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SOME THEOREMS ON A VOLTERRA EQUATION OF 
THE SECOND KIND 

BY 
D. E. THOMPSON 

In this paper we state and prove three theorems on positive solutions of a 
Volterra equation of the second kind. The equation considered is 

(1) u(x) = f(x) + T K(x, t)u(t) dt 

where K(x91) is a Volterra type kernel, that is, K(x, t)=0 for t>x. Unless other­
wise stated, we will assume that/e L2 (I) and KeL2(Ix 7), where 1= {x : 0 < x <oo} 
and Li(I) = {f:feL2(I) and/(x)>0 for XEI}. 

Define Kx(x, t) — K(x, t) and for n>2, 

Kn(x, t) = j * K(x, s)Kn^1(s, t) ds. 

By the resolvent kernel we mean H(x9 t) = ̂ =1Kt(x, t). This series converges in 
theZ,2(/x/) norm. 

For completeness we state without proof the principal theorem for Volterra 
equations. 

THEOREM 0. LetfeL2{I) and KeL2(IxI) then the equation 

u(x) = f(x)+ J K(x, t)u(t) dt 

has a unique L2-solution given by 

H(x, t)f(t) dt a.e. on L 

For the proof of this theorem the reader is referred to [2]. 
We will need the following lemmas. The reader is referred to [1] for the proofs. 

LEMMA 1. LetfeL£(I) andKeL%(IxI) in (1), then u(x)>0 a.e. on L 

LEMMA 2. Let v e L2{I), and let v(x)<f(x)+ K(x, t)v(t) dt a.e. on I. If u is 

the unique L2-solution of (I), then v(x)<u(x) a.e. on L 
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THEOREM 1. Letf e L2 (I) and let Kx e L2 (/ x /), and let ux be the unique L2-solution 
of 

Ut(x) = /,(*) + J* Kfa, t)u{{t) dt 

where i = l , . . ., «. If 

n n 

F(x) = 2 /i(*) for xel and K(x, 0 = 2 &i(x> 0 f°r (*> t)elxl, 
i = l i = l 

//*erc f/ze unique L2solution u of u(x) = F(x)+ K(x,t)u(t)dt exists, and 2?=i 

Wi(x)<w(x) a.e. ow /. 

Proof. Since f e L2{I) and KieL2(IxI) then FeL2{I) and KeL2(lxI), and 
so, from Theorem 0, w(x) exists. The proof that 2?=i Ui(x)<u(x) a.e. on / is by 
induction on n. 

The theorem is obvious for n= 1. Assume its truth for /= 1, . . . , n — 1. Let 

K*) = nffi(x)+ f Y *i(*, t)v(t) dt. 
i=l JO i = l 

Therefore 

un(x) + v(x) =fn(x)+n2 fi(x)+ \X Kn(x, t)un(t)dt 
i = l Jo 

r*x n-1 

+ 2 Ki(x> 0K0 * a - e - o n J-
Jo i = l 

From Lemma 1, Wj(x)>0 a.e. on /for /= 1, . . . , n. Therefore 

un(x) + v(x) < £/,(*) + f Î Kl*>t)[un(t) + v(t)]dt 
i = l JO < = 1 

or 

un(x) + v(x) < F(x)+ J K(x, t)[un(t) + v(t)] dt a.e. on /. 

Therefore, from Lemma 2 we have un(x) + v(x) <u(x). But by our inductive assump­
tion 

n-l 

2 ux{x) < v(x) a.e. on /. 

Therefore 

2 u{(x) < u(x) a.e. on /. 
i = l 
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This completes the proof. 
We need the following definition before we state and prove the second theorem. 

DEFINITION 1. y is a S-approximate solution of (1) iff 

I y(x) -fix) - j X K(x, t)y(t) dt | < S(JC) a.e. on /. 

THEOREM 2. Let GeL£(IxI), and let G(x, t)>K{x, t)>0 onlxl, and let y be 
a 8-approximate solution of (I). If Be L^if), u is the unique L2-solution of(l)9 and v 
is the unique L2-solution of 

v(x) = 5(JC)+ J G(x, t)v(t) dt, 

then 

\y(x)-u(x)\ < v(x) a.e. on /. 

Proof. Now 

y(x) < 8(x)+f(x)+ J K(x, t)y(t) dt a.e. on /. 

Since u is the unique L2 solution of (1), 

y(x)-u(x) < 8(x)+ K(x, t)[y(t)-u(t)] dt a.e. on /. 

Let 

w(x) = 8(x)+ J K(x, t)w(t) dt. 

Then 

w(x) < 8(x)+ I G(x, t)w(t) dt 

by Lemma 1. Therefore from Lemma 2 we have 

y{x) — u{x) < w(x) < v(x), or y(x)-u(x) < v(x) a.e. on /. 

Similarly a.e. on / 

y(x) > - 8(x) +f(x) + j X K(x, t)y(t) dt, 

and hence by Lemmas 1 and 2 we have 

u(x)—y(x) < v(x) a.e. on /. 

Therefore \y(x)-u(x)\<v(x) a.e. on /. This completes the proof. 
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We can see from Lemma 1 that it is impossible to obtain a solution u of (1) such 
that 0< u(x)<f(x) on / when K(x, t)>0 on IxL The natural question therefore 
arises: Under what conditions will (1) have a solution u such that 0<u(x)<f(x) 
on I? Clearly K(x, t) must be negative — at least for x near zero and 0< t<x. 

In our next theorem we give conditions for such a solution. Instead of (1) with 
K(x, t)<0 on Ixl we will consider 

(2) u{x) = f(x)- Ç K(x, t)u(t) dt 

with £(x, 0 ^ 0 . 

THEOREM 3. Letfe C(/) withf(x)>0 on I, and let Ke C(T) with K(x91)>0 on 

T = {(x9t):0 < t < x <oo}. 

m<^hJl f o r 0 < t<x<y, 
f(y) K(y, t) " 

then the unique solution u of (2) satisfies f(x)>u(x)>0 on L 

Proof. If u(x) > 0 then it follows from (2) that/(x) > u(x) > 0. It therefore remains 
to show that u{x) cannot be negative anywhere on /. 

Suppose the theorem is false. Then since w(0)=/(0) > 0, by continuity there exist 
*i > 0 and 6 > 0 such that 

u(x) > 0, 0 < x < x± 

= 0, x = xx 

< 0, Xx < x < x± + 8. 

Therefore for xx < x < xx + 8 we have 

0 > u(x) > f{x)~ X K(x, t)u(t) dt 

=M{f(xù~fm[lK(x'tMt)dt} 

- /K) {/(*i)_jr K(XU °M(° *} 

= 0 

or 0 > u{x) > 0 for x± <x<xx + 8, which is absurd. 
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Therefore the theorem is true, i.e. 

f(x) > u(x) > 0 on / . 

COROLLARY 1. If K(x, t) is monotone decreasing in x and f(x) is monotone in­

creasing, the hypotheses of the above theorem are satisfied. In particular, if K(x, t) 

= k(x—t), then it suffices to have k monotone decreasing andf monotone increasing. 
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