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ON THE DYNAMICS OF A PERIODIC DELAY
LOGISTIC EQUATION WITH DIFFUSION

K. GOPALSAMY, PEI-XUAN WENG

Sufficient conditions are obtained for the existence of a globally attractive positive
periodic solution of the periodic diffusive delay logistic system

dN{x, t) _ ^d'Njx.t) ,
dt ~U dx* "*

0< a: < *, t > 0

in which r and K are positive periodic functions of period r, n is a positive
integer and D is a nonnegative number; sufficient conditions are also obtained for
all positive solutions to be oscillatory about the periodic solution.

1. INTRODUCTION

In a recent article, Zhang and Gopalsamy [34] have studied the periodic delay
logistic equation

where r, K are positive continuous periodic functions of period r ^ 0 and n is a pos-
itive integer. In the following we are concerned with an investigation of the asymptotic
and oscillatory behaviour of the solutions of the initial boundary value problem

* € ( 0 , / ) ,

( 1 3 ) = = ( , ( > n T i

(1.4) N{x, s) = <t>{x, s) > 0, xe[0,l], . e [ - i > T , 0 ] ;
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114 K. Gopalsamy and P-X. Weng [2]

in which <j> is a positive function assumed to be sufficiently smooth to guarantee the
existence of classical solutions of the boundary value problem (1.2) -(1.3). When r = 0,
the equation (1.2) becomes an autonomous equation which has been known as Fisher's
equation and there exists an extensive literature on such an autonomous equation.
When the diffusion term is absent in (1.2) and r and K are positive constants, the
equation (1.2) is also known as Hutchinson's [9] equation whose mathematical analysis
can be found in the works of Wright [29], Kakutani and Markus [13] and Jones [10].

We note that autonomous equations of the type (1.2) - (1.3) have been discussed by
several authors (Yoshida [31], Lin and Khan [18], Yoshida and Khisimoto [32], Yamada
[30], Green and Stech [8], Cohen and Rosenblatt [4], Murray [22], Memory [20], Morita
[21], Luckhaus [19], Redlinger [25], Tesei [27] and Schiaffino [26]). The results of these
authors are not concerned with periodic solutions and mostly are concerned with the
instability of the positive equilibrium of the autonomous equations such as (1.2) in
which r and K are positive constants. Our purpose of study of (1.2) - (1.4) is to
derive sufficient conditions for all solutions of (1.2) - (1.4) to "converge" to the unique
positive "periodic solution" whose existence will be established in the next section.
The existence of periodic solutions of semilinear parabolic partial differential equations
(with no time delays) has been usually established by fixed point methods (see for
instance Amann [1] and Kolesov [14]). We refer to Vejvoda [28] for an extensive
bibliography on time-periodic solutions of partial differential equations; we note that
stability characteristics of these periodic solutions have scarcely been discussed in the
existing literature. Our interest in the periodic parabolic system (1.2) - (1.3) has arisen
from the potential applications of (1.2) - (1.3) in modelling the spatial spread of a
population density in a temporally periodic environment.

In population dynamics, N(x, t) of (1.2) denotes the density of a population and so
we will be interested only in the nonnegative solutions of (1.2) - (1.4). The homogeneous
Neumann boundary conditions (1.3) mean that the species is confined to the linear
habitat [0, £] and cannot cross the boundaries to move to the outside of the habitat.
It is not obvious that nontrivial solutions of (1.2) - (1.4) will remain nonnegative so
long as they exist; we shall briefly discuss this aspect. Suppose for instance there exists
a point (x0, t0), to ^ 0, x0 G [0,1} where N(x0, to) < 0. For (x, t) £ E - {{x, t) \

(x, t) e [0, £] x [0, t0]}, we define m\ by the following:

(1.5) mx(x, t) = N{x, t)e~xt

in which A > 0 will be chosen suitably. It follows from (1.2) that
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Then (1.6) becomes

L[mx] + hx(x, t)mx = 0.

We can now choose A large enough so that

hx(x, t) < 0, for (x, t) e E .

Since m\[xo, to) < 0, by continuity of TO* on E, m\ must have a negative minimum
in E at say (a;*, t*). Hence by the parabolic maximum principle [24, p.173], we know
(x*, t*) $ E — {(x, t) | 0 < x < I, 0 < t ^ t 0} since otherwise,

m*(x, t) = constant for (x, <) G [0, £] X [0, t*]

which is impossible from (1.5) and (1.6). From the initial condition (1.4), we have

(x*, t*) i Eo where Eo = {(x, t) | 0 < x < £, t = 0};

hence (x*, t*) must belong to the boundary F of E where

r = {(x, t) | 0 < t < t0, x = 0, x = i}.

Let us suppose that x* = 0 and m\(0, t*) is a negative minimum of m\ on £ . But
we have from the homogeneous Neumann boundary condition for N that

dmx(0, t») = Q

= Q

dx
The slope of the curve m\(x, t*) is nondecreasing at (0, t*) and the curvature of the
curve m\(x, t*) is either concave upward or horizontal when x 6 [0, S) for some 5 > 0
with t* fixed; as a consequence, for any e > 0 we can find a Se > 0 such that

, f ) > 0 ftn^, I*)( 1 ? ) > 0> ^ < £ )

We note that x* = 0 and hx is negative on the closed set E and hence h\ has a
negative maximum on E. We choose a positive number eo such that

4eo=mA(x-,t*) max, (r(t) - A - r(t) N{X'J~ ^ ) •
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Then from the continuity of m\, there exists a So > 0 such that

(*,«)€£

^ 2 e 0 > for x€ (0, 60).

Let 5i = min{Jo> £«<>}• Then from (1.6) and (1.7), we derive

dmx{x, <*)
eo >

at

(1.8) ^ 2e0, * e (0, «x).

This is impossible. Thus m\ cannot have a negative minimum at x = 0. A similar
analysis can be used to show that m\ cannot have a negative minimum at x — I. Thus
m\ cannot have a negative minimum on E and this is valid for any positive to • Thus
we conclude that m\ ^ 0 for x € [0, £\ and t ^ —TIT. It now follows from (1.5) that it
is impossible for N(x, t) to become negative; thus

N(x, t) ^ 0, for x G [0,1], t > 0.

The existence of nonnegative solutions of (1.2) - (1.4) for all < > 0 can be established by
continuation using the method of steps and Green's functions (see for instance Britton
[3]). We refer to Leung [17] and Okubo [23] for applications of partial differential
equations to population biology especially population dynamics.

2. PERIODIC SOLUTION AND ITS GLOBAL ATTRACTIVITY

It has been noted by Zhang and Gopalsamy [34] that the periodic ordinary differ-
ential equation

has a unique periodic solution y* of period T , where
1 - 1

l -exp[-( r ) ]
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in which

(2.4) <r> = fr(a)da.
Jo

The solution y* has been shown earlier by Coleman [5, 6] to be a global attractor of
all positive solutions of the periodic system (2.1). The periodic solution y* of (2.1) is
also found to be a periodic solution of the periodic parabolic boundary value problem
(1.2) - (1-3). We are now interested in the derivation of sufficient conditions for all
positive solutions of (1.2) - (1.4) to converge to the spatially homogeneous positive
periodic solution y*. We note that y* is a temporally nonstationary and spatially
homogeneous equilibrium solution of (1.2) - (1.4) and our result below (Theorem 2.3)
provides sufficient conditions for the global asymptotic stability of this nonstationary
equilibrium. Our technique is based on a comparison method. The next result is
preparatory and provides a useful comparison of solutions of (1.2) - (1.3) with those of
a lumped parameter system.

THEOREM 2 . 1 . Let N denote any positive solution of (1.2) - (1.4). Let q and
p denote solutions of the following:

q(a) = min N(x, a), a 6 [—TIT, 0]

(2.6) dt

p(a) = max N(x, s), a E [-TJT, 0]

Tien N(x, t) satisfies

(2.7) q(t) ^ N(x, t) < p(t), t>0, xe[0,£\.

PROOF: We shall only show that

(2.8) N{x,t)^p(t), for t^O, x £ [0,1],

since the proof of the other part is similar. Let pe(t) denote the solution of

(2.9) "
pe(a) — max N(x, a) + e, a € [—nr, 0]

*€[0,/]
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where £ is an arbitrary positive number. It is sufficient to show that

(2.10) N(x, t) ^ p.(t), 0 0, as € [0,4

The conclusion (2.8) will then follow from (2.10) by the continuous dependence of pe

on e and we can consider e —> 0 so that

(2.11) N(x, t) K lim Pe(t) = p(t).

Suppose (2.10) does not hold; then there exists a point (xo» to), *o € [0, £], to > 0
such that

(2.12) pe(to)-N(xo,to)<O.

We consider a function MM defined by

(2.13) Mli(x,t) = \Pe(i)-N{x,t))e-'it, (x, t) 6 [0,1] x [0, t«]

where (i is a positive number to be selected suitably. By continuity of MM on [0, t] x
[0, to], the function Mp will have a negative minimum at some point say (a;,, t*) E
[0, I] x [0, t0]. From the fact that M^x, 0) > 0, it will follow that t» ^ 0. Thus
(«, , t») G [0, 1] x (0, to]. If (z,, U) € (0, t) x (0, t0] we then have

( 2 1 4 )

But by a direct calculation one can derive that Mh satisfies

(2.15)
, t) a2M,,(x, t) f r(<) .. ,

at = fa» + [ ^ o
^ ( * . *)e-M n r^(«. * - WT); * e (0, £), t e (o,

If we choose ^ sufficiently large, then one can make the right side of (2.15) positive
at (x», f,) while the left side of (2.15) stays nonpositive at (z,, i»); but this is a
contradiction. Thus z» ^ (0, ^) and hence z« — 0 or z» = £. Suppose that MM has a
local negative minimum at (0, <«); we then have from the boundary condition that

We can now proceed as in the case of m^ in the previous section to show that M^

cannot have a negative minimum at the end points of the interval (0,1). Thus M^

cannot have a negative minimum on the closed set [0,1] x [0, to] for to > 0 from which
(2.10) follows. The validity of (2.8) follows from (2.11) and this completes the proof. D

The following result has been established by Zhang and Gopalsamy [34] which we

quote in full for the convenience of the reader.
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THEOREM 2 . 2 . Assume that r and K are continuous strictly positive periodic

functions with period T > 0 such that

(2.16) n(r) =

Then the periodic logistic equation

v — >J dt - ' v w / ^ R{t)

has a unique positive periodic solution y* given by (2.2) or (2.3) and all other positive

solutions of (2.17) satisfy

(2.18) HmJ*(i)-y*(t) | = O.

The next result is one of our main results and is established by an application of
the conclusion of Theorem 2.2.

THEOREM 2 . 3 . Let D G [0, oo), r € (0, oo) and let n be a positive integer.
Let r and K denote strictly positive continuous periodic functions of period r. Then
the Neumann periodic system (1.2) - (1.3) has a unique positive periodic solution y*.
Suppose further that r and r are such that

(2.19) n(r) =

Tien all the positive solutions of (1.2) - (1-4) converge to the unique periodic spatially

homogeneous solution y* in the sense that

(2.20) Urn \N(x, t) - y*(t)\ = 0 uniformly in x G [0,1].
t—»oo

PROOF: One can note immediately that y* is a periodic solution of (1.2) - (1.3).
Let N denote any positive solution of (1.2) - (1.4). We have from Theorem 2.1 that

(2.21) q(t) < N{x, t) < p{t), z G [ 0 , 4 O O

which leads to

(2.22) q(i)-y*(i)^N(x,t)-y*(t)^p(t)-y'(t), x E [0, £], ()0.

From (2.19) and Theorem 2.2, it follows that

(2.23) p(t) - y*(t) -» 0 and q(t) - y*{t) -+ 0 as t -* co,

and hence we derive from (2.22) that

(2.24) lim \N(x, t) - y*(t)\ = 0, x G [0, i}.
t—»oo

The uniqueness of y*{t) follows from its global attractivity as a solution of (1.2). This
completes the proof. D
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3. OSCILLATIONS ABOUT THE PERIODIC SOLUTION

In the previous section, we obtained sufficient conditions for all positive solutions
of the periodic parabolic system (1.2) - (1.3) to converge to a spatially homogeneous
and temporally periodic solution. One of the worthwhile questions regarding this con-
vergence is the following: under what conditions is this convergence to periodicity
oscillatory in the following sense?

DEFINITION 3.1: A positive solution of (1.2) - (1.3) is said to be oscillatory about
the positive periodic solution y* if for every T > 0, there exists a point (x0, To) €
(0, I) x [T, oo) such that N(x0, To) = y*(T0); a solution of (1.2) - (1.3) is said to be
nonoscillatory about y* if there exists a T± > 0 such that

\N(x, t)-y*(t)\>0 for x e (0, £), t>T1.

Although oscillations in delay and functional differential equations have been pur-
sued extensively, oscillations of partial differential equations have not received much
attention; oscillations of parabolic equations have been considered before by Kreith and
Ladas [16] and Yoshida [33]. In the following we derive sufficient conditions for all
positive solutions of (1.2) - (1.3) to oscillate about the unique positive periodic solution

y*-

For convenience in the following we introduce a change of variable by the formula

(3.1) log[l + u(x, t)] = \og[N(x, t)} - \og[y*(t)]

and find that u is governed by
du(x, t) na2«(x, t)

(3-2) 0<x<l, t > 0 ;

One can note from (3.1) that oscillation of N about y* is equivalent to that of u about

0 or simply oscillation of u.

The oscillation of the lumped parameter system corresponding to (3.2), namely

has been discussed by Zhang and Gopalsamy [34] and in particular they have shown
that if

(3.4) f r(s)ds>-,
Jt-nr e
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then every positive solution of (3.3) is oscillatory about K. The following result related
to (3.3) not found in the work of Zhang and Gopalsamy [34] is of some interest and is
complementary to the results of [3].

THEOREM 3 . 1 . Let r and K be positive continuous periodic functions of period
T > 0 . If

(3.5) n / r{s)da > - ,
Jo e

then every positive solution of the periodic delay logistic equation

oscillates about the unique periodic solution y* of (3.6).

P R O O F : We let

(3.7) log[l + „(«)] = log[y(*)] - log[»*(*)]

and find that v is governed by (3.3). Assume that (3.5) holds. Suppose that v is not
oscillatory about zero; say v is eventually positive; then the inequality

has an eventually positive solution. We note that

leads to

(3.10)0=log »-(') =r j - * m * /
K > 8 j /* ( t -nr) Jt-nTy*(t) dt Jt-nT Jt-nT

and hence due to the periodicity of r, y* and K,

t-nr A\a) Jt-nr

It is well known (see Koplatadze and Canturija [15]) that when (3.11) holds, all solutions
of (3.8) are oscillatory and therefore v cannot be eventually positive.

If v is an eventually negative solution of (3.3) say

v(t) < 0 for t> T \
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then we have from (3.3) that

and therefore an integration of both sides of (3.12) on [T* + TIT, t] leads to

(3.13) • v(t) - v(T* + TIT) + I ffi [' v(a ~ nr)ds < 0, t>T*+nr.

By the positive periodic and continuous nature of r, y* and K, it follows from (3.13)
that v is bounded and

v e I i ( 0 , oo).

But v is uniformly continuous on (0, oo) due to the boundedness of dv/dt on (0, oo)
which is a consequence of the boundednes of v on (0, oo). Then by Barbalatt's Lemma
[2], it will follow that

(3.14) lim v(t) = 0.

A consequence of (3.14) is that there exists a T» > T* > 0 such that the eventually
negative v satisfies for arbitrary positive e,

v(t) > -e for t> T,,

and hence 1 + v(t) > 1 — e > 0 for t > T*. Thus an eventually negative solution of
(3.3) satisfies

(315) ^ > - [ M ] ( 1 . e W i _ n T ) for t>T.+nr.

It is possible to choose an e > 0 such that for t > T» +nr

t-nr

It is known (as before [15]) that when (3.16) holds, (3.15) and hence (3.3) cannot have
an eventually negative solution. Thus when (3.5) holds, all positive solutions of (3.6)
are oscillatory about the periodic solution y*. This completes the proof. U

The next result examines the qualitative and asymptotic behaviour of nonoscilla-
tory solutions of (3.2) and is a preparation for our subsequent discussion (Theorem 3.3)
of the oscillation of all solutions of the distributed parameter system (3.2).
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THEOREM 3 . 2 . If u(x, t) is a nonoscillatory solution of (3.2), then

(3.17) u(x, t) -* 0 as t -* oo uniformly in x e (0, I).

PROOF: Suppose u is an eventually positive solution of (3.2) (if u is eventually
negative, the details of proof will be similar). There exists a T* > 0 such that

u(x, t)>0 for t > T* and i E (0, I).

Define v as follows:

(3.18) v(t) = f u(x, t)dx, t>T*+ nr.
Jo

We have from (3.2) that

= D £ ^£llldx - P(t) J\l + «(,, 0W-, t - nr)dx

(3.19) = -P(t) / [1 + u(x, t)]u(x, t - n.T)dx
Jo

(3.20) < 0 for t > T + nr,

where
r(t)y*(t)(3.21) P(t) =

K(t) •

Since v(t) > 0 for t > T* + TIT, it follows from (3.20) tha t v(t) - » v * ^ 0 a s t - * o o .
We derive from (3.19) tha t

JT'+nr \J0
(3.22) v(t) - v(T" +nr)+ / P(a) / [1 + u(x, s)]u(x, 3 - nr)dx ) ds = 0.

Since lim v(t) exists, we can conclude from (3.22) that
<-.oo

f* f1

lim / P(s) I [I+ti(x, s)]u{x, s — nr)dxds exists
*—""JT'+UT JO

and therefore

(3.23) lim I P(a) I [l+u(x,s)]u(x, 3-nr)dxds exists.
1—o° Jo Jo
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For convenience we define w as follows:

(3.24) {t) = j I jf' «(*, +

where

(3.25) f(x, t) = - [1 + u{x, t)]u(x, t - nr), x € (0, I).

It can be found from (3.23) - (3.25) that there exists a number w* £ R such that

(3.26) lim_u;(t) = to*.
t—oo

Let G(x, t;£, a) denote the Green's function associated with the Neumann boundary
value problem (3.2). Then for any solution u(z, t) of (3.2) we can write (for more
details see Kahane [11, 12])

/ / G(x,t;t,0)u(t,0)dt+ f [ G(x,t;t,s)P(s)f(t,s)dtds, t > 0,
u{x, t) — < Jo Jo Jo

{ 4>(x, t), t G [-nT, 0], x £ [0, I}.

Using (3.24) we then have

(3.27)

for x 6 (0, 1), t > 0. It is known that the Green's function satisfies (see Kahane [11,
12])

(3.28)

G{x,t;t,s)-j
( 1 \ 1 / 2

I — j , t - s > o, x, £ e (o, I)

where cx, c2 and c are positive constants. It is easy to derive from the first of (3.28)
that

(3.29) Urn /
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and the convergence in (3.29) is uniform in x G [0, £]. Before we consider the limiting
behaviour as t —» oo of the second integral on the right side of (3.27), we shall show
that

ft
(3.30) / \f(x, t)\ dx-*0 as <-»oo.

Jo

From (3.19) and the eventual positivity of tt, we have

(3.31) ^ = -P{t) J\\ + u(x, t)}u(x, t - nr)dx

(3.32)
ft

-P(t) / u(x, t - nr)dx < 0.
Jo

It will follow from (3.31) and (3.32), due to the bounded positive periodic nature of P,
that

(3.33)
/ [1 + u{x, t)]u(x, t - nr)dx € L^O, oo)

/ u(z, t)dx G Li(0, oo).
Jo i

Since u > 0 eventually we also have from (3.33) that

ft
I u(x, t)u(x, t — nr)dx £ 2/i(0, oo).

Jo
(3.34)

We now let

(3.35)

and we derive that

(3.36)

ft
Q(t) = / u2(x, t)dx; t > 0

Jo

Pit) f{x, <)] dx

, t)dx < 0.
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We have from (3.36) and (3.25) that

(3.37)
ft
/ u(x, t)P(t)[l + u(x, t)]u(x, t - nr)dx G Li(O, oo).

Jo >

If F is denned by

(3.38) F(t) = I [1 + u{x, t)]u(x, t - nr)dx, t >
Jo nr

then from (3.33), we conclude that F £ L\{nr, oo). We proceed to establish that

(3.39)
dF{t)

dt
G Li(nr, oo).

By direct calculation from (3.38), (3.2) and (3.25),

(3.40)

' f * t ' " Mx'L~ "r)d-+1! •<-L
1 du{x, t)du(x, t-nr)

dx di
dx

(3.41)

(3.42)

ft
+ / [1 + u(s;, i)]P(i - nr)f(x, t - nr)dx

Jo

= —ID \ — - ^ \ dx
Jo dx dx

+ I [1 + u(x, t)]P(t - nr)f(x, t - nr)dx
Jo

t

u{x, t - nr)P(t)f(x, t)dx.
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We obtain from (3.42) that for t > T > nr,

(3.43)

* ~

+ / u(x1a-nT)P(a)\f(x,a)\dx\da
Jo J

F(T) - 2D f I' au(X) S) du(x> * ~ nT)

< oo on using (3.37).

It follows from (3.43) and the periodicity of P that

(3.44)
/ [1 + «(x, t)]P{t - nr) \f(x, t - nr) | dx G L,{T, oo)
Jo

f u{x, t - nr)P(t) | /(x, t)\dx £ L^T, oo).
Jo )

We can conclude from the first of (3.37) and (3.42) - (3.44) that (3.39) holds. Thus
both F and dF/dt belong to Li(T, oo). By Lemma 1 of the Appendix it will follow
that

(3.45) F(t) = / [1 + u(x, t)]u{x, t - nr)dx = / \f(x, t)\ dx -» 0 as t
Jo Jo

oo.

To investigate the asymptotic behaviour of the second integral on the right side of

(3.27), we define z(i) in the form:

(3.46) z(t) = J* jf , t; t, s) - 1] P{s)fU, s)dt da

and proceed to estimate z{t) as follows:

(3.47) )\ ^ \ \
Jo Jo

G(x,t;t,»)-\ P(s)\f(t,s)\d(ds

f
o Jo

f
-i Jo

G(x,i;(,s)-j

P{>)\nt,*)\dtds

,s)\dtds.
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Each of the terms on the right side of (3.47) is estimated in the following way:

ft ,1
(3.48) If

Jt-i Jo < ft

P(s)\f((,s)\dtda

1/2

0 as t —> oo on using (3.45)

where

i€[O,r]

For an arbitrary e > 0,

JT JO
P(s)\f{(,s)\d(d3

(3.49)
t-i ft

T Jo

JT JO

< eP* if T is sufficiently large.

ff
Jo Jo

G{x,t;t,a)-j P(s)\f(t,s)\dtds

(3.50)

T . /

0 JO

-»0 as t —> oo,

by (3.45) and L'Hopital's rule. Thus each of the three integrals on the right side of
(3.47) can be made arbitrarily small for large enough t by a suitable choice of T and
this leads to

(3.51) lirn z(t) = Urn /* / |G(X, t;(, s) - )] P(a)f(t, s)d£da = 0.

It follows from (3.27) - (3.51) that

u(x, t) —» w(t) as t —» oo, uniformly in x 6 (0, I).
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But we know that

(3.52) w(t) ->w* as t - • oo

and therefore

(3.53) u(x, t) —* w* as t —> oo uniformly in x £ (0,1).

From (3.24), we have

(3.54) ^ = -?f- J\l + u(x, t)]u(x, t - nr)dx

which together with (3.23) leads to

On the other hand we have from (3.53),

lim / [l + w(x, t)]u{x, t - nT)dx = 1(1 + w*)w*.

We now claim w* = 0. If this is not the case then we have from the eventual positivity
of u that to* > 0. As a consequence there exists t* > 0 such that

w*
uix> *) > "o" f o r x G (0) *)' l > **•

We will then have from (3.54) that for t> t* + TIT,

(3.55) w(t)-w(t*) = —- / / P ( s ) [ l+u(x , s)]u(z, s -
* Jt* Jo

where
min P(s) = P« > 0;

»€[0,r]

the positivity of P» is a consequence of the periodicity, continuity and the positivity of
r, y* and K. An implication of (3.55) is that

w(t) —> —oo as t —• oo
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and this contradicts the existence of w* > 0. Thus w" — 0 and therefore we have from
the above that

u(x, t) -> w(t) -> w* = 0 as i - t o o .

The proof is complete. D

The next result provides sufficient conditions for all positive solutions of (1.2) -

(1.3) to oscillate about the unique positive periodic solution y* of (1.2) - (1.3). The

conclusion of the result of Theorem 3.2 will be used in the proof of the next result.

THEOREM 3 . 3 . Assume that

(3.56) / r(s)ds = f r(s)ds > -
J0 Jt—nr e

or equivalently

/

T f* 1

r(s)ds = / r(s)ds > —.
Jt-r neThen all positive solutions of (1.2) - (1.3) are oscillatory about the unique positive

periodic solution y* of (1.2) - (1.3).

PROOF: It can be found from (3.1) that it is sufficient to consider the oscillation
of solutions of (3.2). Our strategy of proof is to assume that (3.2) has a nonosdilatory
solution say u(x, t) and then show that this leads to a contradiction. First we suppose
that u(x, t) is eventually positive, that is there is T* > 0 such that

u(x, t) > 0, for t>T*, xe (0,1).

We define

v(t) = / u(x, t)dx for t > T*
Jo

and note that v is eventually positive say for t > T*. Then from (3.19)

(3.57) ^ = -P(t) J\l + u(x, t)]u(x, t - nr)dx

rl

< -P(t) I u(x, t - nr)dx
Jo

= -P(t)v(t - TIT) for t>T* + nr.
It follows that the differential inequality (3.57) has an eventually positive solution. From
(3.10), we have

(3.58) / P(a)ds = P r(s)ds = n f r(s)ds > -.
Jt-nr Jo Jo e
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It is known (see [15]) that (3.57) cannot have an eventually positive solution when
(3.58) holds.

Suppose now that u(x, t) is eventually negative; then there exists Ti > 0 such
that

1 + u(x, t) < 1, v(t) < 0, for t > Ti.

By Theorem 3.2, we know

lim u(r , t) = 0 uniformly in x £ (0,1).
t—>oo

So for any given e > 0 there is T2 > T\ such that

1 + u(x, t) > 1 - e for t > T2,

and therefore

(3.59) ^f^- ^ -P(t)(l - e)v(t - TIT) for i> T2 + nr.
at

Since e is arbitrary, it is possible to have from (3.56) and (3.58) that

(3.60) (1 - e) / P(s)ds > -
Jo e

for some e > 0. It is again known to be impossible for (3.59) to have an eventually
negative solution when (3.60) holds (see [15]). The result follows from these contradic-
tions. D

We conclude with the following few remarks: the existence of a globally attracting
positive periodic solution has certain ecobiological (ecological and biological) conse-
quences; oscillations of all solutions due to the time delay can enhance the development
of "fitness" of the species modelled by (1.2). These aspects have been discussed in
the absence of spatial heterogeneity by Gopalsamy, He and Wen [7]. As special cases,
sufficient conditions for the global asymptotic stability of the positive equilibrium of
the autonomous analogue of (1.2) - (1.3) where r and K are positive constants are
implicit in Theorem 2.3; and similarly Theorem 3.3 provides sufficient conditions for
the oscillation of positive solutions of (1.2) - (1.3) about the positive equilibrium K

of the autonomous analogue of (1.2) - (1.3). These results related to the autonomous
analogue of (1.2) - (1.3) are also new to the literature on reaction diffusion equations
with time delays.
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APPENDIX

LEMMA 1. Let f: [0, oo) i-» [0, oo) be continuously differentiable on (0, oo) such

that

Then

/ 6 Lx [0, oo) and -j- € Lx [0, oo).
at

i-»oo

PROOF: Since df/dt G -ti [0, oo), for every e > 0 there exists a positive number
T > 0 such that for ti, t2 and t2 > <i > T

/ , dt
dt

e I f°° df(t)
dt

dt
e

< -.

We have from

I fH df(t) .= / dt
\Ju dt

It follows that lim f[t) exists; this together with the facts
t—ao

will imply that

/(«) > 0, / G Lx [0, oo)

Um f(t) = 0.
i—•oo

D
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