS
〉 ≈ 〈a2

l 〉 � 〈a2
cI
〉 = 〈a2

p〉 ≈ 〈a2〉 � 〈a2
ν〉 � 〈f 2〉 (3.8)

for large enough 〈Reλ〉t. The average magnitude ordering in (3.8) is confirmed in our DNS
(see table 2) and the DNS of Tsinober et al. (2001) even though the Reynolds numbers
of these DNS are moderate and so the difference between 〈a2

cI
〉 and 〈a2

l 〉 is not so large.
Tsinober’s way to formulate sweeping is encapsulated in 〈a2

cS
〉 ≈ 〈a2

l 〉 � 〈a2
cI
〉 = 〈a2

p〉 ≈
〈a2〉 and in the alignments implied by (3.6) and (3.7) that are also statistically confirmed
by our DNS in table 4.

3.2. From one-point to two-point NS dynamics in periodic/homogeneous turbulence
The NSD equation at centroid x and separation vector r is derived by subtracting the
NS equation at location x+ = x + r/2 from the NS equation at location x− = x − r/2.
Defining δq(x, r, t) ≡ q(x + r/2, t)− q(x − r/2, t) for any NS term q(x, t), the NSD
equation (Hill 2002) reads

∂δu
∂t

+ δac = − 1
ρ

∇xδp + δaν + δf . (3.9)

The NSD equation governs the evolution of δu, which can be thought of as pertaining
to the momentum at scales smaller or comparable to |r|. We derive the solenoidal NSD
equation by subtracting (3.4) at x − r/2 from the same equation at x + r/2. The same
operation is used to derive the irrotational NSD equation. The resulting equations read

∂δu
∂t

+ δacS = δaν + δf S, (3.10)

δacI = − 1
ρ

∇xδp + δf I, (3.11)

where δacS(x, r, t) ≡ acS(x + r/2, t)− acS(x − r/2, t) and δacI (x, r, t) ≡ acI (x + r/2, t)
− acI (x − r/2, t) and note that these terms refer to solenoidal and irrotational terms in
x space rather than r space. The forcings we consider have no irrotational part and so
δ f I = 0. At the moderate 〈Reλ〉t of our DNS, the approximate (3.6) is valid in the sense
explained in the text that accompanies it in the previous subsection, i.e. for a majority of
spatio-temporal events. If the magnitude of the separation vector r is not too small for
viscosity to matter directly nor too large for the forcing to be directly present, we may
safely subtract (3.6) at x − r/2 from (3.6) at x + r/2 to obtain an approximation to (3.10)
for a sufficiently high Reynolds number: this is the first of the two equations below where
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)
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rd/〈λ〉t rd/〈λ〉t

Figure 2. The NSD exceedance probabilities Prob(q2 > αp2) for the NSD terms on top of (a) as a function of
separation length rd = |r|. The legend entries read (q, α, p) for the NSD terms introduced in the first paragraph
of § 3.2. Results are shown for (a) 〈Reλ〉t = 112, 〈L〉t = 3.5〈λ〉t; (b) 〈Reλ〉t = 174, 〈L〉t = 5.2〈λ〉t. The NSD
terms are sampled at scale rd = |r| at random orientations r.

δal ≡ ∂δu/∂t,

δal + δacS ≈ 0, (3.12)

δacI = − 1
ρ

∇xδp. (3.13)

The second equation (3.13) follows directly from (3.11) with δ f I = 0 without any
restriction on either r or Reynolds number and is exact.

Like (3.6), (3.12) can be expected to be valid broadly except where and when δaν + δ f S
is large enough not to be negligible. Figure 2 shows statistically converged estimations
of exceedance probabilities of NSD viscous and external force terms that suggest that
(3.12) is indeed a good approximation for most of space and time at the Reynolds numbers
of our two DNS, at the very least for separation distances larger than 〈λ〉t and smaller
than 〈L〉t. With regards to the forcing, Prob(|δ f | > 0.32|δacS |) is typically of the order
of 1 %, in particular for our higher Reynolds number. With regards to the viscous force,
Prob(|δaν | > 0.32|δacS |) is typically of the order of 5 % for r ≥ 〈λ〉t and even less for our
higher Reynolds number.

The link between nonlinearity and non-locality (via the pressure field) invoked in the
two-point analysis of Yasuda & Vassilicos (2018) has its root in (3.13) that parallels
(3.7) and states that δacI and δap are perfectly aligned and have the same magnitudes.
Furthermore, similarly to the way that (3.6) supports the concept of sweeping of small
turbulent eddies by large ones in the usual one-point sense, (3.12) suggests similar
magnitudes for and strong alignment between δal and −δacS . A two-point concept of
sweeping similar to that of Tennekes (1975) that relies on alignment between δal and
−δac should also require that δac tends towards δacs with increasing Reynolds number,
i.e. that δac becomes increasingly solenoidal. We therefore seek to obtain inequalities
and approximate equalities similar to (3.8). Note that (3.12) and (3.13) immediately
imply 〈δa2

cS
〉 ≈ 〈δa2

l 〉, 〈δa2
cI
〉 = 〈δa2

p〉 and 〈δa2
p〉 ≈ 〈δa2〉. It therefore remains to argue that

〈δa2
c〉 ≥ 〈δa2

cS
〉 � 〈δa2

cI
〉, which is exactly what we need to complete the new concept of

two-point sweeping.
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We start from

〈δq · δq〉(r) = 〈q+ · q+〉 − 〈q+ · q−〉 + 〈q− · q−〉 − 〈q− · q+〉, (3.14)

= 2[〈q · q〉 − 〈q+ · q−〉(r)], (3.15)

where q+ ≡ q(x + r/2) and q− ≡ q(x − r/2) and where we used 〈q+ · q+〉 = 〈q− ·
q−〉 = 〈q · q〉 because of statistical homogeneity/periodicity. Previous studies (Hill &
Thoroddsen 1997; Vedula & Yeung 1999; Gulitski et al. 2007; Xu et al. 2007)
demonstrated that fluid accelerations, pressure gradients and viscous forces have limited
spatial correlations in terms of alignments at scales larger than 〈λ〉t for moderate and
high 〈Reλ〉t. Thus, if we assume the two-point term to be negligible compared with
the one-point term in (3.15) for scales |r| larger than 〈λ〉t, we have that 〈δq · δq〉(r) is
approximately equal to 2〈q · q〉 for |r| larger than 〈λ〉t. From (3.8) we therefore obtain

〈δa2
c〉 ≥ 〈δa2

cS
〉 ≈ 〈δa2

l 〉 � 〈δa2
cI
〉 = 〈δa2

p〉 ≈ 〈δa2〉 � 〈δa2
ν〉 � 〈δf 2〉 (3.16)

for |r| larger than 〈λ〉t, but 〈δa2
c〉 ≥ 〈δa2

cS
〉 and 〈δa2

cI
〉 = 〈δa2

p〉 are in fact valid for any
r. Inequality 〈δa2

c〉 ≥ 〈δa2
cS

〉 follows from 〈δa2
c〉 = 〈δa2

cI
〉 + 〈δa2

cS
〉 that itself follows from

〈acI (x, t) · acS(x + r, t)〉x = 0 for any r if the turbulence is isotropic (Monin et al. 1975).
Equality 〈δa2

cI
〉 = 〈δa2

p〉 follows directly from (3.13) that is exact and holds for any r and
any Reynolds number. Of equalities/inequalities (3.16), the ones that we did not already
directly derive from/with (3.12) and (3.13) are 〈δa2

c〉 ≥ 〈δa2
cS

〉 � 〈δa2
cI
〉 and 〈δa2

ν〉 �
〈δ f 2〉. The present way to formulate the new concept of two-point sweeping follows from
Tsinober’s way to formulate sweeping and is encapsulated in δa2

cS
〉 ≈ 〈δa2

l 〉 � 〈δa2
cI
〉 =

〈δa2
p〉 ≈ 〈δa2〉 and in the alignments implied by (3.12) and (3.13). We confirm (3.12), (3.13)

and (3.16) with our DNS in the remainder of this subsection.
To test (3.16) with our DNS data in a manageable way, we calculate spatio-temporal

averages of r-orientation-averaged quantities

(δq · δq)a(x, rd, t) ≡ 1
πr2

d

∫∫∫
|r|=rd

δq(x, r, t) · δq(x, r, t), dr, (3.17)

which we plot in figure 3(a1,a2) as ratios of such quantities versus the two-point length rd.
In figure 3(a1,a2) we plot spatio-temporal averages of r-orientation-averaged quantities
(3.17) for various acceleration/force terms in the NSD and the Helmholtz decomposed
NSD equations. A comparison of relative magnitudes in the plots of figure 3(a1,a2) with
relative magnitudes in table 2 makes it clear that the results are consistent with (3.16) and
〈δq · δq〉(r)/〈q · q〉 close to 2 for rd ≥ 〈λ〉t at both 〈Reλ〉t to a good degree of accuracy
(〈δq · δq〉(r)/〈q · q〉 increases from 1.8 to 2.0 as rd grows from 〈λ〉t to 〈L〉t). Note, in
particular, that in figure 3(a1,b1) the average quantities corresponding to δal and δacS
overlap and those corresponding to δap, δa and δacI also overlap. At scales below 〈λ〉t,
the average relative magnitudes change slightly, but the NSD magnitude separations still
abide by (3.16), the NSD analogue to (3.8), at all scales.

In figure 3(b1,b2) we use our DNS data to plot spatio-temporal averages of
r-orientation-averaged cosines of angles between various NSD terms δq and δw to test
for average alignments as a function of rd. These alignment results are of course in perfect
agreement with (3.13) but they are also in good agreement with (3.12) and acceptable
agreement with δa ≈ δap (the cosine of the angle between these two acceleration vectors
is higher than 0.9 for all rd). They also show that we should not expect δal to be
extremely well aligned with −δac at our moderate Reynolds numbers. This demonstrates

969 A14-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.571


Spatio-temporal fluctuations of energy transfer dynamics

10−5

10−4

10−3

10−2

10−1

100

〈δq
2
〉a /

〈δa
2 c〉a

δac
δal δal

δacS

δap

δacS

δap

δa
δacI δacI

δaν

δf

(a1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

δa δaν

δf

(b1)
〈co

s(
δq

, 
δw

)a 〉

(δal, −δac)

(δal, −δacS)

(δa, δap)

(δac, δap)

(δacI, δap)
(a2)

0 1 2 3 4 0 1 2 3 4 5 6

0 1 2 3 4 0 1 2 3 4 5 6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(δal, −δac)

(δal, −δacS)

(δa, δap)

(δac, δap)

(δacI δap)(b2)

rd/〈λ〉t rd/〈λ〉t

δac

Figure 3. (a1,b1) Spatio-temporal averages of spherically averaged NSD magnitudes (δq2)a ≡
(πr2

d)
−1 ∫∫∫

|r|=rd
δq(x, r, t) · δq(x, r, t), dr for NSD terms δq listed on top of the figures as a function

of rd: (a1) 〈Reλ〉t = 112, (b1) 〈Reλ〉t = 174. The magnitudes of the terms δal and δacS ) overlap and the
magnitudes of the terms (δap, δa and δacI ) also overlap. (a2,b2) Average NSD alignments between NSD terms
(δq, δw) listed on top of the figures as a function of rd: (a2) 〈Reλ〉t = 112, (b2) 〈Reλ〉t = 174.

the pertinence of the solenoidal–irrotational decomposition that has revealed very good
alignments at our moderate Reynolds numbers for which there are significantly weaker
alignments without this decomposition.

In conclusion, figure 3 provides strong support for (3.12), (3.13) and (3.16) that establish
the two-point link between nonlinearity and non-locality, and also a concept of two-point
sweeping.

3.3. Interscale transfer and physical space transport accelerations
The convective nonlinearity is responsible for nonlinear turbulence transport through
space and nonlinear transfer through scales. We want to separate these two effects and,
therefore, decompose the two-point nonlinear acceleration term δac into an interscale
transfer acceleration aΠ and a physical space transport acceleration aT (Hill 2002),
i.e. δac = aΠ + aT with

aT (x, r, t) = 1
2 (u

+ + u−) · ∇xδu, aΠ(x, r, t) = δu · ∇rδu (3.18a,b)

969 A14-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.571


H.S. Larssen and J.C. Vassilicos

With this decomposition of the nonlinear term, the NSD equation (3.9) reads

∂δu
∂t

+ aΠ + aT = − 1
ρ

∇xδp + δaν + δf . (3.19)

We note relations aΠ = δaC + u+
j (∂/∂x−

j )u
− − u−

j (∂/∂x+
j )u

+ and aT = δaC −
u+

j (∂/∂x−
j )u

− + u−
j (∂/∂x+

j )u
+ that can be easily used to show that 〈a2

Π 〉 and 〈a2
T 〉 tend

towards each other as the amplitude of the separation vector r grows above the integral
length scale. We report DNS evidence of this tendency below in this paper.

We want to consider the effects of the interscale transfer and interspace transport terms
in the solenoidal and irrotational NSD dynamics and we therefore need to break down
the NSD equation (3.19) into two equations, one irrotational and one solenoidal. We
therefore perform Helmholtz decompositions in centroid space x for a given separation
r at time t, for example, δq(x, r, t) = δqĪ(x, r, t)+ δqS̄(x, r, t), where δqĪ(x, r, t) and
δqS̄(x, r, t) are, respectively, the irrotational and solenoidal parts in centroid space of
δq(x, r, t). This decomposition in centroid space differs in general from the difference
of the Helmholtz decomposed terms in the NS equations that gives (3.10) and (3.11),
but in periodic/homogeneous turbulence δqI = δqĪ and δqS = δqS̄ (see Appendix B).
Furthermore, from δac = aΠ + aT , immediately follow δacS̄

= aΠS̄
+ aTS̄

and δacĪ
=

aΠĪ
+ aTĪ

. Thus, we can rewrite the NSD solenoidal and irrotational equations (3.10) and
(3.11) as

aΠĪ
+ aTĪ

= δap, (3.20)

δal + aΠS̄
+ aTS̄

= δaν + δf , (3.21)

in periodic/homogeneous turbulence.
We emphasize that the interscale transfer term aΠS̄

is related non-locally in space to
two-point vortex stretching and compression terms governing the evolution of vorticity
difference δω. This follows from the fact that, as for the Tsinober equations, the
NSD solenoidal equation is an integrated vorticity difference equation. We provide
mathematical detail on the connection between aΠS̄

and δω in Appendix C. This relation
between aΠS̄

and the vorticity difference dynamics provides an instantaneous connection
between the interscale momentum dynamics and two-point vorticity stretching and
compression dynamics.

Equation (3.20) can also be obtained by integrating the Poisson equation for δp in
centroid space similarly to (3.21) that, as already mentioned, can be obtained by integrating
the vorticity difference equation in that same space. We use this approach in Appendix C
to derive these equations for periodic/homogeneous turbulence but also their generalized
form for non-homogeneous turbulence. By deriving the exact equations for aTĪ

(x, r, t) and
aΠĪ

(x, r, t) in Fourier centroid space we show in Appendix B that we have aTĪ
(x, r, t) =

aΠĪ
(x, r, t) in periodic/homogeneous turbulence. This result combined with (3.20) yields

aΠĪ
= aTĪ

= 1
2δap = 1

2δacI (3.22)

in periodic/homogeneous turbulence. In figure 4 we plot spatio-temporal averages
of r-orientation-averaged quantities (3.17) for various acceleration/force terms in the
NSD and the Helmholtz decomposed NSD equations and in figure 5 we plot
spatio-temporal averages of r-orientation-averaged cosines of angles between various
two-point acceleration terms in these equations. The overlapping magnitudes in figure 4
and the average alignments in figure 5 confirm (3.22), or rather validate our DNS given
that (3.22) is exact.
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Figure 4. Average magnitudes 〈δq2〉a of NSD terms present in the irrotational and solenoidal NSD equations
(3.21) and (3.22) listed on top of (a). All values have been normalised with 〈δa2

cS
〉a at the largest considered

separation rd . The magnitudes of the terms (δal + aTS̄
and aΠS̄

) overlap and the magnitudes of the terms
(1/2δacI , aTĪ

and aΠĪ
) also overlap. Results are shown for (a) 〈Reλ〉t = 112, (b) 〈Reλ〉t = 174.
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Figure 5. Average alignments of NSD terms (δq, δw) listed on top of (a,b). The average alignments of
(δap, aTĪ

) and (δap, aΠĪ
) overlap: (a) 〈Reλ〉t = 112, (b) 〈Reλ〉t = 174.

The computational procedure to calculate the various r-orientation-averaged terms
in these figures is computationally expensive. To calculate the NSD irrotational and
solenoidal parts of the interscale and interspace transport terms at a given time t and
separation r, we use the pseudo-spectral algorithm of Patterson & Orszag (1971) with
one phase shift and spherical truncation. We apply this algorithm to δuj and ∂δui/∂rj for
the interscale transfer and for (u+

j + u−
j )/2 and ∂δui/∂xj for the interspace transfer. Hence,

we express these vectors/tensors in Fourier space (see (B13)–(B16) in Appendix B) and
apply the pseudo-spectral method of Patterson & Orszag (1971) to calculate âT (k, r, t)
and âΠ(k, r, t) without aliasing errors. We next decompose these fields to irrotational and
solenoidal fields with the projection operator and inverse these fields to physical space
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to obtain aΠS̄
(x, r, t), aΠĪ

(x, r, t), aTS̄
(x, r, t) and aTĪ

(x, r, t). These fields can then be
sampled over x to calculate, e.g. a2

ΠS̄
(x, r, t) or KHMH terms such as 2δu · aΠS̄

(x, r, t)
(see § 3.4). If we assume that the cost of a DNS time step is similar to the cost of the
pseudo-spectral method to calculate the NS nonlinear term, the calculation of solenoidal
and irrotational interspace and interscale transfers for one t and one r has similar cost
to one DNS time step. The total cost of the pseudo-spectral post-processing method is
proportional to the total number Nr of separation vectors r that we use in our spherical
averaging across scales rd and to the total number Ts/�T of samples in time (see table 1).
With a total number of separation vectors Nr ∼ 103–104 and our Ts/�T values, the total
cost of the pseudo-spectral post-processing method in terms of DNS time steps is at least
one order of magnitude larger than the cost of the DNS itself. This high post-processing
cost limits the possible number of grid points in this study. If we estimate the wall time
of a 10243 simulation to be approximately 10 days, the post-processing would require
approximately three to four months.

The NSD solenoidal equation (3.21) describes a balance between the time derivative,
solenoidal interscale transfer, solenoidal interspace transport, viscous and forcing terms.
From the point we made in the sentence directly following (3.19), we expect 〈a2

TS̄
〉

and 〈a2
ΠS̄

〉 to tend to become equal to each other as the amplitude of r tends to
values significantly larger than 〈L〉t. Figure 4 confirms this trend for the second-order
orientation-averaged moments of aTS̄

and aΠS̄
. For brevity, in what follows we refer to such

statistics as second-order magnitudes. With decreasing rd, the magnitudes of aΠS̄
decrease

relative to those of aTS̄
. At all scales rd ≥ 〈λ〉t the second-order magnitudes of aTS̄

and aΠS̄
are one order of magnitude larger than those of the viscous term δaν and this separation
is greater for the larger 〈Reλ〉t. The magnitudes of δaν are themselves much larger than
those of δ f (not shown in figure 4 for not overloading the figure but see figure 3a1). These
observations suggest that the solenoidal NSD equation (3.21) reduces to the approximate

δal + aTS̄
≈ −aΠS̄

, (3.23)

where this equation is understood as typical in terms of second-order magnitudes: i.e. in
most regions of the flow for the majority of the time, the removed terms are at least one
order of magnitude smaller than the retained terms. (As for the NS dynamics, we do
expect dynamically important regions localised in space and time where the dynamics
differ from (3.23).) Figure 4 confirms (3.23) in a second-order sense and shows that the
relatively rare spatio-temporal events that are neglected when writing (3.23) are indeed
present as the second-order statistics do show a very small deviation from (3.23). An
additional important observation to be made from figure 4 is that δacS tends to become
increasingly dominated by aTS̄

rather than aΠS̄
as rd decreases.

Equation (3.23) is the same as (3.12), and similarly to figure 3 that provides support
for (3.12), figures 4 and 5 provide strong support for (3.23), in particular for rd > 〈λ〉t.
It is interesting to note that the average alignment between the left- and right-hand sides
of (3.23) lies between 90 % and 100 % (typically 95 %) for rd > 〈λ〉t. Whilst this is strong
support for approximate (3.23), the fact that the alignment is not 100 % is a reminder of the
nature of the approximation, i.e. that relatively rare spatio-temporal events do exist where
the viscous and/or driving forces are not negligible.

At length scales rd ≤ 〈λ〉t, the alignment between δal and −aTS̄
improves while the

alignment between δal + aTS̄
and −aΠS̄

worsens with decreasing rd (see figure 5),
presumably because of direct dissipation and diffusion effects, so that δal + aTS̄

≈ 0
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becomes a better approximation than (3.23) at rd < 0.5〈λ〉t. This observation is consistent
with our parallel observation that the magnitude of aTS̄

increases while the magnitude of
aΠS̄

decreases with decreasing rd and that δacS in (3.12) tends to be dominated by aTS̄
at

the very smallest scales.
On the other end of the spectrum, i.e. as the length scale rd grows towards 〈L〉t, the

alignment between δal and −aTS̄
worsens while the alignment between δal and −aΠS̄

improves (see figure 5), both reaching a comparable level of alignment/misalignment
that contribute together to keep approximation (3.23) statistically well satisfied with 95 %
alignment between δal + aTS̄

and −aΠS̄
.

The strong anti-alignment between aTS̄
and δal, increasingly so at smaller rd (see

figure 5) expresses the sweeping of the two-point momentum difference δu at scales rd
and smaller by the mainly large scale velocity (u+ + u−)/2. Note that this two-point
sweeping differs from anti-alignment between δal and δac for two reasons. Firstly, by
using the Helmholtz decomposition we have removed the pressure effect embodied in the
acI contribution to ac that balances the pressure gradient. This was first understood in
Tsinober et al. (2001) in a one-point setting and is here extended to a two-point setting.
Secondly, δacS is the sum of an interspace transport aTS̄

and an interscale transfer term aΠS̄
such that the interpretation of two-point sweeping as anti-alignment between acS and al
as sweeping cannot be exactly accurate. The advection of δu by the large-scale velocity is
attributable to aTS̄

, and figure 5 shows that the two-point sweeping anti-alignment between
δal and aTS̄

increases with decreasing rd.
The sweeping anti-alignment between δal and aTS̄

is by no means perfect even if it
reaches about 90 % accuracy at rd < 〈λ〉t, as is clear from the similar magnitudes and
very strong alignment tendency between δal + aTS̄

and −aΠS̄
at scales |r| ≥ 〈λ〉t (see

figures 4 and 5). Note, in passing, that the Lagrangian solenoidal acceleration δal + aTS̄
and aΠS̄

are both Galilean invariant. Equation (3.23) may be interpreted to mean that the
Lagrangian solenoidal acceleration of δu (which is actually solenoidal) moving with the
mainly large-scale velocity (u+ + u−)/2, namely δal + aTS̄

, is evolving in time and space
in response to −aΠS̄

: when there is an influx of momentum from larger scales, there is an
increase in δal + aTS̄

and δu and it vice versa.

3.4. From NSD dynamics to KHMH dynamics in homogeneous/periodic turbulence
The scale-by-scale evolution of |δu|2 locally in space and time is governed by a KHMH
equation. This makes KHMH equations crucial tools for examining the turbulent energy
cascade. The original KHMH equation and the new solenoidal and irrotational KHMH
equations that we derive below are simply projections of the corresponding NSD equations
onto 2δu. Hence, KHMH dynamics depend on NSD dynamics and the various NSD
terms’ alignment or non-alignment tendencies with 2δu. In this subsection we present
five KHMH results.

By contracting the NSD equation (3.9) with 2δu, one obtains the KHMH equation (Hill
2002; Yasuda & Vassilicos 2018)

∂

∂t
|δu|2 + u+

k + u−
k

2
∂

∂xk
|δu|2 + ∂

∂rk

(
δuk|δu|2

)
= − 2

ρ

∂

∂xk
(δukδp)+ 2ν

∂2

∂r2
k
|δu|2

+ ν

2
∂2

∂x2
k
|δu|2 −

⎡⎣2ν

(
∂u+

i

∂x+
k

)2

+ 2ν

(
∂u−

i

∂x−
k

)2
⎤⎦+ 2δukδfk, (3.24)
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where no fluid velocity decomposition nor averaging operations have been used. In line
with the naming convention of Yasuda & Vassilicos (2018) this equation can be written as

At + T +Π = Tp + Dr,ν + Dx,ν − ε + I, (3.25)

where the first, second and third terms on the left-hand sides of (3.24) and (3.25)
correspond to each other and so do the first, second, third, fourth and fifth terms on
the right-hand sides. Pre-empting notation used further down in this paper, (3.25) is
also written as A = Tp + D + I or At + Ac = Tp + D + I, where Ac ≡ T +Π , A ≡
At + Ac and D ≡ Dr,ν + Dx,ν − ε.

To examine the KHMH dynamics in terms of irrotational and solenoidal dynamics,
we contract the irrotational and solenoidal NSD equations with 2δu to derive what we
refer to as irrotational and solenoidal KHMH equations. Each of the KHMH terms can be
subdivided into a contribution from the NSD irrotational part and a contribution from the
NSD solenoidal part of the respective term in the NSD equation. A solenoidal KHMH
term corresponding to a δq(x, r, t) or q(x, r, t) term in (3.21) equals QS̄ = 2δu · δqS̄
or QS̄ = 2δu · qS̄, and an irrotational KHMH term corresponding to a δq(x, r, t) or
q(x, r, t) term in (3.22) equals QĪ = 2δu · δqĪ or QĪ = 2δu · qĪ . With Q = 2δu · δq or
Q = 2δu · q, we have Q = QĪ + QS̄. The irrotational and solenoidal KHMH equations
for periodic/homogeneous turbulence follow from (3.21) and (3.22), respectively, and read

At + TS̄ +ΠS̄ = Dr,ν + Dx,ν − ε + I, (3.26)

ΠĪ = TĪ = 1
2Tp, (3.27)

where use has been made of the fact that the velocity and velocity difference fields are
solenoidal. These two equations are our first KHMH result.

Space-local changes in time of |δu|2, expressed via At, are only due to solenoidal
KHMH dynamics in (3.26) that include interspace transport, interscale transport, viscous
and forcing effects. The irrotational KHMH equation (3.27) formulates how the imposition
of incompressibility by the pressure field affects interspace and interscale dynamics and, in
turn, energy cascade dynamics. Generalized solenoidal and irrotational KHMH equations
also valid for non-periodic/non-homogeneous turbulence are given in Appendix B.

We first consider the spatio-temporal average of these equations in statistically steady
forced periodic/homogeneous turbulence. As 〈Tp〉 = 0, we obtain from (3.27), 〈ΠĪ〉 =
〈TĪ〉 = 0. As 〈TS̄〉 + 〈TĪ〉 = 〈T 〉 = 0, we have 〈TS̄〉 = 0, such that the spatio-temporal
average of (3.26) reads

〈Π〉 = 〈ΠS̄〉 = 〈Dr,ν〉 − 〈ε〉 + 〈I〉. (3.28)

If an intermediate inertial subrange of scales |r| can be defined where viscous diffusion
and forcing are negligible, (3.28) reduces to 〈ΠS̄〉 ≈ −〈ε〉 in that range. This theoretical
conclusion (which is not part of our DNS study) is the backbone of the Kolmogorov
(1941a,b,c) theory for a high Reynolds number statistically homogeneous stationary
small-scale turbulence with the additional information that the part of the average
interscale transfer rate involved in Kolmogorov’s equilibrium balance is the solenoidal
interscale transfer rate only. This is our second KHMH result. On average, there is a
cascade of turbulence energy from large to small scales where the rate of interscale transfer
is dominated by two-point vortex stretching (see Appendix C for the relation between the
solenoidal interscale transfer and vortex stretching) and is equal to −〈ε〉 independently of
|r| over a range of scales where viscous diffusion and forcing are negligible.

In this paper we concentrate on the fluctuations around the average picture described
by the scale-by-scale equilibrium (3.28) for any Reynolds number. If we subtract the
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spatio-temporal average solenoidal KHMH equation (3.28) from the solenoidal KHMH
equation (3.26) and use the generic notation Q′ ≡ Q − 〈Q〉, we attain the fluctuating
solenoidal KHMH equation

At + TS̄ +Π ′
S̄ = D′

r,ν + Dx,ν − ε′ + I ′. (3.29)

This equation governs the fluctuations of the KHMH solenoidal dynamics around its
spatio-temporal average. Clearly, if these non-equilibrium fluctuations are large relative
to their average values, the average picture expressed by (3.28) is not characteristic of
the interscale transfer dynamics. We now study the KHMH fluctuations in statistically
stationary periodic/homogeneous turbulence on the basis of (3.27) and (3.29). Concerning
(3.27), note that Π ′

Ī
= ΠĪ , T ′

Ī
= TĪ and T ′

p = Tp̄.
We start by determining the relative fluctuation magnitudes of the spatio-temporal

fluctuations of each term in the KHMH equations (3.27) and (3.29). These relative
fluctuation magnitudes can emulate those of respective terms in the NSD equations under
the following sufficient conditions: (i) the fluctuations are so intense that they dwarf
averages, so that 〈(Q′)2〉 ≈ 〈Q2〉; (ii) the mean square of any KHMH term Q = 2δu · δq
corresponding to a NSD term δq(x, r, t) (equivalently Q = 2δu · q corresponding to
q(x, r, t)) can be approximated as

〈Q2〉(r) ≈ 4〈|δu|2〉〈|δq|2〉〈cos2(θq)〉, (3.30)

where the approximate equality results from a degree of decorrelation and θq is the angle
between δq(x, r, t) (or q(x, r, t)) and δu(x, r, t); (iii) 〈cos2(θq)〉 is not very sensitive to the
choice of NSD term δq (or q). Under these conditions, we get

〈(2δu · δq)2〉(r)
〈(2δu · δw)2〉(r) ≈ 〈|δu|2〉〈|δq|2〉〈cos2(θq)〉(r)

〈|δu|2〉〈|δw|2〉〈cos2(θw)〉(r) ≈ 〈|δq|2〉(r)
〈|δw|2〉(r) , (3.31)

which means that KHMH relative fluctuation magnitudes and NSD relative fluctuation
magnitudes are approximately identical. The first approximate equality in (3.31) follows
directly from (3.30) and the second approximate equality follows from hypothesis (iii) that
cos2(θq) and cos2(θw) are about equal.

We test hypothesis (i) by comparing the plots in figure 6(a1,b1) with those in
figure 6(a2,b2). Figure 6(a1,b1) shows average magnitudes of KHMH spatio-temporal
fluctuations for terms with non-zero spatio-temporal averages. Comparing with
figure 6(a2,b2), we find that 〈(Q′)2〉a ≈ 〈Q2〉a, i.e. hypothesis (i), for all four terms plotted
in figure 6(a1,b1) at all length scales rd considered. Note that this does not hold for D′

r,ν

and I ′ that are the only KHMH fluctuations such that
√

〈(Q′)2〉a/〈ε〉a is smaller (in fact
significantly smaller) than 1 at all scales. Figure 6 also makes it clear that the magnitudes
of the fluctuations of all other KHMH terms (solenoidal and irrotational) are much higher
than those of the turbulence dissipation at all scales rd > 0.5〈λ〉t, and more so for the
higher of the two Reynolds numbers. For scales rd ≥ 〈λ〉t, the largest average fluctuating
magnitudes are those of A′

c, followed closely by At and TS̄. Next come the magnitudes
of Π ′

S̄
and At + TS̄. Thereafter follow the irrotational terms ΠĪ = TĪ (= 0.5Tp) and

finally the viscous, dissipative and forcing terms D′, ε′ and I ′ in that order. This order of
fluctuations is our third KHMH result. An average description of the interscale turbulent
energy transfer dynamics in terms of its spatio-temporal average cannot, therefore, be
accurate. In order to characterize these dynamics, attention must be directed at most if not
all KHMH term fluctuations, and in fact to much more than just the turbulence dissipation
fluctuations given that they are among the weakest.
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Figure 6. (a1,b1) The KHMH average square magnitudes 〈Q2〉a and (a2,b2) KHMH average square
fluctuating magnitudes 〈(Q′)2〉a, where Q′ = Q − 〈Q〉, for the KHMH terms Q listed above the figures and
introduced in the third and fourth paragraphs of § 3.4. All entries are normalised with 〈ε〉a (see (3.24) and
(3.25)). The following pairs of KHMH terms have overlapping magnitudes in (a2,b2): At and AcS ; At + TS̄
and ΠS̄; TĪ and ΠĪ . Results are shown for (a1,a2) 〈Reλ〉t = 112, (b1,b2) 〈Reλ〉t = 174.

Next, we test hypothesis (ii) by testing the validity of (3.30) and hypothesis (iii)
concerning approximately similar cos2(θq) behaviour for different KHMH terms. In
figure 7(a1,b1) we plot ratios of the right-hand sides to left-hand sides of (3.30) and see
that (3.30) is not valid, but that it is nevertheless about 65 % to 98 % accurate for rd ≥ 〈λ〉t.
Note that (3.30) might be sufficient but that it is by no means necessary for the leftmost
and rightmost sides of (3.31) to approximately balance. In those cases where the variations
between the ratios plotted in figure 7(a1,b1) are not too large and the assumption of
approximately similar cos2(θq) for different KHMH terms more or less holds, the leftmost
and rightmost sides of (3.31) can approximately balance.

Incidentally, figure 7(a2,b2) also shows that the angles θq are not random but that they
are more likely to be small rather than large in an approximately similar way for all
important NSD terms: cos2(θq) ranges between about 0.28 and 0.36 for all NSD terms
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δaν

0 1 2 3 0 1 2 3 4 5 6

0 1 2 3 0 1 2 3 4 5 6
0.2

0.3

0.4

0.5

rd/〈λ〉t rd/〈λ〉t

Ac
At TS̄

ΠS̄ D
ΠĪ
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Figure 7. Test of the assumptions (ii) and (iii) in the seventh paragraph of § 3.4 related to relations (3.30)
and (3.31) connecting NSD and KHMH relative magnitudes. (a1,b1) Test of assumption (ii) by taking the
ratio of the left-hand and right-hand sides of (3.30) for the KHMH terms Q listed above the figures.
(a2,b2) Test of assumption (iii) used in (3.31) by comparing the behaviour of 〈cos2(θq)〉a for the various NSD
terms listed above the figures. The black horizontal line 0.5 corresponds to the value of 〈cos2(θq)〉 if θq is
uniformly distributed. Results are shown for (a1,a2) 〈Reλ〉t = 112, (b1,b2) 〈Reλ〉t = 174.

(except the viscous acceleration difference and the viscous force difference) at all scales
rd. These values are much smaller than 0.5, the value that cos2(θq) would have taken if
the angles θq were random. There is therefore an alignment tendency between δu and
NSD terms that is similar for all the important NSD terms, thereby allowing the balance
between the leftmost (ratio of KHMH terms) and the rightmost (ratio of NSD terms) sides
of (3.31) to approximately hold as seen by comparing the plots (a1)-(b1) (mean square
NSD terms) with the plots (a2)-(b2) (mean square KHMH terms) in figure 8. (Note that the
viscous term is bounded from above, 〈D2〉(r) ≤ 4〈|δu|2|δaν |2〉, which indicates limited
magnitudes compared with the irrotational and dominant solenoidal terms because of the
limited magnitude of 〈δa2

ν〉. The limited fluctuations of the viscous terms are clearly seen
in figure 6.)

Figure 8 does indeed confirm the close correspondence between NSD and KHMH
statistics that is a significant step further from the correspondence reported earlier in this
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Figure 8. The NSD and KHMH relative average square magnitudes (which should be similar on the basis
of (3.31)) for the terms listed above the figures: (a1) NSD and (a2) KHMH for 〈Reλ〉t = 112, (b1) NSD and
(b2) KHMH for 〈Reλ〉t = 174.

paper between NS and NSD statistics. We can therefore use the approximate NSD relation
(3.23) to deduce the following approximate KHMH relation:

At + TS̄ +Π ′
S̄ ≈ 0, (3.32)

understood in the sense that it holds in the majority of the domain for the majority of the
time but that there surely exist relatively rare events within the flow where this approximate
KHMH relation is violated.

This approximate equation At + TS̄ +Π ′
S̄

≈ 0 can be considered to be our fourth
KHMH result. It is consistent with the order of fluctuation magnitudes in figure 8 that
shows, in agreement with the NSD–KHMH correspondence just established, that the
largest fluctuating magnitudes are those of Ac, followed by the fluctuating magnitudes of
TS̄, At and AcS (AcS = TS̄ +ΠS̄). Note though that there is a crossover at about rd ≈ 2〈λ〉t
for both Reynolds numbers considered here between the fluctuation magnitudes of TS̄ and
those of At and AcS that are about equal to each other in agreement with (3.32).

The fluctuation magnitudes of ΠS̄ and ΠĪ are both smaller than those just mentioned,
and those ofΠĪ are significantly smaller than those ofΠS̄. Even smaller are the fluctuation
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Figure 9. Spherically averaged correlation coefficients between KHMH terms (Q1,Q2) listed above the
plots (a,b). They are plotted as functions of scale rd . Results are shown for (a) 〈Reλ〉t = 112, (b) 〈Reλ〉t = 174.

magnitudes of D and I, in that order. In agreement with (3.16), our third and fourth KHMH
conclusions incorporate

〈A2
t 〉 ≈ 〈A2

cS
〉 � 〈T 2

p 〉 = 4〈Π2
Ī 〉 = 4〈T 2

Ī 〉 = 〈A2
cI
〉 � 〈D2〉 � 〈I2〉, (3.33)

where AcI = TĪ +ΠĪ .
An additional significant observation from figure 8 that we can count as our fifth KHMH

result is that, as rd decreases towards about 0.5〈λ〉t, the fluctuation magnitude of AcS =
TS̄ +ΠS̄ remains about constant but that of TS̄ increases while that of ΠS̄ decreases. (At
scale rd smaller than 0.5〈λ〉t, the fluctuation magnitudes of both AcS and TS̄ increase with
diminishing rd whereas those of ΠS̄ remain about constant.) The convective nonlinearity
is increasingly of the spatial transport type and diminishingly of the interscale transfer type
as the two-point separation length decreases.

We now consider correlations between different intermediate and large-scale fluctuating
KHMH terms in light of (3.27) and (3.32).

4. Fluctuating KHMH dynamics in homogeneous/periodic turbulence

4.1. Correlations
We start this section by assessing the existence or non-existence of local (in space and
time) equilibrium between interscale transfer and dissipation at some intermediate scales.
In figure 9 we plot correlations between various KHMH terms. In particular, this figure
shows that the correlation coefficient between Π ′

S̄
and −ε′ lies well below 0.1 for all

scales rd ≥ 〈λ〉t. The scatter plots of these quantities in figure 10 confirm the absence
of a local relation between interscale transfer rate and dissipation rate. For example, for
a given local/instantaneous dissipation fluctuation, the corresponding local/instantaneous
interscale transfer rate fluctuation can be close to equally positive or negative. There is
no local equilibrium between these quantities as they fluctuate at scales rd ≥ 〈λ〉t. Such a
correlation should of course not necessarily be expected. However, as rd decreases below
〈λ〉t, the correlations between Π ′

S̄
and either −ε′ or D′ increase up to values between

about 0.3 and about 0.5. This increased correlation may suggest a feeble tendency towards
local/instantaneous equilibrium between interscale transfer rate and dissipation rate at
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Figure 10. Scatter plots of Π ′
S̄

and ε′ at random orientations r with rd/〈λ〉t = (1.45, 3.1) for (a,b), σΠS̄
is the

standard deviation of ΠS̄ and 〈Reλ〉t = 174.

scales rd < 〈λ〉t. However, these scales are strongly affected by direct viscous processes
and can therefore not be inertial range scales.

Following the question of local/instantaneous equilibrium, we now look for
local/instantaneous sweeping. Figure 9 shows strong anti-correlation between At and TS̄,
increasingly so as rd decreases from large to small scales. Along with the fifth KHMH
result at the end of the previous section (that the fluctuation magnitudes of At and TS̄
become increasingly comparable as rd decreases), this anti-correlation tendency suggests
a tendency towards At + TS̄ ≈ 0 at decreasing scales in agreement with the concept of
two-point sweeping introduced in § 3.2. In other words, the sweeping of |δu|2 by the
mainly large-scale advection velocity (u+ + u−)/2 becomes increasingly strong with
decreasing rd. The scatter plots of At and TS̄ in figure 11 make this local/instantaneous
two-point sweeping tendency with decreasing rd very evident, but also indicate that
significant values of positive or negative ΠS̄ can cause increasing deviations from
At + TS̄ ≈ 0 as rd increases. Note that At + TS̄ +ΠS̄ ≈ 0 as indicated by the correlation
coefficients in figure 9 between At + TS̄ and −ΠS̄ (which exceed 0.95 for rd ≥ 〈λ〉t at our
Reynolds numbers) and by their overlapping fluctuation magnitudes in figure 6(a2,b2).
The fluctuations of ΠS̄ increase in magnitude as rd increases and so do high values of ΠS̄
too. The scatter plots in figure 11 highlight how the 5 % most negativeΠS̄ events (values of
ΠS̄ for which the probability thatΠS̄ is smaller than a negative valueΠS̄0.05

is 0.05) and the
5 % most positive ΠS̄ events (values of ΠS̄ for which the probability that ΠS̄ is larger than
a positive value ΠS̄0.95

is also 0.05) cause significant deviations from ‘perfect sweeping’
At = −TS̄, increasingly so for increasing rd, in agreement with At + TS̄ +ΠS̄ ≈ 0.

The scatter plots in figure 12 show that it is only in relatively rare circumstances
that At + TS̄ +ΠS̄ ≈ 0 is significantly inaccurate for scales rd ≥ 〈λ〉t. Similarly to NSD
dynamics, At + TS̄ can be viewed as a Lagrangian time rate of change of |δu|2 moving
with (u+ + u−)/2. As more than average |δu|2 is cascaded from larger to smaller scales
at a particular location (Π ′

S̄
< 0), At + TS̄ increases; and as more than average |δu|2 is

inverse cascaded from smaller to larger scales (Π ′
S̄
> 0), At + TS̄ decreases. HereΠ ′

S̄
is to

a large extent determined by aΠS̄
that, as we show in Appendix C, is a non-local function

in space of the vortex stretching and compression dynamics determining the two-point
vorticity difference δω.

A fairly complete way to summarise the details of the balance At + TS̄ +ΠS̄ ≈ 0 at
scales rd ≥ 〈λ〉t is by noting that, as rd decreases towards 〈λ〉t, (i) the fluctuation magnitude
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Figure 11. Scatter plots of At and TS̄ at random orientations r normalised by σAt and σTS̄
, their respective

standard deviations. Here ΠS̄0.05
is the value of ΠS̄ at the respective rd for which 5 % of the samples are

more negative than ΠS̄0.05
and ΠS̄0.95

is the value of ΠS̄ for which 95 % of the samples are more positive than
ΠS̄0.95

. The eventsΠS̄ < ΠS̄0.05
andΠS̄ > ΠS̄0.95

are marked in red and green, respectively, while the remaining
events are marked in blue. The red line marks At = −TS̄ − 〈ΠS̄|ΠS̄ < ΠS̄0.05

〉, where 〈ΠS̄|ΠS̄ < ΠS̄0.05
〉 is the

average value of ΠS̄ conditioned on ΠS̄ < ΠS̄0.05
. The green line marks At = −TS̄ − 〈ΠS̄|ΠS̄ > ΠS̄0.95

〉 and
the blue line marks At = −TS̄ (with all terms appropriately normalised with σAt and σTS̄

). Here rd/〈λ〉t =
(0.12, 1.45, 3.1, 5.2) for (a–d) and 〈Reλ〉t = 174.

of TS̄ tends to become comparable to that of At while that ofΠS̄ decreases by comparison,
(ii) the correlation coefficient between At and −TS̄ increases towards 0.9, and also (iii)
(not mentioned till now but evident in figure 9) the correlation coefficient between At and
−ΠS̄ decreases towards values below 0.2.

4.2. Conditional correlations
At scales rd below 〈λ〉t, the relation At + TS̄ +ΠS̄ ≈ 0 becomes less accurate as the
correlation coefficient between At + TS̄ and −ΠS̄ drops from 0.95 to 0.7 with decreasing
rd, reflecting the increase of correlation between ε and −ΠS̄ and the even higher increase
towards values close to 0.5 of the correlation coefficient between D andΠS̄. This increase
of correlation appears to reflect the impact of relatively rare yet intense local/instantaneous
occurrences of interscale transfer rate as shown in figure 13 where we plot correlations
conditional on relatively rare interscale events where the magnitudes of the spherically
averaged interscale transfer rates are higher than 95 % of all interscale transfer rates
of same sign (positive for backward and negative for forward transfer) in our overall
spatio-temporal sample. This impact is highest at scales smaller than 〈λ〉t where the
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Figure 12. Scatter plots of At + TS̄ and Π ′
S̄

at random orientations r. The residual −b ≡ At + TS̄ +Π ′
S̄

and
the values b0.05 and b0.95 are defined analogously as for ΠS̄0.05

and ΠS̄0.95
in the previous figure. The events

b < b0.05 and b > b0.95 are marked in red and green, respectively, while the remaining events are marked in
blue. The red line marks At + TS̄ = −Π ′

S̄
− 〈b|b < b0.05〉, the green line At + TS̄ = −Π ′

S̄
− 〈b|b > b0.95〉

and the blue line At + TS̄ = −Π ′
S̄

(with all terms appropriately normalised with σΠS̄
). Here rd/〈λ〉t =

(0.12, 1.45, 3.1, 5.2) for (a, b, c, d) and 〈Reλ〉t = 174.

correlation coefficient conditioned on intense forward or backward interscale transfer rate
events of ±ΠS̄ and either ε or D can be as high as 0.7 (+ΠS̄ in the case of backward
events and −ΠS̄ in the case of forward events that causes significantly higher correlations
between At + TS̄ and either −ε or D in the case of backward events than in the case of
forward events as seen in figure 13). However, the impact of such relatively rare events is
also manifest at scales larger than 〈λ〉t (see figure 13) where the conditioned correlation
coefficient is significantly higher than the unconditioned one in figure 9. Interestingly,
conditioning on these relatively rare events does not change the correlation coefficients
of At + TS̄ with −Π ′

S̄
except at scales rd smaller than 〈λ〉t where, consistently with

the increased conditioned correlations between −ΠS̄ and D, they are smaller than the
unconditional correlation coefficients of At + TS̄ with −Π ′

S̄
, particularly at relatively rare

forward interscale events where this conditional correlation drops to values close to 0.3 at
scales well below 〈λ〉t.

Given that our relatively rare intense interscale transfer rates can be the seat of
some correlation between ΠS̄ and either −ε or D particularly for rd < 〈λ〉t, and given
that At + TS̄ ≈ 0 is a good approximation at scales smaller than 〈λ〉t, do we have
approximate two-point sweeping and approximate equilibriumΠS̄ ≈ D if we condition on
relatively rare forward or backward interscale transfer rate events? In fact the conditional
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2) listed on top of the figure. Here 〈Reλ〉t = 112. (Corresponding plots for 〈Reλ〉t = 174 are omitted
because they are very similar.)
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Figure 14. (a) Spatio-temporal averages of KHMH terms Qa conditioned on the 5 % strongest spherically
averaged backward (a) and forward (b) interscale transfer events. The KHMH terms are listed above figure
(a) and 〈Reλ〉t = 112. (Corresponding plots for 〈Reλ〉t = 174 are omitted because they are very similar.)

correlations between At and −TS̄ are very high (close to and above 0.95) at all scales
(see figure 13), higher than the corresponding unconditional correlations. However, the
conditional averages of At and −TS̄ shown in figure 14 are also significantly different at
all scales, implying that these strong conditional correlations do not actually amount to
two-point sweeping at relatively rare forward and backward events. Furthermore, if we
condition on high negative/positive values of ΠS̄, the averages of both At and TS̄ are
positive/negative (figure 14), even though these conditional averages do tend to 0 as rd
tends to 0. This has two implications.
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Figure 15. Spatio-temporal averages of T a

S̄
across scales rd conditioned onΠa
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being within a certain range of
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values and we consider 20 such ranges of increasing values of Πa
S̄

: the 5 % smallest/most negative Πa
S̄

, the
5 % to 10 % smallest/most negative Πa

S̄
values and so on until the 5 % largest/most positive Πa

S̄
values. Results

are shown for (a) 〈Re〉t = 112, (b) 〈Re〉t = 174.

(i) It implies that, even though At and −TS̄ are very well correlated at these relatively
rare events, At + TS̄ fluctuates around a constant C where C > 0 if we condition
the fluctuations on relatively rare negative ΠS̄ but C < 0 if we condition them
on relatively rare positive ΠS̄ (C = 0 if we do not condition). This amounts to
a systematic deviation on the average from two-point sweeping even though the
strong correlation between the high magnitude fluctuations of At and −TS̄ point at
a tendency towards sweeping that is frustrated by the presence of the comparatively
low non-zero local ΠS̄. Given (3.29), the presence of this non-zero constant C
(clearly non-zero for all scales, and non-zero but tending towards zero as rd tends to 0
well below 〈λ〉t) means that the equilibriumΠS̄ ≈ D for scales smaller than 〈λ〉t does
not hold either, even at scales smaller than 〈λ〉t where the conditional correlation
between ΠS̄ and D is significant. In fact, figure 14 shows that the conditional
averages of Π ′

S̄
are much larger than those of both D′ and −ε′; they are much closer

to those of At + TS̄.
(ii) The second implication of the conditional signs of TS̄ is the existence of a relation

between the conditional average of solenoidal interspace transfer rate TS̄ and the
solenoidal interspace transfer rate ΠS̄ on which the average is conditioned: when
one is positive/negative, the other is negative/positive, and we also find that their
absolute magnitudes increase together (see figure 15). This is an observation that
may prove important in the future for both subgrid scale modelling and the detailed
study of the very smallest scales of turbulence fluctuations.

In conclusion, ΠS̄ does not fluctuate with neither −ε nor D. Instead, ΠS̄ and At +
TS̄ fluctuate together at all scales, in particular scales larger than 〈λ〉t, and even at
relatively rare interscale transfer events. At scales smaller than 〈λ〉t, we have a general
tendency towards two-point sweeping if we do not condition on particular events. At our
relatively rare interscale transfer events this correlation tendency (now conditional) is in
fact amplified but there is nevertheless a systematic average deviation from two-point
sweeping consistent with the absence of equilibrium ΠS̄ ≈ D at these events. Finally,
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a relation exists between interspace and interscale transfer rates because the average
interspace transfer rate conditioned on positive/negative values of interscale transfer
rate is negative/positive. It must be stressed, however, that this relation does not imply
an anti-correlation between interscale and interspace transport rates. The unconditioned
correlation coefficients between −ΠS̄ and TS̄ are around 0.2 (see figure 9), and we checked
that this 0.2 correlation does not change significantly if we condition on relatively rare
intense occurrences of interscale transfer rate.

5. Inhomogeneity contribution to interscale transfer

5.1. Average values and probability density functions
The decomposition Π = ΠĪ +ΠS̄ helped us distinguish between the solenoidal vortex
stretching/compression and the pressure-related aspects of the interscale transfer. As
recently shown by Alves Portela et al. (2020), the interscale transfer rate Π can also be
decomposed in a way that brings out the fact that it has a direct inhomogeneity contribution
to it. This last part of the present study is an examination of the decomposition introduced
by Alves Portela et al. (2020) that is Π = ΠI +ΠH , where

ΠI = 1
2
δui

∂

∂xi
(u+

k u+
k − u−

k u−
k ), (5.1)

ΠH = −2δui
∂

∂ri
(u−

k u+
k ). (5.2)

Here ΠI can be locally/instantaneously non-zero only in the presence of a
local/instantaneous inhomogeneity. However, it averages to zero, i.e. 〈ΠI〉 = 0, in
periodic/statistically homogeneous turbulence. Note that Π = ΠI = ΠH = 0 at r = 0.
With r-orientation averaging, the decomposition Πa = Πa

I +Πa
H is unique in the sense

that any potentially suitable (e.g. such that it equals 0 at r = 0) x-gradient term added to
ΠI vanishes after r-orientation averaging (see Alves Portela et al. 2020).

An equivalent expression for ΠI that immediately reveals where the decomposition
Π = ΠI +ΠH comes from is ΠI = δui(∂/∂ri)(u+

k u+
k + u−

k u−
k ). Given that the total

interscale transfer rate is Π = δui(∂/∂ri)(δukδuk), the ΠI part of the interscale transfer
concerns the transferred energy differences coming mostly from differences between
velocity amplitudes, i.e. local/instantaneous inhomogeneities of ‘turbulence intensity’ in
the flow; the ΠH part of the interscale transfer concerns transferred energy differences
coming mostly from differences between velocity orientations. Consistently with its link
to local/instantaneous non-homogeneity, ΠI can be written in the form (5.1) making it
clear that ΠI is zero where and when fluctuating velocity magnitudes are locally uniform.

In comparing the decompositions Π = ΠS̄ +ΠĪ and Π = ΠI +ΠH , it is worth noting
that ΠI = ΠIĪ

given that ΠIS̄
= 0 from its centroid gradient form (see (5.1)). It therefore

follows that

ΠS̄ = ΠHS̄
, (5.3)

ΠĪ = ΠI +ΠHĪ
. (5.4)

The inhomogeneity-based interscale transfer rate influences only the irrotational part of the
total interscale transfer rate whereasΠH influences both the irrotational and the solenoidal
parts. As 〈ΠI〉 = 0 and 〈ΠĪ〉 = 0, it follows that 〈ΠHĪ

〉 = 0. More to the point, 〈ΠS̄〉 equals
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Figure 16. (a– f ) The PDFs of Π decompositions (Π,ΠHĪ
,ΠS̄,ΠĪ,ΠH,ΠI) at 〈Reλ〉t = 112. Here σΠa

denotes the standard deviation of Πa and Pmax denotes the maximum value of the PDF of Πa. The
inhomogeneity and homogeneity interscale transfer rates ΠI and ΠH are defined in (5.1)–(5.2) and the
irrotational part of the homogeneity interscale transfer rate ΠHĪ

in (5.4).

〈ΠHS̄
〉 and so (3.28) reduces to

〈Π〉 = 〈ΠHS̄
〉 = 〈Dr,ν〉 − 〈ε〉 + 〈I〉. (5.5)

The part of the interscale transfer rate that is present in the average interscale
transfer/cascade dynamics is in fact ΠHS̄

.
Given that the average interscale transfer is controlled by ΠHS̄

= ΠS̄, it is worth asking
whether the well-known negative skewness of the probability density function (PDF)
of Πa (see, e.g. Yasuda & Vassilicos (2018) and references therein) is also present in
the PDF of Πa

S̄
or/and whether it is spread across different terms of our two interscale

transfer rate decompositions. In figure 16 we plot the PDFs of Πa and of the different
r-orientation-averaged terms in the decompositions of Π that we use. It is clear that the
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Figure 17. Skewness factors for KHMH terms Q listed on top of (a): (a) 〈Reλ〉t = 112, (b) 〈Reλ〉t = 174.

PDFs of Π and ΠS̄ are nearly identical whilst the PDFs of ΠH are different though
also negatively skewed. The PDFs of ΠHĪ

, ΠĪ and ΠI are not significantly skewed. In
figure 17 we plot the skewnes factors of the various interscale transfer terms as well as
some other KHMH terms. The inhomogeneity interscale transfer ΠI has close to zero
skewness across scales. Both ΠS̄ and ΠH are negatively skewed, the former more so than
the latter. Given (5.3)–(5.4) and ΠH = ΠS̄ +ΠHĪ

, this difference in skewness factors is
due to the irrotational part ofΠH that is not significantly skewed and reduces the skewness
of ΠH relative to that of ΠS̄. All in all, the skewness towards forward rather than inverse
interscale transfers is present in its homogeneous and solenoidal components but is absent
in its non-homogeneous and irrotational parts.

Figure 17 also shows that At + TS̄ is slightly positively skewed with flatness factors of
approximately 0.5 at scales rd ≥ 〈λ〉t and close to 0 or below at scales below 〈λ〉t. The
skewness factor of −ΠS̄ with which At + TS̄ is very well correlated (as we have seen in
the previous section) is about the same at scales close to the integral scale but steadily
increases to values well above 0.5 as r decreases, reaching nearly 6.0 at scales close to
0.5〈λ〉t. This is a concrete illustration of the fact already mentioned earlier in this paper
that At + TS̄ ≈ −ΠS̄ is a very good approximation for most locations and most times but
not all. Given the very significantly increased correlation/anti-correlation of ΠS̄ with both
D and ε at relatively intense forward/inverse interscale transfer events and with decreasing
scale rd, it is natural to expect the skewness factor of ΠS̄ to veer towards the skewness
factors of D and −ε which, as can be seen in figure 17, are highly negative with values
between −3.0 and −7.0.

5.2. Correlations
We now consider the local/instantaneous relations between the various interscale transfer
terms in terms of correlation coefficients plotted in figure 18(a). First, note the very
strong correlation between Π and ΠS̄ and the moderate correlation between Π and ΠĪ .
Even though Π and ΠS̄ are highly correlated, we cannot ignore ΠĪ and cannot write
Π ≈ ΠS̄. As seen earlier in the paper, we cannot ignore ΠĪ because it is the part of the
interscale transfer that balances the pressure term, but we have also seen that the fluctuation
magnitude of ΠS̄ is significantly higher than the fluctuation magnitude of ΠĪ . However,
even if smaller, the fluctuation magnitude of ΠĪ is not negligible. There is no correlation
between ΠS̄ and ΠĪ (see figure 18b), and so Π correlates with both ΠS̄ (strongly) and ΠĪ
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Figure 18. Correlation coefficients between various Π decompositions (Q1,Q2) listed on top of the figures
at 〈Reλ〉t = 112. (Corresponding plots for 〈Reλ〉t = 174 are omitted because they are very similar.)

(moderately) for different independent reasons. Here Π feels the influence of solenoidal
vortex stretching/compression via ΠS̄ and the influence of pressure fluctuations via ΠĪ ,
the former influencing Π more than the latter.

Figure 18(a) also shows significantly smaller correlations between Π and ΠH than
betweenΠ andΠS̄. This must be due to a decorrelating effect ofΠHĪ

asΠH = ΠS̄ +ΠHĪ
.

The correlations between Π and ΠI are even smaller at the smaller scales but at integral
size scales these correlations are equal to those between Π and ΠH (figure 18a).

Figure 18(b) reveals a strong anti-correlation between ΠI and ΠH at the small scales
and a weak one at the large scales. As the scales decrease, the interscale transfers of
fluctuating velocity differences caused by local/instantaneous non-homogeneities and the
interscale transfers of fluctuating velocity differences caused by orientation differences get
progressively more anti-correlated. This anti-correlation tendency results in ΠH and ΠI
having larger fluctuation magnitudes than Π at smaller scales, in particular scales smaller
than 〈λ〉t (verified with our DNS data but not shown here for economy of space).

The other significant correlations revealed in figure 18(b) are those between ΠH and
ΠS̄ and those between ΠI and ΠS̄, particularly as rd increases from around/below 〈λ〉t to
the integral length scale. These correlations relate to the very strong correlations between
Π and ΠS̄ but are weaker. One can imagine that ΠS̄ correlates with ΠH sometimes and
with ΠI some other times, but not too often with both given that ΠI and ΠH tend to
be anti-correlated, and that this happens in a way subjected to a continuously strong
correlation between Π = ΠH +ΠI and ΠS̄.

We finally consider in figure 19 the average contributions of the various
Π -decomposition terms conditional on relatively rare intense Π events. We calculate
averages conditioned on 5 % most negative (forward transfer) ΠS̄ events (values of ΠS̄
for which the probability that ΠS̄ is smaller than a negative value ΠS̄0.05

is 0.05) and on
5 % most positive ΠS̄ (inverse transfer) events (values ofΠS̄ for which the probability that
ΠS̄ is larger than a positive value ΠS̄0.95

is also 0.05). All these averages tend to 0 as rd
tends to 0 below 〈λ〉t. The largest such conditional averages are those of Π ′ followed by
those of Π ′

S̄
. This is the forward-skewed part of the interscale transfer (in terms of PDFs)

and it is dominant at both forward and backward intense interscale transfer events. The
weakest such conditional averages are those of ΠĪ for all rd and both forward and inverse
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Figure 19. Average values of Π decompositions conditioned on (a) intense backward events, (b) intense
forward events at 〈Reλ〉t = 112. The top of (a) lists the Π decompositions. (Corresponding plots for 〈Reλ〉t =
174 are omitted because they are very similar.)

extreme interscale transfer events. This is consistent with our observation in § 3.4 that the
unconditional fluctuation magnitude of ΠĪ is smaller than the unconditional fluctuation
magnitudes of Π followed by those of ΠS̄.

The most interesting point to note in figure 19, however, is the difference between
conditional averages ofΠ ′

H andΠI when conditioned on intense forward or intense inverse
interscale transfer events. Whilst the conditional averages of these two quantities are about
the same at intense inverse events, they differ substantially at forward transfer events where
the conditional average of −Π ′

H is substantially higher than the conditional average of
−ΠI except close to the integral length scale.

6. Conclusions

The balance between space–time-averaged interscale energy transfer rate on the one hand
and space–time-averaged viscous diffusion, turbulence dissipation rate and power input on
the other does not represent in any way the actual energy transfer dynamics in statistically
stationary homogeneous/periodic turbulence. In this paper we have studied the fluctuations
of two-point acceleration terms in the NSD equation and their relation to the various terms
of the KHMH equation. We now give a point-by-point summary of our results on KHMH
dynamics (A), conditional KHMH dynamics (B) and inhomogeneity and homogeneity
contributions to the interscale transfer rate (C).

A1. The various corresponding terms in the NSD and KHMH equations behave
similarly relative to each other because the two-point velocity difference has a
similar tendency of alignment with each one of the acceleration terms of the NSD
equation (see figure 8).

A2. The terms in the two-point energy balance that fluctuate with the highest
magnitudes are A′

c followed closely by the time-derivative term At and the
solenoidal interspace transfer rate TS̄. The fluctuation intensity of At + TS̄ is
much reduced by comparison to both these terms (two-point sweeping) and is
comparable to the fluctuation intensity of the solenoidal interscale transfer rate.
The solenoidal interscale transfer rate, which averages according to (3.28), does
not fluctuate with viscous diffusion and/or turbulence dissipation with which it
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is negligibly correlated at scales larger than 〈λ〉t and rather weakly correlated at
scales smaller than 〈λ〉t. Its fluctuation magnitude is also significantly larger than
that of Dr,ν , −ε and I at all scales (see figure 6 for KHMH magnitude results).
Instead, the solenoidal interscale transfer rate fluctuates with At + TS̄ with which it
is extremely well correlated at length scales larger than 〈λ〉t and very significantly
correlated at length scales smaller than 〈λ〉t (see KHMH correlation results in
figure 9).

A3. In fact, for scales larger than 〈λ〉t, the relation

At + TS̄ +Π ′
S̄ ≈ 0, (6.1)

is a good approximation for most times and most locations in the flow. Here
At + TS̄ can be viewed as a Lagrangian time rate of change of |δu|2 moving
with (u+ + u−)/2. As more than average |δu|2 is cascaded from larger to smaller
scales at a particular location (Π ′

S̄
< 0), At + TS̄ increases; and as more than

average |δu|2 is inverse cascaded from smaller to larger scales (Π ′
S̄
> 0), At + TS̄

decreases (see § 4.1). The relatively rare space–time events that do not comply
with this relation are responsible for the different skewness factors of the PDFs of
At + TS̄ (small, mostly positive, skewness factor) and of Π ′

S̄
(negative skewness

factor reaching increasingly large negative values with decreasing scale).
A4. As the length scale (i.e. two point separation length) decreases, the correlation

between At and −TS̄ increases and so do their fluctuation magnitudes relative to
the fluctuation magnitude of Π ′

S̄
that reaches to be an order of magnitude smaller

by comparison. In this limit, the correlation between At and −ΠS̄ decreases. At
length scales smaller than 〈λ〉t the correlation between At and −TS̄ is extremely
good indicating a tendency towards two-point sweeping. However, the correlation
between At + TS̄ and Π ′

S̄
remains strong even if reduced from its near perfect

values at length scales larger than 〈λ〉t and there remains a small difference of
fluctuation magnitudes between At and TS̄ that is mostly related to the small
fluctuation magnitude of Π ′

S̄
. At the other end of the length scale range, i.e. as the

length scale tends towards the integral scale and larger, the fluctuation magnitudes
of TS̄ and Π ′

S̄
tend to become the same (the scatter plots in figures 11 and 12

evidence these behaviours).
A5. The irrotational part of the interscale transfer rate has zero spatio-temporal average

but is exactly equal to the irrotational part of the interspace transfer rate and half the
two-point pressure work term in the KHMH equation. A complete dynamic picture
of the interscale transfer rate needs to also take this into account, even though the
fluctuation magnitudes of these irrotational terms are smaller than those of the
terms discussed in the previous paragraph. In fact, the exact relation ΠĪ = TĪ =
1
2Tp explains the significant correlation between interscale transfer rate Π and Tp
reported by Yasuda & Vassilicos (2018).

B1. The increase towards small correlations at length scales below 〈λ〉t between ΠS̄
and both Dr,ν and −ε is accountable to the significant correlations between these
terms at these viscous scales when conditioned on relatively rare intenseΠS̄ events,
both forward cascading events with negative values of ΠS̄ of high magnitude and
backward cascading events with positive values of ΠS̄ of high magnitude. The
choice of ΠS̄ to identify relatively rare intense events is predicated on the fact
that the PDFs of ΠS̄ are negatively skewed similarly to the PDFs of Π , whereas
the PDFs of ΠĪ are not (the interscale transfer PDFs are given in figure 16).
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The solenoidal part of the interscale transfer rate derives from the integrated
two-point vorticity equation and includes non-local vortex stretching/compression
effects at all scales whereas the irrotational part of the interscale transfer rate
derives from the integrated Poisson equation for two-point pressure fluctuations
(see Appendix C for mathematical details).

B2. At these relatively rare intense interscale transfer rate events, the tendency
for two-point sweeping may appear increased because of the extremely good
conditional correlation between At and −TS̄ at all length scales; however, At and
−TS̄ also have very significantly different average values given the high absolute
values of ΠS̄ at these relatively rare interscale transfer events (see figures 13
and 14). This implies that there is neither local/instantaneous sweeping nor
local/instantaneous balance between ΠS̄ and D or ΠS̄ and −ε at these relatively
rare intense events, a conclusion confirmed by the observation that the conditional
averages and the conditional fluctuation magnitudes of ΠS̄ are much higher than
those of D and −ε in absolute values.

B3. Another property of these relatively rare intense solenoidal interscale transfer
rate events is that the conditional averages of solenoidal interscale and interspace
transfer rates have opposite signs when sampling on these events (see figure 15).
There is therefore a relation between them that may however be concealed by the
fact that the fluctuation magnitudes of the interspace transport rate are higher than
those of the interscale transfer rate.

C1. We have also considered the decomposition into homogeneous and inhomogeneous
interscale transfer rates recently introduced by Alves Portela et al. (2020) (see
(5.1) and (5.2)) and have studied their fluctuations in statistically stationary
homogeneous turbulence. The PDFs of the homogeneous interscale transfer
rate are skewed towards forward cascade events whereas the PDFs of the
inhomogeneous interscale transfer rate are not significantly skewed. However, the
skewness factors of the PDFs of the homogeneous interscale transfer rate are not as
high as those of both the full and the solenoidal interscale transfer rates. Relating
to this, Π is highly correlated with ΠS̄ more than with ΠĪ , ΠH and ΠI with all of
which Π is, nevertheless, significantly correlated.

C2. There is an increasing correlation between ΠI and −ΠH as the length scale
decreases, in particular below 〈λ〉t where it reaches values above 0.6 (see
figure 18). The interscale transfer of velocity difference energy caused by local
inhomogeneities in fluctuating velocity magnitudes tends to cancel the interscale
transfer of fluctuating velocity difference energy caused by misalignments between
the two neighbouring fluctuating velocities, in particular at length scales below
〈λ〉t. As a result, the fluctuation magnitudes of Π are smaller than those of both
ΠI and −ΠH .

C3. Finally, the decomposition Π = ΠI +ΠH can be used to physically distinguish
between intense forward and intense inverse interscale transfer events. The
averages of Π ′

H and ΠI when conditioned on intense inverse interscale transfer
events are about the same, but they differ substantially when conditioned on
intense forward interscale transfer events where the conditional average of −Π ′

H
is substantially higher than the conditional average of −ΠI except close to the
integral length scale (see figure 19).

Future subgrid scale models for LES that are dynamic reduced-order approaches
to turbulent flows and their fluctuating large scales cannot rely on average cascade
phenomenology describing spatio-temporal averages and should benefit from detailed
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descriptions of the fluctuating dynamics of interscale and interspace energy transfers such
as the one presented in this paper. Whilst LES models based on local equilibrium such
as the Smagorinsky model can reproduce structure function exponents and correlations
between velocity increments and subgrid-scale energy transfers as shown by Linkmann,
Buzzicotti & Biferale (2018), Dairay et al. (2017) have found that the Smagorinsky model
is unable to suppress small-scale spurious oscillations arising from numerical errors.
Furthermore, the recent review by Moser, Haering & Yalla (2021) makes it clear that
the need for new subgrid models that can faithfully operate with coarse resolutions
remains unanswered. The results in the present paper suggest that LES models based on
local equilibrium (e.g. the Smagorinsky model) cannot be fully suitable for calculating
fluctuations in subgrid stresses, a weakness that may become increasingly evident with
coarser resolution. On the other hand, the good correlations between subgrid stresses
from similarity models (Bardina, Ferziger & Reynolds 1980; Cimarelli, Abbà & Germano
2019) and subgrid stresses from DNS suggest that these models might indeed approximate
(unawarely) at least some of the cascade dynamics reported in this paper, for example,
the fact that At + TS̄ +Π ′

S̄
≈ 0 holds in most of the flow most of the time. This

relation incorporates both forward and backward interscale transfers, yet a recent work
by Vela-Martín (2022) argues that backscatter represents spatial fluxes and can therefore
be ignored. It is not yet clear how such a claim can be understood in the context of the
present paper’s results. Some new questions are therefore now raised concerning LES
subgrid stress modelling that also need to be addressed in future work.
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Appendix A. The Helmholtz decomposition in Fourier space

In this appendix we list the Helmholtz decomposition for periodic fields and note how this
decomposition relates to the more general solution of the Helmholtz decomposition in the
case of incompressible fields and fields that can be written as gradients of scalar fields.

Let q(x, t) be a periodic, twice continuously differentiable three-dimensional vector
field with the Helmholtz decomposition q(x, t) = qI(x, t)+ qS(x, t), where qI(x, t) =
−∇xφ(x, t), qS(x, t) = ∇x × B(x, t). The scalar and vector potentials φ and B are unique
within constants when ∇x · q and ∇x × q are known in the domain and q is known at the
boundary (Bhatia et al. 2013). Here q(x, t) has the Fourier representation q̂(k, t), which
can be decomposed into a component parallel to k (the longitudinal q̂L) and transverse to
k (the transverse q̂T),

q̂L(k, t) = k[q̂(k, t) · k]
k2 , q̂T(k, t) = q̂(k, t)− q̂L(k, t). (A1a,b)
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Spatio-temporal fluctuations of energy transfer dynamics

It can be easily shown (see, e.g. Stewart 2012) that the irrotational part of q equals its
longitudinal part qI = qL and that the solenoidal part of q equals its transverse part qS =
qT. Hence, (A1a,b) provides the Fourier representation of the Helmholtz decomposition
of q.

The Helmholtz decomposition can also be written for very general boundary conditions
as (Sprössig 2010)

qIV(x, t) = 1
4π

∫
V

dy
x − y

|x − y|3 [∇y · q(y, t)], (A2)

qIB(x, t) = − 1
4π

∫
S

dSy
x − y

|x − y|3 [n̂y · q(y, t)], (A3)

qSV(x, t) = − 1
4π

∫
V

dy
x − y

|x − y|3 × [∇y × q(y, t)], (A4)

qSB(x, t) = 1
4π

∫
S

dSy
x − y

|x − y|3 × [n̂y × q(y, t)], (A5)

where qI = qIV + qIB, qS = qSV + qSB and n̂y denotes the unit surface normal at y and
dSy is the differential surface element at y. For periodic vector fields q(x, t) that are
incompressible or that can be written as the gradient of a scalar, this solution simplifies.
In the case of a field q(x, t) that is incompressible ∇x · q(x, t) = 0, it can be shown
that q̂(k, t) · k = 0 for every k (Pope 2000). By inspection of (A1a,b), it is clear that
this condition yields q̂L(k, t) = 0 for every k such that q̂(k, t) = q̂(k, t)T. By applying
the Fourier transform to this relation and applying qT(x, t) = qS(x, t) from above, we
have q(x, t) = qS(x, t) for incompressible periodic vector fields. In the case of q(x, t) =
∇xψ(x, t), where ψ(x, t) is some scalar field, it can be shown that q̂(k, t) = ikψ̂(k, t)
(Pope 2000). If we insert this expression into the definition of q̂L(k, t), it follows that
q̂(k, t) = q̂L(k, t), which implies that q(x, t) = qI(x, t). If these properties are combined
with (A2)–(A5), we have that a periodic incompressible vector field will have qIB = qIV =
0 and that a periodic vector field that can be written as a gradient of a scalar field has
qSB = qSV = 0.

Appendix B. Irrotational and solenoidal NSD transport terms in Fourier space

We start this appendix with demonstrating that δqI = δqĪ and δqS = δqS̄ for a periodic
vector field q (see the second paragraph of § 3.3). The field q has the Fourier representation

q(x, t) =
∑

k

q̂(k, t) exp(ik · x), (B1)

with the shifted fields

q+(x, r, t) = q(x + r/2, t) =
∑

k

q̂(k, t) exp(ik · (x + r/2)), (B2)

q−(x, r, t) = q(x − r/2, t) =
∑

k

q̂(k, t) exp(ik · (x − r/2)), (B3)

which have the Fourier coefficients

q̂+(k, r, t) = q̂(k, t) exp(ik · r/2), (B4)

q̂−(k, r, t) = q̂(k, t) exp(−ik · r/2). (B5)
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From the definition of the irrotational part of a vector field in (A1a,b), it follows that

δqI(x, r, t) = q+
I (x, r, t)− q−

I (x, r, t), (B6)

=
∑

k

[q̂+
I (k, r, t)− q̂−

I (k, r, t)] exp(ik · x), (B7)

=
∑

k

k
k2 [q̂(k, t) · k](exp(ik · r/2)− exp(−ik · r/2)) exp(ik · x), (B8)

=
∑

k

k
k2 [q̂(k, t) · k]2i sin(k · r/2) exp(ik · x). (B9)

Similarly, we can write

δq(x, r, t) = q+(x, r, t)− q−(x, r, t), (B10)

=
∑

k

q̂(k, t)2i sin(k · r/2) exp(ik · x), (B11)

and then calculate its irrotational centroid part

δqĪ(x, r, t) =
∑

k

k
k2 [q̂(k, t) · k]2i sin(k · r/2) exp(ik · x), (B12)

which shows that δqI(x, r, t) = δqĪ(x, r, t). By combining this with δq = δqI + δqS =
δqĪ + δqS̄, we also have δqS(x, r, t) = δqS̄(x, r, t), which is what we wanted to show.

Next we demonstrate that aΠĪ
(k, r, t) = aTĪ

(x, r, t) in homogeneous/periodic turbulence.
We list the following expressions for the vectors and tensors related to these two terms:

δ̂uj(k, r, t) = 2i sin(k · r/2)ûj(k, t), (B13)

̂(u+
j + u−

j )/2(k, r, t) = cos(k · r/2)ûj(k, t), (B14)

∂̂δui

∂rj
(k, r, t) = ikj cos(k · r/2)ûi(k, t), (B15)

∂̂δui

∂xj
(k, r, t) = −2kj sin(k · r/2)ûi(k, t). (B16)

By use of these equations, the Fourier coefficients of the transport terms read

âT (k, r, t) =
∑

k=k′+k′′
−2 sin(k′′ · r/2) cos(k′ · r/2)ûj(k′)k′′

j û(k′′), (B17)

âΠ(k, r, t) =
∑

k=k′+k′′
−2 sin(k′ · r/2) cos(k′′ · r/2)ûj(k′)k′′

j û(k′′). (B18)

Their irrotational parts are given per (A1a,b),

âTĪ
(k, r, t) = − k

k2

∑
k=k′+k′′

2 sin(k′′ · r/2) cos(k′ · r/2)ûj(k′)k′′
j ûl(k′′)k′

l, (B19)

âΠĪ
(k, r, t) = − k

k2

∑
k=k′+k′′

2 sin(k′ · r/2) cos(k′′ · r/2)ûj(k′)k′′
j ûl(k′′)k′

l. (B20)
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Spatio-temporal fluctuations of energy transfer dynamics

If we employ the trigonometric identity sin x cos y = 1
2 [sin(x + y)+ sin(x − y)], we get

âTĪ
(k, r, t) = − k

k2

∑
k=k′+k′′

[sin(k · r/2)+ sin(k′′ · r/2 − k′ · r/2)]ûj(k′)k′′
j ûl(k′′)k′

l,

(B21)

âΠĪ
(k, r, t) = − k

k2

∑
k=k′+k′′

[sin(k · r/2)− sin(k′′ · r/2 − k′ · r/2)]ûj(k′)k′′
j ûl(k′′)k′

l.

(B22)

Consider the term sin(k′′ · r/2 − k′ · r/2)ûj(k′)k′′
j ûl(k′′)k′

l. If one adds this term with the
wavenumber triad k′ = ka and k′′ = kb /= ka with the same term with the wavenumber
triad k′ = kb and k′′ = ka, the result is zero. Furthermore, in the case of ka = kb this term
is zero per incompressibility. This yields that this term does not contribute instantaneously
in the above expressions such that we attain the final result (see § 3.3 and (3.22))

âTĪ
(k, r, t) = âΠĪ

(k, r, t) = − k
k2 sin(k · r/2)

∑
k=k′+k′′

ûj(k′)k′′
j ûl(k′′)k′

l. (B23)

Appendix C. Irrotational and solenoidal dynamics in non-homogeneous turbulence

Here we deduce the generalized Tsinober equations and the irrotational and solenoidal
NSD and KHMH equations applicable to non-homogeneous turbulence. Consider the
twice continously differentiable vector field q(x, t) defined on a domain V ⊆ R3 with
the bounding surface S. This field can be uniquely decomposed into the irrotational and
solenoidal vector fields

q(x, t) = qI(x, t)+ qS(x, t) = −∇xφ(x, t)+ ∇x × B(x, t). (C1)

The solution to this problem under very general conditions (Sprössig 2010) is qI = qIV +
qIB and qS = qSV + qSB, where the solenoidal and irrotational volume and boundary terms
are given in (A2)–(A5).

Consider an incompressible fluid that satisfies the incompressible vorticity equation

∇y ×
(
∂u
∂t

+ u · ∇yu − ν∇2
y u − f

)
= 0. (C2)

By comparing this equation with (A4), it is clear that the vorticity equation can be used
to derive an evolution equation for the solenoidal volume parts of the NS terms. We can
apply the following operator to this equation:

− 1
4π

∫
V

dy
x − y

|x − y|3 ×
[
∇y ×

(
∂u
∂t

+ (u · ∇y)u − ν∇2
y u − f

)]
= 0. (C3)

Using (A4), we rewrite (C3) as
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∂u
∂t

)
SV

+ (u · ∇xu)SV = (ν∇2
xu)SV + f SV . (C4)

We can in a similar manner obtain the evolution equation for the irrotational volume NS
terms from the Poisson equation for pressure

1
4π

∫
V

dy
x − y

|x − y|3
[
∇y ·

(
u · ∇yu + 1

ρ
∇yp − f

)]
= 0, (C5)

which yields

(u · ∇xu)IV =
(

− 1
ρ

∇xp
)

IV
+ f IV . (C6)

Equations (C4) and (C6) state that in all incompressible turbulent flows, the solenoidal
accelerations from volume contributions balance with solenoidal forces from volume
contributions and irrotational accelerations from volume contributions balance with
irrotational forces from volume contributions. The former can be viewed as an integrated
vorticity equation which dictates a part of the solenoidal NS dynamics, while the latter
equation as an integrated pressure Poisson equation that dictates a part of the irrotational
NS dynamics. Due to the non-local character of the solenoidal and irrotational volume
terms, we reformulate these equations in terms of a full NS term minus boundary terms,
e.g. for the time derivative (∂u/∂t)SV = ∂u/∂t − (∂u/∂t)IB − (∂u/∂t)SB. The irrotational
volume component (see (A2)) involves an integral of the divergence of the respective term
(∇y · q(y)). Thus, due to incompressibility, the time derivative and viscous terms have
zero volume irrotational components, (∂u/∂t)IV = (ν∇2

xu)IV = 0. The solenoidal volume
component (see (A4)) involves an integral of the curl of the respective term, and as the
curl of the pressure gradient equals zero, this term will have a zero solenoidal volume
component, (−(1/ρ)∇xp)SV = 0. We rewrite the solenoidal volume terms in (C4) in terms
of combinations of full terms and boundary terms to obtain

∂u
∂t

+ ((u · ∇x)u)S = ν∇2
xu + f S

+
(
∂u
∂t

)
IB

− (ν∇2
xu)IB +

(
∂u
∂t

)
SB

+ ((u · ∇x)u)SB − (ν∇2
xu)SB − f SB, (C7)

where the sum of the four rightmost terms on the right-hand side equals (−(1/ρ)∇xp)SB
as the NS equations are satisfied at the boundary. By using this simplification and writing
out all the boundary terms, we arrive at
∂u
∂t

+ ((u · ∇x)u)S = ν∇2
xu + f S

− 1
4π

∫
S

dSy
x − y

|x − y|3
[

n̂y·
(
∂u
∂t

− ν∇2
y u
)]

− 1
4π

∫
S

dSy
x − y

|x − y|3 ×
[

n̂y × ∇y
1
ρ

p
]
.

(C8)
By rewriting the irrotational volume components in (C6) in terms of the full terms and the
boundary terms, we have

((u · ∇x)u)I = − 1
ρ

∇xp + f I + ((u · ∇x)u)IB −
(

− 1
ρ

∇xp
)

IB
− f IB −

(
− 1
ρ

∇xp
)

SB
,

(C9)

where the sum of the irrotational boundary terms equals −(∂u/∂t)IB + (ν∇2
xu)IB by the

NS equations at the boundary. If we use this relation and write out all boundary terms,
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Spatio-temporal fluctuations of energy transfer dynamics

we have

((u · ∇x)u)I = − 1
ρ

∇xp + f I

+ 1
4π

∫
S

dSy
x − y

|x − y|3
[

n̂y ·
(
∂u
∂t

− ν∇2
y u
)]

+ 1
4π

∫
S

dSy
x − y

|x − y|3 ×
[

n̂y × ∇y
1
ρ

p
]
.

(C10)

Equations (C8) and (C10) are generalizations of (3.4)–(3.5) for homogeneous/periodic
turbulence and these equations are valid for all incompressible turbulent flows. The
difference from homogeneous/periodic turbulence is the collection of boundary terms

R(x, t) ≡ 1
4π

∫
S

dSy
x − y

|x − y|3
[

ny ·
(
∂u
∂t

− ν∇2
y u
)]

+ 1
4π

∫
S

dSy
x − y

|x − y|3 ×
[

ny × ∇y
1
ρ

p
]
, (C11)

= −(al)IB + (aν)IB − (ap)SB, (C12)

which yields the final expressions for the general irrotational and solenoidal NS equations

∂u
∂t

+ ((u · ∇x)u)S = ν∇2
xu + f S − R(x, t), (C13)

((u · ∇x)u)I = − 1
ρ

∇xp + f I + R(x, t). (C14)

In homogeneous/periodic turbulence all the boundary terms in R(x, t) equal zero
individually (see the last paragraph of Appendix A), such that we recover (3.4)–(3.5).
In general, the boundary terms will be non-zero and differ in different flows, e.g. at a solid
wall the boundary term from the time derivative will vanish because of no-slip and the NS
equations at the wall can be used to rewrite the boundary terms as a non-local function of
the pressure gradient only.

The NSD irrotational and solenoidal equations in general turbulent flows are obtained
by subtracting the solenoidal and irrotational NS equations (C13) and (C14) at x − r/2
from the same equations at x + r/2,

∂δu
∂t

+ δacS = δaν + δf S − δR, (C15)

δacI = − 1
ρ

∇xδp + δf I + δR. (C16)

The rephrasing of the irrotational and solenoidal NSD equations in terms of the interscale
and interspace transport terms can also be performed for non-homogeneous turbulence.
We derive the centroid irrotational and solenoidal NSD equations similarly as for the NS
irrotational and solenoidal equations by starting with the NSD equation (3.9). This yields
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the equations

δal + aTS̄
+ aΠS̄

= δaν + δf S̄ − R̄, (C17)

aTĪ
+ aΠĪ

= δap + δf Ī + R̄, (C18)

where

R̄(x, r, t) ≡ 1
4π

∫
S

dSy
x − y

|x − y|3 [n̂y · (δal − δaν)] − 1
4π

∫
S

dSy
x − y

|x − y|3 × [n̂y × δap],

(C19)

= −(δal)IB + (δaν)IB − (δap)SB. (C20)

These boundary terms are individually equal to zero in homogeneous/periodic turbulence
for the analogue reason as for the NS dynamics. Regarding the irrotational dynamics, in
general, aTĪ

/= aΠĪ
, but the irrotational volume terms are always equal, (aT )IV = (aΠ)IV

from (A2) and

∇x · aΠ = ∇x · aT = 1
2

(
∂u+

k

∂x+
i

∂u+
i

∂x+
k

− ∂u−
k

∂x−
i

∂u−
i

∂x−
k

)
. (C21)

The solenoidal interscale transfer term aΠS̄
in non-homogeneous turbulence can be

written as

aΠS̄
(x, r, t) = − 1

4π

∫
V

dy
x − y

|x − y|3 × [∇y × aΠ(y, r, t)]

+ 1
4π

∫
S

dSy
x − y

|x − y|3 × [n̂y × aΠ(y, r, t)], (C22)

where the surface integral is of a smaller order of magnitude than the volume integral
away from boundaries and increasingly so with increasing 〈Reλ〉t (verified in our periodic
DNS). Hence, for a qualitative interpretation of aΠS̄

, we consider aΠS̄
≈ aΠSV

with

(∇x × aΠ)i = δuk
∂δωi

∂rk
− δωk

2

s+
ij + s−

ij

2
− ω+

k + ω−
k

4
δsij

+ εijk

2

[
∂u+

l

∂x+
j

∂u−
k

∂x−
l

− ∂u−
l

∂x−
j

∂u+
k

∂x+
l

]
, (C23)

where sij is the strain-rate tensor and εijk is the Levi-Civita tensor. This set of terms
constitutes a part of the nonlinear term in the evolution equation for the vorticity difference
δω(x, r, t), i.e. vorticity at scales |r| and smaller, as ∇x × δac = ∇x × (aΠ + aT ). If
one contracts (C23) with 2δω, the right-hand side corresponds to nonlinear terms that
determine the evolution of the enstrophy |δω|2 at scales smaller or comparable to |r|. We
interpret the first term on the right-hand side of (C23) as vorticity interscale transfer. By
the connection to |δω|2, we interpret the second and third terms as related to the enstrophy
production/destruction at scales smaller or comparable to |r| due to interactions between
the vorticity and strain fields. These three terms justify the interpretation of aΠS̄

being
related non-locally in space to vortex stretching and compression dynamics. The last term
in (C23) appears in ∇x × aTSV

with a negative sign such that these terms cancel.
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The exact solenoidal and irrotational KHMH equations follow from contracting (C17)
and (C18) with 2δu,

At + TS̄ +ΠS̄ = Dr,ν + DX,ν − ε + IS̄ − 2δu · R̄, (C24)

TĪ +ΠĪ = Tp + IĪ + 2δu · R̄, (C25)

where TIV = ΠIV . This shows that the solenoidal and irrotational KHMH equations
can be extended to non-homogeneous turbulence. In contrast to homogeneous/periodic
turbulence, in general, boundary terms couple the irrotational and solenoidal dynamics.
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