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Deep reinforcement learning (DRL) is employed to develop control strategies for drag
reduction in direct numerical simulations of turbulent channel flows at high Reynolds
numbers. The DRL agent uses near-wall streamwise velocity fluctuations as input to
modulate wall blowing and suction velocities. These DRL-based strategies achieve
significant drag reduction, with maximum rates 35.6 % at Reτ ≈ 180, 30.4 % at Reτ ≈
550, and 27.7 % at Reτ ≈ 1000, outperforming traditional opposition control methods. An
expanded range of wall actions further enhances drag reduction, although effectiveness
decreases at higher Reynolds numbers. The DRL models elevate the virtual wall through
blowing and suction, aiding in drag reduction. However, at higher Reynolds numbers,
the amplitude modulation of large-scale structures significantly increases the residual
Reynolds stress on the virtual wall, diminishing the drag reduction. Analysis of budget
equations provides a systematic understanding of the underlying drag reduction dynamics.
The DRL models reduce skin friction by inhibiting the redistribution of wall-normal
turbulent kinetic energy. This further suppresses the wall-normal velocity fluctuations,
reducing the production of Reynolds stress, thereby decreasing skin friction. This study
showcases the successful application of DRL in turbulence control at high Reynolds
numbers, and elucidates the nonlinear control mechanisms underlying the observed drag
reduction.
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1. Introduction
Turbulent flows lead to significantly greater energy losses compared to laminar flows,
presenting a major challenge in various engineering applications (Brunton & Noack
2015). For instance, wall friction contributes to approximately 50 % of total resistance
in aircraft, up to 90 % in submarines, and nearly all resistance in pipeline flows
(Gad-el-Hak & Blackwelder 1989). These applications typically operate under high
Reynolds number conditions, making the turbulent drag reduction at high Reynolds
numbers both theoretically significant and practically valuable.

In wall-bounded turbulence, coherent structures are strongly associated with high skin
friction (Kravchenko, Choi & Moin 1993; Choi, Moin & Kim 1994; Xu & Huang
2005), leading to the concept that real-time control of these structures could effectively
potentially suppress turbulence and reduce skin friction. At low Reynolds numbers, the
near-wall region is dominated by velocity streaks and quasi-streamwise vortices. These
structures are cyclically generated through a self-sustaining process (Jiménez & Moin
1991; Hamilton, Kim & Waleffe 1995), which can persist even without turbulence in the
outer region (Jiménez & Pinelli 1999). The work by Choi et al. (1994) pioneered an active
control method targeting the streamwise vortices, known as the opposition control strategy.
In this method, the wall-normal velocity fluctuations are monitored on a hypothetical
detection plane in the near-wall region. Based on these detected signals, counteracting
wall-normal blowing and suction velocities are applied at the wall to suppress the ejection
and sweep events caused by streamwise vortices, thereby reducing Reynolds shear stress
and achieving drag reduction. The effectiveness of opposition control was confirmed
by direct numerical simulations (DNS) of turbulent channel flows, as demonstrated by
Choi et al. (1994), which showed a maximum drag reduction rate approximately 25 % at
friction Reynolds number Reτ = 180. Subsequent investigations by Hammond, Bewley &
Moin (1998) and Chung & Talha (2011) further elucidated the mechanisms behind this
drag reduction. They found that wall-normal blowing and suction significantly limited
momentum transport toward the wall, effectively creating a ‘virtual wall’ that hindered
high-speed fluid motions towards the wall induced by streamwise vortices, thus reducing
local high friction drag. Building on the concept of opposition control, various other
strategies have been developed. These include neural-network-based control schemes (Lee
et al. 1997) and suboptimal control schemes (Lee, Kim & Choi 1998; Fukagata & Kasagi
2004; Hasegawa & Kasagi 2011), which utilize measurable wall quantities to achieve drag
reduction.

As Reynolds numbers increase, the efficacy of drag reduction schemes, such as
opposition control, markedly declines. For instance, in turbulent channel flows, the
maximum drag reduction rate achieved by opposition control decreases from 25 %
at Reτ = 180 to 18 % at Reτ = 720 (Chang, Collis & Ramakrishnan 2002; Iwamoto,
Suzuki & Kasagi 2002; Pamiès et al. 2007). As Reynolds numbers rise, large-scale struc-
tures and very-large-scale structures emerge in the logarithmic and outer regions (Jiménez
1998; Kim & Adrian 1999; del Álamo & Jiménez 2003; del Álamo et al. 2004; Guala,
Hommema & Adrian 2006; Balakumar & Adrian 2007; Hutchins & Marusic 2007a;
Monty et al. 2009). Hwang (2013) suggested that these structures contribute to Reynolds
shear stress, thereby diminishing drag reduction rates. Furthermore, Mathis, Hutchins
& Marusic (2009) classified the influence of outer large-scale structures on near-wall
turbulence into two effects: superposition and amplitude modulation. The superposition
effect, a linear process, represents the footprint of large-scale structures on near-wall
turbulence (Hoyas & Jiménez 2006; Hutchins & Marusic 2007b). These large-scale struc-
tures extend deeply into the near-wall region, contributing significantly to turbulent kinetic
energy (Hoyas & Jiménez 2006; Mathis et al. 2009; Marusic, Mathis & Hutchins 2010a).
1006 A12-2
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On the other hand, amplitude modulation is a nonlinear process that describes how
small-scale turbulent fluctuations are intensified in large-scale high-speed regions, and
suppressed in low-speed regions. Deng & Xu (2012) highlighted that the reduced drag
reduction rate at high Reynolds numbers is primarily due to the decreased effectiveness
of near-wall turbulence control, which is related to the amplitude modulation effect of
large-scale structures.

In recent years, the extensive application of deep reinforcement learning (DRL) has
been highlighted in various domains such as video classification, voice recognition and
language processing. In fluid mechanics, DRL has also been applied extensively to flow
control problems (Guéniat et al. 2016; Rabault et al. 2019; Han & Huang 2020; Paris,
Beneddine & Dandois 2021; Zeng & Graham 2021; Li & Zhang 2022; Varela et al.
2022; Lee, Kim & Lee 2023; Guastoni et al. 2023; Sonoda et al. 2023; Suárez et al.
2024). For instance, Varela et al. (2022) demonstrated DRL’s capability to extend control
strategies across varying Reynolds numbers, adapting to different flow characteristics
as the Reynolds number increases. Additionally, Suárez et al. (2024) leveraged multi-
agent DRL to develop three-dimensional strategies as three-dimensional instabilities
emerged in the cylinder flow, achieving greater drag reduction than traditional methods.
These advancements, driven by artificial intelligence and data science, underscore DRL’s
robust capability to model complex interactions between inputs and outputs (Jordan &
Mitchell 2015). Unlike traditional control methods that depend heavily on researchers’
insights, neural-network-based DRL can partially automate this process, constructing
highly nonlinear models between input signals and output controls. This makes DRL-
based turbulence control particularly appealing, as it offers greater flexibility in selecting
input signals, and potentially devises control strategies more attuned to the nonlinear
mechanisms of turbulence, thereby enhancing drag reduction effects. The initial foray
into using machine learning for drag reduction in channel flows can be traced back
to Lee et al. (1997), who employed a linear neural network with multiple neurons
to predict wall-normal blowing and suction velocities based on spanwise wall shear
stress, proposing a straightforward control scheme. In more recent developments, Han
& Huang (2020) and Lee et al. (2023) utilized reinforcement learning to predict wall-
normal velocity fluctuations at the detection plane, effectively replicating opposition
control based solely on wall measurements. Moreover, Guastoni et al. (2023) and Sonoda
et al. (2023) have achieved better control models and higher drag reduction rates with
reinforcement learning compared to traditional opposition control methods. Collectively,
these studies demonstrate the significant potential of DRL in reducing drag in wall-
bounded turbulence. While DRL-based control strategies have shown great promise,
their practical implementation still presents challenges. Many current approaches rely
on detailed flow-domain information, such as velocities at specific wall-normal locations,
which may be difficult to measure in real-world settings. This underscores the importance
of developing strategies that can bridge the gap between numerical simulations and
practical applications.

Higher Reynolds number studies also represent an essential step towards conditions
more representative of real-world scenarios. However, previous studies on DRL for
turbulence control have been limited to low friction Reynolds numbers, with most Reτ not
exceeding 180. Consequently, research on DRL-based control strategies at higher Reynolds
numbers remains scarce. Additionally, there is a significant gap in understanding the drag-
reduction mechanisms underlying DRL models. This study aims to address these gaps
by extending DRL-based control strategies to high Reynolds numbers. To the best of the
authors’ knowledge, this is the first study applying DRL control to turbulent channel flows
with Reτ larger than 500. Our main purpose is to evaluate the effectiveness of DRL models
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in achieving drag reduction at high Reynolds numbers, and to explore the underlying drag
reduction mechanisms from both kinematic and dynamic perspectives.

The paper is organized as follows. The numerical methodologies, including DNS and
DRL methods, are detailed in § 2. Section 3 presents the DNS results and their subsequent
discussions. The performance of the DRL-based control strategy is evaluated in § 3.1,
while velocity statistics are elaborated upon in § 3.2. The analysis of the drag-reduction
mechanism is approached from both a kinematic perspective, based on virtual wall theory,
and a dynamic perspective, using budget equations, in §§ 3.3 and 3.4, respectively. Finally,
the conclusions are summarized in § 4.

2. Numerical methodology

2.1. The DNS of the turbulent channel flows
We consider the turbulent channel flows established between two parallel plates separated
by 2h, driven by a pressure gradient. The governing equations of the turbulent flow are the
Navier–Stokes equations of an incompressible Newtonian fluid, written as

∂u j

∂x j
= 0, (2.1)

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂p

∂xi
+ ν

∂2ui

∂x j ∂x j
+ f1δi1, (2.2)

where xi (i = 1, 2, 3)= (x, y, z) represents the coordinates in the streamwise, wall-
normal and spanwise directions, respectively, and ui (i = 1, 2, 3)= (u, v, w) denotes the
corresponding velocity components. Here, t is the time, ρ is the density, p is the pressure,
and ν is the kinematic viscosity. A body force f1 is introduced to maintain constant
momentum in the channel, ensuring the averaged bulk velocity Um in the channel flow.

The flow is assumed to be periodic in the streamwise and spanwise directions, with
periods Lx and Lz , respectively. The upper wall imposes no-slip and no-penetration
conditions, setting the velocities u = v=w= 0. On the other hand, the lower wall adheres
to the no-slip condition with u =w= 0, and implements turbulent control through blowing
and suction.

The code AFiD (Verzicco & Orlandi 1996; van der Poel et al. 2015; Zhu et al. 2018) was
utilized to carried out the DNS of turbulent channel flows. An energy-conserving second-
order finite difference scheme is applied in the spatial discretization, with velocities
on a staggered grid. Time marching is performed using a third-order Runge–Kutta
scheme, combined with a Crank–Nicolson scheme for the implicit terms. The grids are
uniformly distributed in both the streamwise and spanwise directions, with wall-normal
grid refinement applied near the walls.

The computational parameters are listed in table 1 for the three Reynolds numbers
Re = Umh/ν considered in this study. The friction velocity uτ = √

τw/ρ and the friction
Reynolds number Reτ = h+ = uτh/ν define wall units in the following discussions,
denoted by a + superscript, where τw is the skin friction. Here, y+ = y/δν , where
δν = ν/uτ = h/Reτ is the friction length.

2.2. The DRL methodology
In order to control the turbulent channel flows, blowing and suction based on the DRL,
predictions are applied to the lower wall. The flow chart of the control driven by
reinforcement learning is shown in figure 1. Our current program mainly consists of two
parts: the numerical simulation part and the reinforcement learning part. The numerical
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Set of cases Re Reτ Lx Lz �+
x �+

z (�+
y )min (�+

y )max

C180 2800 176.9 2πh πh 8.7 4.3 0.10 4.3
C550 10 000 544.3 2πh πh 13.4 6.7 0.19 5.8
C1000 20 000 983.4 2πh πh 12.1 6.0 0.19 7.9

Table 1. Computational parameters. Here, �x , �y and �z are the resolutions in the streamwise, wall-normal
and spanwise directions, respectively.

Reinforcement learning part 

Numerical simulation part 

State

& Reward Actions

Replay

buffer

Actor network

Critic network

Main actor Noise actor

Critic2 Critic1

Figure 1. The flow chart of reinforcement-learning-driven control in turbulent channel flows.

simulation part, as discussed in § 2.1, acts as the environment and outputs the state st
and reward rt obtained in the flow field. The reinforcement learning part, acting as the
agent, receives these variables, optimizes the decision-making policy π(st ) based on the
reward, and outputs actions at based on the state. The numerical simulation part then
uses these actions to control the flow, and advances the simulation in time. This creates a
loop to achieve active control driven by reinforcement learning. Here, we select the wall
blowing and suction velocities v′

w as the actions, and we choose the streamwise velocity
fluctuations u′(x, z) |y+=15 in the near-wall region as the states, similar to those adopted by
Sonoda et al. (2023). Velocity fluctuations are defined based on the mean velocity profile
of each case, where u′ = u(x, y, z)− U (y). The mean wall blowing and suction velocity
is set to zero.

The agent that we adopted is based on the open-source code provided by Lee et al.
(2023), which employs the twin-delayed deep deterministic policy gradient (TD3) model
(Lillicrap et al. 2015), an actor–critic network structure. The TD3 model offers improved
stability and performance in learning by addressing overestimation bias, incorporating
delayed updates, and implementing target smoothing. It has been proven to be suitable
for turbulence control optimization (Lee et al. 2023). In the TD3 model, the goal is to
optimize the action value function qπ(st , at ) by satisfying the Bellman equation, where

qπ(st , at )=E
[
rd

t + γ nqπ(st+n, πφ(st+n)+ ε)
]
. (2.3)

Here, rd
t =∑n

j=1 γ
j−1rt+ j is the n-step reward, γ is the discounted factor, πφ(st+n) is the

delayed policy update, and ε is the clipped random noise. We adopt n = 5 and γ = 0.95
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Set of cases �t+ �T Um/h Nst

C180 55.8 100.0 20
C550 59.3 40.0 20
C1000 48.4 20.0 20

Table 2. Parameters of state steps and episodes. Here, �t and �T are the time lengths of each state step and
episode, respectively, while Nst is the number of state steps in one episode.

in all cases, following Lee et al. (2023). The expected cumulative reward is predicted by
the critic networks, and the objective function for updating the parameters of the critic
networks is given by

J (θ)= N−1
∑[

rd
t + γ nqπ(st+n, πφ(st+n)+ ε)− q(st , at )

]2
, (2.4)

where N = 64 is the minibatch size, and θ is the weight parameter of the critic networks.
The actor network aims to find an optimal policy, guided by the policy objective function
J (φ). Here, φ represents the weight parameters of the actor (or critic) networks. The
objective function is updated by

∇ψ J (ψ)=E
[∇aqπ(st , at ) |a=π(st ) ∇ψπψ(st )

]
, (2.5)

where ψ is the weight parameter of the actor network. The actor network includes three
convolutional layers, with the first two layers activated by the ReLU function. The numbers
of filter kernels for these layers are set to 64, 32 and 1, respectively, with each filter
kernel sized at 3 × 3. In contrast, the critic network is structured with six convolutional
layers followed by three fully connected layers, all activated by the ReLU function.
Each convolutional layer contains 32 filter kernels of size 3 × 3. Additionally, an average
pooling layer is applied after every two convolutional layers. The fully connected layers
each consist of 32 neurons, and the network ultimately outputs a q value to evaluate the
control policy. Detailed hyperparameters can be referred to in Lee et al. (2023).

The choice of reward rt is crucial for the effectiveness of the training outcomes. Inspired
by the optimal control (Bewley, Moin & Temam 2001), we define the reward r = 1 − e/e0
as the reduction of integrated turbulent kinetic energy (TKE) in the lower half-channel at
the end of each state step. Here, e is the integrated TKE with control, defined as

e = 1
Lx LzhU 2

m

∫ Lz

0

∫ h

0

∫ Lx

0

(
1
2

u′
i u

′
i

)
dx dy dz, (2.6)

and e0 is the integrated TKE without control. It is important to note that the reward is
used only during the model training process, and is no longer needed once the model has
converged.

Furthermore, the time lengths of each state step and episode for all cases are shown in
table 2. First, �t needs to be sufficiently long to allow the changes in the control strategy
to fully develop. Therefore,�t+ ≈ 50 is selected, which also meets the requirement for the
prediction horizon �t+ > 25 in optimal control (Bewley et al. 2001). Additionally, given
that the maximum Reτ in our cases reaches 1000, it is crucial to train a control strategy
that remains effective under large-scale structure evolution. Consequently, we ensure that
�T is at least 20h/Um , which exceeds the time required for large-scale structures to advect
streamwise across the entire channel, approximately Lx/Um ≈ 6h/Um .

In summary, a comparison of our computational method with previous DRL-based
studies on turbulent channel control is shown in table 3. Our work uses the TD3 algorithm,
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Study DRL algorithm Input states Rewards Reτ

Guastoni et al. (2023) DDPG (u′, v′) Drag reduction (DR) rate 180
Sonoda et al. (2023) DDPG (u′, v′) DR rate & control cost 150
Lee et al. (2023) TD3 ( ∂u

∂y ,
∂w
∂y )|wall DR rate 180, 360

Our work TD3 u′ TKE reduction rate 180, 550, 1000

Table 3. Comparison of computational details in DRL-based turbulent channel control studies. Here, DDPG
denotes the deep deterministic policy gradient algorithm. In all the studies, the output actions selected are the
wall blowing and suction velocities v′

w .

Cases Range of v′
w Reτ DR (%) PS/PI �U+

s y+
vw −〈u′v′〉+vw

C180-0 v′
w = 0 176.9 0 – 0 0 0

C180-opp v′
w = −v′|y+=15 154.2 24.0 27.3 2.92 7.1 0.029

C180-1 v′
w ∈ [−u0

τ , u0
τ ] 153.9 24.9 12.4 3.30 9.5 0.144

C180-2 v′
w ∈ [−2u0

τ , 2u0
τ ] 143.1 34.6 22.6 5.17 12.8 0.025

C180-3 v′
w ∈ [−3u0

τ , 3u0
τ ] 142.0 35.6 26.3 5.18 12.7 0.023

C550-0 v′
w = 0 544.3 0 – 0 0 0

C550-opp v′
w = −v′|y+=15 480.7 22.0 11.4 3.00 7.3 0.054

C550-1 v′
w ∈ [−u0

τ , u0
τ ] 484.3 20.8 12.1 3.21 7.4 0.125

C550-2 v′
w ∈ [−2u0

τ , 2u0
τ ] 460.0 28.6 13.2 4.23 8.9 0.069

C550-3 v′
w ∈ [−3u0

τ , 3u0
τ ] 454.0 30.4 13.5 4.28 8.7 0.074

C1000-0 v′
w = 0 983.4 0 – 0 0 0

C1000-opp v′
w = −v′|y+=15 887.8 18.5 9.2 2.64 6.7 0.044

C1000-1 v′
w ∈ [−u0

τ , u0
τ ] 870.7 21.6 5.0 2.71 7.5 0.306

C1000-2 v′
w ∈ [−2u0

τ , 2u0
τ ] 862.9 23.0 5.1 3.14 8.4 0.299

C1000-3 v′
w ∈ [−3u0

τ , 3u0
τ ] 836.2 27.7 4.7 3.27 10.2 0.242

Table 4. The DNS cases and drag reduction results. Here, DR represents the drag reduction rate, PS/PI
denotes the power saving ratio (where PS is the power saving, and PI is the power input), �U+

s denotes
the shift of the mean velocity profile in the logarithmic region, yvw indicates the height of the virtual wall, and
−〈u′v′〉vw is the averaged residual Reynolds stress on the virtual wall.

similar to that of Lee et al. (2023), with streamwise velocity fluctuations u′ as input states,
and the TKE reduction rate as the reward. We have extended DRL-based wall blowing and
suction control to higher Reynolds numbers, reaching Reτ = 1000.

3. The DNS results and discussions

3.1. Performance of the DRL models
In this study, we focus on the DRL-optimized control models under different blowing
and suction intensities, and their impact on the flow mechanism. The DNS cases that we
utilized are detailed in table 4. Among these, cases with the suffices 0 and ‘opp’ did not
use DRL models. The former denotes cases with no blowing or suction, whereas the latter
represents cases with opposition control as suggested by Choi et al. (1994). Cases with
suffices 1, 2 and 3 are based on DRL-optimized control models, where the magnitude
of wall blowing and suction v′

w is limited to [−u0
τ , u0

τ ], [−2u0
τ , 2u0

τ ] and [−3u0
τ , 3u0

τ ],
respectively. Here, the superscript 0 denotes variables before the application of turbulence
control.
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–1.0

–0.5

0

0.5

1.0

50 10 15 20
–1.0

–0.5

0

0.5

1.0

50 10

Episode

(c)

(a) (b)

Episode

–r

–r

Episode

15 20
–1.0

–0.5

0

0.5

1.0

Figure 2. The evolution of the normalized reward over episodes during the training process: (a) C180,
(b) C550, (c) C1000. denotes cases with suffix 1; denotes cases with suffix 2; denotes
cases with suffix 3.

Before further analysis, it is essential to confirm the training status of the current DRL
models. The normalized reward r , defined as r =∑n

j=1 γ
j−1rt+ j/

∑n
j=1 γ

j−1, serves
as an indicator of learning performance during the training of the control strategy. The
evolution of r over episodes for different cases is illustrated in figure 2. Significant
oscillations are observed primarily within the first 10 episodes, while the rewards for all
analysed cases gradually converge after 10 episodes, indicating stabilization of the DRL
models. Consequently, the model at 20 episodes will be utilized uniformly as the control
strategy for subsequent analysis. Additionally, we observed that further training beyond
20 episodes does not significantly enhance learning performance, although this is not
shown in figure 2. As suggested by Lee et al. (2023), prolonged training can lead to issues
such as catastrophic forgetting or overfitting, potentially causing the training process to
fail. Therefore, the models at 20 episodes are deemed appropriate for our purposes.

The drag reduction effects under different blowing and suction intensities are shown
in table 4. As the range of v′

w is expanded, the drag reduction rates (DR) achieved
using DRL models continuously improve. When v′

w ∈ [−3uτ , 3uτ ], the drag reduction
effect significantly surpasses that of the traditional opposition control method, including
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high-Reynolds-number cases. Specifically, the drag reduction rate is 35.6 % in case
C180-3, 30.4 % in case C550-3, and 27.7 % in case C1000-3. On the other hand, it is
noted that the maximum drag reduction rate achieved using the DRL model decreases as
the Reynolds number increases. This trend is similar to that observed with the opposition
control method (Chang et al. 2002; Iwamoto et al. 2002; Pamiès et al. 2007; Touber &
Leschziner 2012; Hwang 2013). We also tested several cases with modified input states
or rewards, along with the performance of trained models under different resolutions and
Reτ ; see Appendix A.

Furthermore, as proposed by Bewley et al. (2001), the energy efficiency of the active
control policy can be quantified by the ratio of power saving to power input, PS/PI , as
shown in table 4. The power input PI is calculated as

PI = 〈∣∣p′
wvw

∣∣〉+ ρ
〈∣∣v3

w

∣∣〉/2, (3.1)

where p′
w represents pressure fluctuations on the wall, and ρ denotes the fluid density.

The power saving PS , in turn, is given by PS = (τ 0
w − τw)Um , where τ 0

w is the wall shear
stress before control. For cases with Reτ ≤ 550, the power saving ratio PS/PI shows
an increasing trend as the range of v′

w expands. Specifically, at Reτ = 180, the power
saving ratio achieved by DRL-based control is lower than that achieved by opposition
control. On the other hand, at Reτ = 550, DRL-based control demonstrates more effective
energy savings compared to opposition control. As the Reynolds number increases, the
power efficiency ratio PS/PI gradually declines, eventually dropping to approximately 5
at Reτ = 1000. Notably, at Reτ = 1000, adjustments in the range of v′

w have only a minor
impact on the energy savings achieved by DRL-based control.

3.2. Velocity statistics
Further investigation is needed to understand the impact of DRL-based control on flow
field statistics and the underlying mechanisms affecting the flow. Therefore, this subsection
will compare the velocity statistics across different cases.

Figure 3 shows the wall-normal distributions of the mean velocity profile, U+. In the
viscous sublayer below y+ = 5, the wall blowing and suction based on the DRL model
result in a decrease in the mean velocity compared to the uncontrolled case. In the
logarithmic region, the velocity profiles continue to follow the logarithmic law even in
the presence of control, but with an upward shift relative to the uncontrolled case. This
behaviour is analogous to what is observed with opposition control (Choi et al. 1994).
The profile shift �Us is detailed in table 4, with �Us calculated as the averaged vertical
shift between y+ = 50 and y/h = 0.5. As the range of v′

w is extended progressively, the
drag reduction rate increases consistently, resulting in a corresponding rise in the mean
velocity profile in the logarithmic region, and a gradual increase in �Us . Furthermore,
�Us at higher Reynolds numbers gradually decreases, corresponding to a decline in the
drag reduction rate.

Wall-normal distributions of velocity fluctuations under different control strategies are
illustrated in figure 4. After applying control, the streamwise velocity fluctuations u′

rms ,
indicated by solid lines, show a significant increase in the viscous sublayer below y+ = 5.
In contrast, at higher positions, particularly around y+ = 10 in the near-wall region, the
peak of u′

rms vanishes. The reduction in streamwise velocity fluctuations becomes more
pronounced as the range of blowing and suction velocities is further expanded. This trend
is observed consistently across different Reynolds numbers. However, it is noteworthy
that for Re0

τ ≈ 550 and 1000, the impact of wall blowing and suction is trivial in the outer
region, as depicted in figures 4(b) and 4(c). The current DRL-based control strategy hardly
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Figure 3. Mean velocity profile under different control strategies: (a) C180, (b) C550, (c) C1000.
denotes cases with suffix 0; denotes cases with suffix 1; denotes cases with suffix 2;
denotes cases with suffix 3.

affects the outer region, which is dominated by large-scale structures. On the other hand,
the application of control significantly increases the wall-normal velocity fluctuations v′

rms
within the viscous sublayer, due to the direct impact of blowing and suction. Conversely,
the spanwise velocity fluctuations w′

rms below y+ = 5 exhibit minimal changes. As the
range of blowing and suction velocities is further extended, both v′

rms and w′
rms within

10< y+ < 30 gradually decrease. This trend is particularly evident at the low Reynolds
number Re0

τ ≈ 180, as shown in figure 4(a), but becomes less pronounced at higher
Reynolds numbers. Additionally, in the controlled cases, v′

rms in the near-wall region
initially decreases and then increases with height. The point of minimum v′

rms in the near-
wall region can be defined as the position of the virtual wall yvw (Hammond et al. 1998).
The virtual wall and the residual fluctuations on it will be discussed further in § 3.3.

Figure 5 presents the wall-normal distributions of the averaged Reynolds shear stress,
where 〈ϕ〉 denotes the variable ϕ(x, y, z, t) averaged over the streamwise, spanwise and
temporal directions. Although not shown in the figure, the Reynolds stress at the wall
is always zero, confined by the boundary conditions. The Reynolds stress in the viscous
sublayer is higher in the controlled case compared to the uncontrolled case, due to the
application of blowing and suction at the wall. In the controlled case, the Reynolds stress
slightly increases with height, reaching a peak near y+ = 5, before rapidly decreasing
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Figure 4. Wall-normal distributions of the velocity fluctuations under different control strategies. Solid, dashed
and dash-dotted lines represent u′

rms , v′
rms and w′

rms , respectively: (a) C180, (b) C550, (c) C1000.
denotes cases with suffix 0; denotes cases with suffix 1; denotes cases with suffix 2;
denotes cases with suffix 3.

and forming a trough at approximately y+ = 10–12. Compared to the uncontrolled case,
the Reynolds stress with control significantly decreases in the region 10< y+ < 20. This
decreasing trend becomes more pronounced as the range of v′

w is further extended.
According to the FIK identity proposed by Fukagata, Iwamoto & Kasagi (2002), this
reduction in Reynolds stress also leads directly to a decrease in the skin friction. At a
low Reynolds number Re0

τ ≈ 180, the Reynolds stress in the logarithmic region is lower
with control, as shown in figure 5(a). However, this trend gradually disappears at higher
Reynolds numbers, corresponding to a decrease in drag reduction rate.

The relationship between wall blowing and suction velocity and the velocity fluctuations
at the detection plane is a crucial aspect of flow control. Traditional opposition control
employs blowing and suction with equal magnitudes but opposite directions to the wall-
normal velocity fluctuations at the detection plane. Consequently, the correlation R
between the blowing and suction velocity v′

w and v′ at y+ = 15, defined as

R
(
v′
w, v

′)=
〈
v′
wv

′〉√〈
v′
wv

′
w

〉 〈v′v′〉
, (3.2)
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Figure 5. Wall-normal distributions of the averaged Reynolds shear stress under different control strategies:
(a) C180, (b) C550, (c) C1000. denotes cases with suffix 0; denotes cases with suffix 1;
denotes cases with suffix 2; denotes cases with suffix 3.

would be strictly −1. Unlike opposition control, the current DRL-based control strategy
is based on the streamwise velocity fluctuations u′ at the detection plane y+ = 15 as the
input state. The joint probability density function (p.d.f.) of wall blowing and suctions v′

w

with velocity fluctuations at the near-wall detection plane is shown in figure 6, using the
results from case C1000-3 as an example. Here, v′

w has a relatively weak correlation with
v′ at the detection plane y+ = 15, as illustrated in figure 6(a), where R(v′

w, v
′)= −0.10.

Conversely, the joint p.d.f. between v′
w and u′ at y+ = 15 in figure 6(b) is predominantly

aligned with the first and third quadrants. This alignment indicates that wall blowing
tends to occur beneath high-speed regions near the wall, while suction is more likely
beneath low-speed regions. Furthermore, the correlation R(v′

w, u′)= 0.71 is positive. This
behaviour closely resembles the mechanism identified by Lee et al. (2023), where their
DRL models, using wall streamwise shear stress as input states, exhibited a similar trend
of applying blowing beneath high-speed regions and suction beneath low-speed streaks.
They also observed a strong correlation between wall actuation and streamwise wall shear
stress, similar to figure 6(b), suggesting that these DRL models effectively reduce drag
through direct control of sweep and ejection events. Despite not being shown in the
figure, this pattern appears consistently across all cases in our current work, implying a
stronger connection between the DRL-based control strategies and the streamwise velocity
fluctuations as the input state.
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Figure 6. Joint p.d.f. of the wall blowing and suction v′
w with (a) v′ and (b) u′ at y+ = 15 in case C1000-3.

The white diagonals denote (a) v′ = −v′
w and (b) u′ = v′

w , respectively. Contour levels are 0.1(0.1)0.8 of the
maximum probability density.

3.3. Kinematic analysis of drag reduction based on virtual wall theory
The DRL-based control strategy could lead to larger drag reduction compared to
the traditional opposition control; however, the underlying mechanism requires further
investigation. This subsection utilizes the virtual wall theory proposed by Hammond et al.
(1998) to analyse the drag reduction mechanism from a kinematic perspective.

According to the virtual wall theory by Hammond et al. (1998), wall blowing and
suction create a virtual wall between the actual wall and the detection plane. This virtual
wall hinders streamwise vortices from bringing high-speed fluid to the wall, which would
otherwise create local high friction zones, thereby resulting in drag reduction. The drag
reduction effect is influenced mainly by two factors: the height of the virtual wall yvw, and
the magnitude of the residual Reynolds stress on the virtual wall −〈u′v′〉vw. Specifically,
the higher the virtual wall, the better the drag reduction effect. And the lower the residual
Reynolds stress, the stronger the virtual wall’s ability to impede wall-normal momentum
transport, resulting in better drag reduction.

The height of the virtual wall and the residual Reynolds stress under different control
strategies are detailed in table 4. At the low Reynolds number Re0

τ ≈ 180, as the range of
blowing and suction velocities is further expanded, the height of the virtual wall gradually
increases, and the residual Reynolds stress on the virtual wall gradually decreases. Both
these changes correspond to an improvement in drag reduction effect. The values of
yvw and −〈u′v′〉vw for C180-2 and C180-3 are similar, resulting in comparable drag
reduction rates for both cases. Compared to the traditional opposition control method,
the DRL-based control strategy in C180-3 does not show a significant reduction in
residual stress on the virtual wall. However, its primary benefit is the ability to further
elevate the virtual wall. As the Reynolds number increases, the height of the virtual
wall under the DRL-based control strategy is significantly lower for Re0

τ ≈ 550 and
1000 compared to the results for Re0

τ ≈ 180. Additionally, the residual stress −〈u′v′〉vw
on the virtual wall rapidly increases with the rising Reynolds number. In case C550-3,
−〈u′v′〉vw is approximately three times that of case C180-3, and in case C1000-3,
−〈u′v′〉vw exceeds that of case C180-3 by more than ten times. These two factors together
lead to a decrease in the drag reduction efficiency of the DRL-based control strategy.
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Figure 7. Premultiplied spanwise energy spectra kz Euu of streamwise velocity fluctuations u′ under different
control strategies. For Re0

τ ≈ 180, (a) C180-0, (b) C180-opp, (c) C180-3. For Re0
τ ≈ 550, (d) C550-0,

(e) C550-opp, (f ) C550-3. For Re0
τ ≈ 1000, (g) C1000-0, (h) C1000-opp, (i) C1000-3.

Moreover, at higher Reynolds numbers, the control strategy optimized through DRL is less
effective at impeding wall-normal momentum transport compared to traditional opposition
control, as evidenced by the contrast of residual Reynolds stress. The main advantage of
DRL optimization lies in its ability to effectively plan the wall blowing and suction in an
expanded range, thereby elevating the virtual wall to a higher position and achieving better
drag reduction efficiency.

To further quantify the impact of control strategies on the scales of the structures at
different heights, especially the flow structures near the virtual wall, figure 7 presents
the premultiplied energy spectra kz Euu of u′. Here, kz is the spanwise wavenumber,
and λz = 2π/kz is the corresponding wavelength. In the near-wall region, the flow is
dominated by streaks with spanwise scale λ+z ≈ 100 and wall-normal height concentrated
around y+ = 15, as depicted in figures 7(a), 7(d) and 7(g). After applying wall blowing
and suction control, the peak velocity fluctuations in the near-wall region shift to a higher
position, and a second spectral peak emerges in the viscous sublayer. These two peaks are
separated by the virtual wall, as also suggested by Hammond et al. (1998). Notably, in
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cases utilizing the DRL-based control strategy (C180-3, C550-3 and C1000-3), the virtual
wall is significantly higher than in cases using traditional opposition control, corroborating
the conclusions drawn from table 4. The peak of velocity fluctuations corresponding
to the near-wall streaks in the buffer layer also rises to a higher position. Furthermore,
the intensity of velocity fluctuations in the viscous sublayer significantly increases after
applying the DRL-based control strategy.

On the other hand, the characteristic scales of flow structures remain largely unchanged
under different control strategies. The spanwise sizes of the near-wall streaks are
consistently λ+z ≈ 100, while the peak of velocity fluctuations in the viscous sublayer
due to wall blowing and suction stays within λ+z = 60–80, i.e. slightly smaller than the
spanwise sizes of the streaks. At high Reynolds numbers, wall blowing and suction have a
trivial effect on the spanwise sizes of the outer large-scale structures, which remain at λz ≈

O(h). In the cases without control, the footprint of outer large-scale structures penetrates
deeply into the near-wall region, as shown by the near-wall large-scale components in
figures 7(d) and 7(g). This phenomenon, known as the superposition effect (Hoyas &
Jiménez 2006; Hutchins & Marusic, 2007b; Mathis et al. 2009; Marusic et al. 2010a),
is noteworthy. After applying wall control, however, the footprint of outer large-scale
structures cannot penetrate the virtual wall to reach the viscous sublayer or contribute
to the residual velocity fluctuations on the virtual wall. This is particularly evident in
cases C550-3 and C1000-3 using DRL models, as shown in figures 7(f ) and 7(i). Thus the
superposition effect does not directly cause the increasing residual Reynolds stress on the
virtual wall at rising Reynolds numbers. Its impact on the decreasing drag reduction rate
of the DRL models at high Reynolds numbers is also trivial.

To identify the source of −〈u′v′〉vw at high Reynolds numbers, figure 8 illustrates
the distributions of streamwise velocity fluctuations at y+ = y+

vw and y+ = 150. The
DRL-based control strategy reveals strong fluctuations on the virtual wall, characterized
by clustered small-scale fluctuations concentrated in specific areas. Although these
fluctuations are mitigated when the range of blowing and suction velocities is expanded,
they remain stronger than those observed after opposition control. It shall be noted that
these fluctuations are much smaller in size compared to the outer large-scale structures.
Therefore, they are unlikely to be induced by the linear superposition effect, but are
more plausibly related to the nonlinear amplitude modulation mechanism of the large-
scale structures. As indicated by the black rectangles in figure 8, regions of strong
fluctuations on the virtual wall often share similar spanwise locations with the outer large-
scale high-speed regions, further supporting this point. In the streamwise direction, areas
with clustered fluctuations are frequently situated upstream of the large-scale high-speed
regions. This phenomenon can be attributed to the inclination angle of the large-scale
coherent structures, as suggested by the near-wall fluctuation predictive models proposed
by Marusic, Mathis & Hutchins (2010b) and Mathis, Hutchins & Marusic (2011).

Further statistical evidence is required to support the relationship between the amplitude
modulation of outer large-scale structures and the residual Reynolds stress at the virtual
wall. The streamwise velocity fluctuations u′

O at the centre of the logarithmic region
y+

O ≈ 3.9
√

Reτ can be utilized to characterize outer large-scale structures (Mathis et al.
2009, 2011). A positive u′

O indicates a large-scale high-speed region, while a negative
u′

O denotes a low-speed region. On the other hand, the residual fluctuations at the
virtual wall exhibit a clustered distribution, as illustrated in figure 8. In areas with strong
fluctuations, the streamwise and spanwise scales of the fluctuations are smaller, and the
spatial alternation between positive and negative values is more pronounced. Considering
the impact of spatial alternation, we select the envelope of the Reynolds stress at the virtual
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Figure 8. Instantaneous distributions of u′ on the (x, z) plane at (a,c,e,g) y+ = y+
vw and (b,d,f ,h)

y+ = 150, for cases (a,b) C1000-opp, (c,d) C1000-1, (e,f ) C1000-2, (g,h) C1000-3. The black rectangles
represent some sample areas on the virtual wall where velocity fluctuations are stronger.

wall, denoted as |H(〈u′v′〉vw)|, to measure the strength of the residual stress fluctuations,
where H represents the operator of the two-dimensional Hilbert transform. Additionally,
the inclination angle θL of the large-scale structures should be considered. The outer
large-scale structures affecting the near-wall region are located downstream of this region.
Hence we will examine primarily the relationship between the virtual wall fluctuations
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Figure 9. Joint p.d.f. of the streamwise velocity fluctuations u′
O (�xm) at the centre of the logarithmic region

and the envelope of Reynolds stress |H(〈u′v′〉vw)| at the virtual wall, for cases (a) C1000-1, (b) C1000-2,
(c) C1000-3. Contour levels are 0.1(0.1)0.8 of the maximum probability density.

and u′
O(�xm) at a downstream displacement�xm . Here,�xm = (yO − yvw)/ tan(θL) and

θL = 11◦–15◦ according to Mathis et al. (2011). We select θL = 13◦ for the subsequent
discussions, noting that the results are robust within the range θL = 11◦–15◦.

The joint p.d.f. between the outer u′
O(�xm) and the envelope of Reynolds stress at the

virtual wall is depicted in figure 9. At the position where |H(〈u′v′〉vw)| approaches 0,
the joint p.d.f. tilts to the left, indicating negative u′

O in low-speed large-scale motions.
As the envelope of Reynolds stress gradually increases, the joint p.d.f. shifts, tilting to
the right, which is particularly evident in the upper half of the distribution. This pattern
suggests that locations with strong residual Reynolds stress fluctuations are typically
situated below large-scale high-speed regions, while areas with weaker residual Reynolds
stress generally correspond to large-scale low-speed regions. This observation is consistent
with the findings illustrated in figure 8. As the range of blowing and suction velocities is
extended, although the intensity of −〈u′v′〉vw diminishes, the influence of outer large-scale
structures on the distribution of Reynolds stress remains nearly unchanged. This further
substantiates the relationship between the amplitude modulation of outer large-scale
structures and the residual Reynolds stress at the virtual wall.

In summary, compared to the traditional opposition control method, the DRL-based
control strategy demonstrates superior drag reduction capabilities by effectively elevating
the virtual wall to a higher position. As the range of blowing and suction velocities
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is expanded, the virtual wall ascends further and the residual Reynolds stress on the
virtual wall decreases, both of which enhance the drag reduction rate of the DRL models.
However, as the Reynolds number increases, large-scale structures emerge in the outer
region. Their amplitude modulation effect significantly increases the residual Reynolds
stress on the virtual wall, and disrupts the virtual wall’s blockage in large-scale high-speed
regions, thereby reducing the drag reduction rate of the DRL models.

3.4. Dynamic analysis of drag reduction using budget equations
In the previous subsection, the drag reduction mechanism was examined from a kinematic
perspective using the virtual wall theory. This subsection will further discuss the dynamics
mechanism behind drag reduction based on the analysis of budget equations.

According to the FIK identity proposed by Fukagata et al. (2002), the skin frictions in
the current cases are primarily attributed to the Reynolds shear stress 〈−u′v′〉. Hence it
is necessary to discuss how the DRL-based control strategies reduce the drag by altering
〈−u′v′〉. The transport equation of the Reynolds stress 〈−u′v′〉 is written as

∂

∂t

〈−u′v′〉= 〈
v′v′〉 dU

dy︸ ︷︷ ︸
P12

+ d
dy

〈
u′v′v′〉

︸ ︷︷ ︸
D12,t

+
(

−μ d2 〈u′v′〉
dy2

)
︸ ︷︷ ︸

D12,ν

+ 1
ρ

〈
v′ ∂p′

∂y
+ u′ ∂p′

∂x

〉
︸ ︷︷ ︸

V P12

+ 2μ
〈
∂u′

∂x j

∂v′

∂x j

〉
︸ ︷︷ ︸

ε12

,

(3.3)

where P12 is the turbulent production, D12,t is the turbulent diffusion, D12,ν is the viscous
diffusion, V P12 is the velocity pressure-gradient term, and ε12 is the dissipation. Here, U
is the mean streamwise velocity.

Figure 10 shows the wall-normal distributions of the budget terms on the right-hand
side of (3.3). In the budget terms of the Reynolds shear stress, the production P12 and
the velocity pressure-gradient term V P12 are significantly stronger and more dominant
compared to the other terms, as suggested in figure 10(a,c,e). The viscous diffusion
D12,ν , although large and negative in the viscous sublayer, decays rapidly above y+ = 5
to become smaller than the dominant terms. Furthermore, the dissipation ε12 and the
turbulent diffusion D12,t are much smaller than the other terms, and their contribution
could be considered negligible. Among the two dominant terms, the velocity pressure-
gradient term V P12, which can be further divided into the pressure diffusion and the
redistribution, mainly represents the transport of Reynolds stress at different heights, and
the redistribution among different components caused by pressure. And it primarily acts
as a negative term to offset the production P12, which remains positive and determines the
magnitude of the Reynolds shear stress.

In the uncontrolled cases, the turbulent production P12 increases with height, reaching a
peak at approximately y+ = 15–20, and then decreases continuously. After implementing
wall blowing and suction, P12 at the wall is no longer zero, leading to a significant increase
in P12 within the viscous sublayer. This results in a larger Reynolds stress in the viscous
sublayer compared to that in the uncontrolled cases, as depicted in figure 5. However, this
effect is confined to the narrow height range of the viscous sublayer, and has a limited
impact on the overall skin friction. In the cases with control, P12 decreases rapidly with
height, and reaches a trough at approximately y+ = 10. In the range 10< y+ < 20, P12
is significantly smaller than in the uncontrolled case, corresponding to a lower Reynolds
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Figure 10. Wall-normal distributions of the budget terms of Reynolds shear stress 〈−u′v′〉 in (3.3): P12,
V P12, ε12, D12,t , D12,ν , for (a,b) C180, (c,d) C550, (e,f ) C1000. Lines without

markers indicate cases with suffix 0; plus signs indicate cases with suffix 1; circles indicate cases with suffix
2; triangles indicate cases with suffix 3.

shear stress in figure 5. As the range of blowing and suction velocities is expanded, the
height corresponding to the trough gradually increases, and P12 at the trough further
decreases, leading to a reduction in Reynolds shear stress. Moreover, the decrease in P12
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near the trough compared with the uncontrolled case is less pronounced at higher Reynolds
numbers, as indicated in figure 10(e). This results in a reduced suppression effect on
〈−u′v′〉 at higher Reynolds numbers, shown in figure 5(c), further leading to a decreased
drag reduction rate. As the height increases, P12 in the controlled case gradually rises
above y+ = 15, peaks, and then decreases continuously, eventually collapsing with the
uncontrolled case in the outer region.

According to (3.3), the turbulent production P12 of Reynolds shear stress consists of
two parts: 〈v′v′〉 and dU/dy. The latter could be viewed as the outcome associated with
changes in Reynolds shear stress and skin friction. Therefore, the following discussion
will focus primarily on the wall-normal kinetic energy 〈v′v′〉 to identify the source of
changes in P12. The wall-normal distributions of vrms under different control strategies
have already been shown and discussed in figure 4. After adopting the DRL models, the
wall-normal velocity fluctuations in the buffer layer gradually decrease. As the range of
blowing and suction velocities is extended, vrms continues to decrease, but this decreasing
trend slows down with increasing Reynolds number. This is similar to the evolution trend
of the turbulent production P12. The transport equation of the wall-normal kinetic energy
〈v′v′〉 is written as

∂

∂t

〈
v′v′〉= − d

dy

〈
v′v′v′〉

︸ ︷︷ ︸
D22,t

+μ
d2 〈v′v′〉

dy2︸ ︷︷ ︸
D22,ν

+
(

− 2
ρ

d
dy

〈
p′v′〉)

︸ ︷︷ ︸
D22,p

+ 2
ρ

〈
p′ ∂v′

∂y

〉
︸ ︷︷ ︸

Φ22

+
(

−2μ
〈
∂v′

∂x j

∂v′

∂x j

〉)
︸ ︷︷ ︸

ε22

,

(3.4)

where D22,t is the turbulent diffusion, D22,ν is the viscous diffusion, D22,p is the pressure
diffusion, Φ22 is the redistribution, and ε22 is the dissipation.

The wall-normal distributions of the budget terms on the right-hand side of (3.4) are
illustrated in figure 11. Among these budget terms, the wall-normal kinetic energy 〈v′v′〉 is
influenced predominantly by redistribution Φ22, pressure diffusion D22,p, and dissipation
ε22. Conversely, the effects of turbulent diffusion D22,t and viscous diffusion D22,ν are
comparatively minor. In the viscous sublayer, the redistribution Φ22 is primarily negative,
indicating that the wall-normal velocity fluctuations are being redistributed to other
directions. This negative contribution is offset mainly by the positive pressure diffusion
D22,p. As the height increases, the redistribution Φ22 changes from negative to positive,
indicating that the wall-normal velocity fluctuations are absorbing TKE from other
components. Meanwhile, the pressure diffusion D22,p rapidly decreases and gradually
approaches zero above y+ = 20. On the other hand, the dissipation ε22 gradually increases,
acting as a negative term to offset the positive contribution from the redistribution Φ22.
Based on the previous discussion, the drag reduction achieved by the DRL model stems
mainly from the dynamic changes in the buffer layer, while significant changes in the
viscous sublayer contribute very little to the overall drag reduction. Among the three
dominant terms, the pressure diffusion D22,p primarily represents the TKE transport
caused by pressure at different heights, with its intensity decreasing significantly in the
buffer layer compared to the viscous sublayer. Therefore, in the following discussion, we
will focus primarily on the redistribution Φ22, which represents the exchange mechanism
between wall-normal velocity fluctuations and other velocity components.

Compared to the uncontrolled cases, the DRL-based control strategy causes a significant
decrease in Φ22 in the buffer layer, and raises the position where it changes from
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Figure 11. Wall-normal distributions of the budget terms of wall-normal kinetic energy 〈v′v′〉 in (3.4):
Φ22, ε22, D22,p , D22,t , D22,ν , for (a,b) C180, (c,d) C550, (e,f ) C1000. Lines
without markers indicate cases with suffix 0; plus signs indicate cases with suffix 1; circles indicate cases with
suffix 2; triangles indicate cases with suffix 3.

negative to positive to approximately y+ = 20. This leads to less kinetic energy being
transferred to the wall-normal velocity fluctuations in the buffer layer, thereby suppressing
the production of Reynolds stress. The suppressing effect of the DRL models on the
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Figure 12. Instantaneous distributions of u′ on the (x, z) plane at y+ = 20, for cases (a) C180-0, (b) C180-3,
(c) C1000-0, (d) C1000-3.

redistribution Φ22 increases further as the range of blowing and suction velocities is
extended. At a low Reynolds number Re0

τ ≈ 180, this decreasing trend can extend to the
logarithmic layer, as illustrated in figure 11(e). However, as the Reynolds number increases,
the reduction in the redistributionΦ22 above y+ = 30 nearly vanishes, and the suppression
of Φ22 in the buffer layer by the DRL models becomes weaker. This change corresponds
to the decrease in drag reduction rate at higher Reynolds numbers.

It is important to note that due to the incompressibility condition (where divergence
equals zero), the sum of the redistribution terms for the three velocity components,
namely Φ11 = (2/ρ)〈p′ ∂u′/∂x〉, Φ22 = (2/ρ)〈p′ ∂v′/∂y〉 and Φ33 = (2/ρ)〈p′ ∂w′/∂z〉,
is 0. Above the viscous sublayer, the TKE is typically redistributed from the streamwise
component to the wall-normal and spanwise components (Lee & Moser 2019), also
indicated by the positive Φ22 observed in figure 11. This redistribution corresponds
to the transient growth of the streamwise velocity streaks associated with u′, leading
to the generation of quasi-streamwise vortices associated with v′ and w′ in the near-
wall turbulent self-sustaining cycle. Thus the observed weakening of Φ22 due to the
DRL-based control strategy can be interpreted as the suppression of the near-wall self-
sustaining mechanism. Consequently, a larger proportion of TKE would remain in the
streamwise component, resulting in smoother streak structures. Figure 12 illustrates the
instantaneous distributions of u′ in the near-wall region. The controlled cases exhibit
significantly smoother near-wall streaks compared to the uncontrolled results, and this
trend is consistent across different Reynolds numbers. This observation aligns with
the suppressed near-wall self-sustaining mechanism, and also reflects the DRL model’s
influence on Φ22 from the perspective of flow structures.

Moreover, the streamwise velocity fluctuations merit further discussion due to their
significant impact from the DRL-based control strategy, as illustrated in figure 4. The
transport equation of the streamwise kinetic energy 〈u′u′〉 is expressed as
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∂

∂t

〈
u′u′〉= −2

〈
u′v′〉 dU

dy︸ ︷︷ ︸
P11

+
(

− d
dy

〈
u′u′v′〉)

︸ ︷︷ ︸
D11,t

+μ
d2 〈u′u′〉

dy2︸ ︷︷ ︸
D11,ν

+ 2
ρ

〈
p′ ∂u′

∂x

〉
︸ ︷︷ ︸

Φ11

+
(

−2μ
〈
∂u′

∂x j

∂u′

∂x j

〉)
︸ ︷︷ ︸

ε11

,

(3.5)

where P11 is the turbulent production, D11,t is the turbulent diffusion, D11,ν is the viscous
diffusion, Φ11 is the redistribution, and ε11 is the dissipation.

Figure 13 illustrates the wall-normal distributions of the budget terms on the right-
hand side of (3.5). Among these budget terms, the production P11 plays a crucial
role, consistently remaining positive across various heights. In contrast, the terms D11,t
and D11,ν are relatively smaller, and represent primarily the transport of TKE in the
wall-normal direction. The dissipation term ε11 remains negative at different heights,
counterbalancing the production P11. Additionally, unlike Φ22 associated with wall-
normal velocity fluctuations, the redistribution term Φ11 has a trivial impact on the
streamwise TKE. In the uncontrolled cases, the production term P11 gradually increases
with height, reaching a peak at approximately y+ = 10–15. This height is similar to the
urms peak in the near-wall region, as depicted in figure 4. After applying control, this
peak disappears and transforms into a trough. The production term P11 in the viscous
sublayer increases significantly compared with the uncontrolled case. In the buffer layer,
P11 initially decreases and reaches the trough, then increases with height, with a second
peak appearing at approximately y+ = 20. It can be observed that after applying the DRL
model, the trend of P11 changes in a manner highly consistent with the changes in urms .
Notably, the turbulent production P11 of the streamwise TKE consists mainly of two parts:
〈−u′v′〉 and dU/dy. The latter can be considered as a result of changes in Reynolds stress.
Therefore, we can infer that the significant changes in urms caused by the DRL-based
control are primarily due to alterations in Reynolds shear stress.

In summary, figure 14 illustrates the dynamic mechanism through which DRL-based
control strategies influence skin friction. The application of wall blowing and suction,
directed by the DRL models, effectively suppresses the near-wall self-sustaining process,
thereby leading to smoother velocity streaks. This suppression manifests as a decrease
in the redistribution term of wall-normal TKE within the buffer layer, consequently
reducing wall-normal velocity fluctuations. The reduction in 〈v′v′〉 further diminishes the
production term of Reynolds stress, resulting in a decrease in 〈−u′v′〉. Ultimately, this
decline in Reynolds stress results in a reduction of skin friction. Moreover, the weakening
of streamwise velocity fluctuations can also be attributed to the decrease in Reynolds
stress. When the range of blowing and suction velocities is expanded, the aforementioned
effects are amplified, leading to an increase in the extent of drag reduction. Conversely, as
the Reynolds number rises and drag reduction diminishes, these trends are reversed.

4. Summary and conclusions
This study employs deep reinforcement learning (DRL) to develop control strategies,
aimed at reducing skin friction in DNS of turbulent channel flows at high Reynolds
numbers. Utilizing the TD3 framework, DRL predictions regulated wall blowing and
suction velocities, with streamwise velocity fluctuations at y+ = 15 serving as the state
input for the DRL agent.
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Figure 13. Wall-normal distributions of the budget terms of streamwise kinetic energy 〈u′u′〉 in (3.5):
P11, Φ11, ε11, D11,t , D11,ν , for (a,b) C180, (c,d) C550, (e,f ) C1000. Lines without
markers indicate cases with suffix 0; plus signs indicate cases with suffix 1; circles indicate cases with suffix
2; triangles indicate cases with suffix 3.

The DRL-based control strategies achieved significant drag reduction across various
Reynolds numbers, with maximum reduction rates 35.6 % at Reτ ≈ 180, 30.4 % at
Reτ ≈ 550, and 27.7 % at Reτ ≈ 1000. These results demonstrate superior drag reduction
compared to traditional opposition control. As the range of blowing and suction velocities
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Figure 14. Schematic diagram of the dynamic mechanism through which DRL-based control strategies
influence skin friction.

was extended, the drag reduction rates improved. Conversely, the effectiveness of DRL-
based control decreased with higher Reynolds numbers, similar to opposition control
methods. Further statistics indicate that the impact of DRL-based control on velocity
fluctuations is limited to the near-wall region, with minimal effects on the outer region.
Unlike opposition control, the wall blowing and suction velocities are more strongly
correlated with the near-wall streamwise velocity fluctuations compared to the wall-
normal component, owing to the u′ input state of the DRL model.

According to the virtual wall theory (Hammond et al. 1998), the height of the virtual
wall and the residual Reynolds stress on it are key indicators of drag reduction from a
structural kinematic perspective. Compared to opposition control, the DRL model achieves
higher drag reduction by elevating the virtual wall through blowing and suction. When
the range of these actions is expanded, the virtual wall height increases, and residual
Reynolds stress decreases, leading to further drag reduction. In contrast, an increase
in Reynolds number significantly raises residual Reynolds stress, disrupting the virtual
wall’s effectiveness and resulting in decreased drag reduction rates. The contribution
of residual Reynolds stress arises mainly from the amplitude modulation of large-scale
structures, rather than the superposition effect. The footprint of outer large-scale structures
is blocked above the virtual wall, while residual fluctuations on the virtual wall manifest
as clusters of small-scale structures after DRL control. These small-scale fluctuations tend
to be distributed beneath large-scale high-speed regions, indicating that the virtual wall’s
blockage is disrupted mainly in these areas.

On the other hand, analysing the budget equations elucidates the dynamic mechanisms
through which DRL-based control strategies impact skin friction. Our observations
indicate that the DRL models primarily reduce skin friction by inhibiting the redistribution
term of wall-normal turbulent kinetic energy. This effect manifests as the suppression
of the near-wall self-sustaining mechanism, resulting in smoother near-wall streaks. The
reduction in the redistribution term leads to decreased wall-normal velocity fluctuations in
the buffer layer, thereby diminishing the turbulent production of Reynolds stress. This
chain of effects further weakens the Reynolds shear stress, ultimately reducing skin
friction. Notably, when the range of blowing and suction velocities is extended, these
effects are amplified, leading to even greater drag reduction. Conversely, an increase in
the Reynolds number has the opposite effect, counteracting the benefits provided by the
DRL-based strategies.
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Cases Input states Rewards Reτ DR (%)

C550-3 u′|y+=15 TKE reduction rate 454.0 30.4
C550-drag u′|y+=15 Drag reduction rate 454.4 30.3
C550-v15 v′|y+=15 TKE reduction rate 459.2 28.8
C550-u20 u′|y+=20 TKE reduction rate 471.7 24.9

Table 5. Drag reduction results under different input states and rewards.
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Appendix A
This appendix discusses the drag reduction performance of the DRL-driven control
strategy based on varied input states and reward, as well as the performance of the trained
control strategy across different resolutions and Reynolds numbers.

To evaluate the drag reduction performance of the DRL-driven control strategy under
varied input states and rewards, we conduct three test cases, summarized in table 5.
These cases are all based on C550-3, with consistent parameters except for changes in
input states and rewards. In C550-3-drag, the reward is modified to drag reduction rate,
contrasting with C550-3; in C550-3-v15, the input state is changed to v′ at y+ = 15;
and in C550-3-u20, the input state is changed to u′ at a higher position y+ = 20. We
observe that each modified case converged within 10 episodes, and we select the models at
20 episodes, consistent with C550-3. The drag reduction results are presented in table 5.
The drag reduction rate in C550-3-drag nearly collapses with C550-3, suggesting that
similar control performance can be achieved regardless of whether TKE or total drag is
used as the optimization function. In C550-3-v15, where wall-normal velocity fluctuations
are used as the input state, a slight decrease in drag reduction rate is observed. In
C550-3-u20, with streamwise velocity fluctuations at a higher position, Reτ increases,
accompanied by a smaller drag reduction rate. These two cases indicate that despite
variations in sensing parameters, the DRL strategy remains effective in developing flow
control strategies based on the selected input variables.

Furthermore, we tested the performance of the trained control strategy across different
resolutions and Reynolds numbers. In the first case, we applied the model trained in C550-
3 to control a flow field around Reτ ≈ 550 with the streamwise and spanwise grids refined
by a factor of 2. We found that after grid refinement, the drag reduction rate collapsed
with the result from case C550-3. This suggests that grid resolution has a trivial effect on
the drag reduction performance of the DRL-derived control policy. In the second case, we
applied the model trained in case C1000-3 to control a flow field around Reτ ≈ 550. The
resulting drag reduction rate was 28.9 %, only slightly lower than the 30.4 % achieved in
C550-3. This indicates that the control policy trained in C1000-3 remains effective when
the Reynolds number is reduced.
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