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Abstract

We give a revised and updated exposition of the theory of full dualities initiated by Clark, Davey, Krauss
and Werner, introducing the (stronger) notion of a strong duality. All known full dualities turn out to
be strong. A series of theorems which provide necessary and sufficient conditions for a strong duality
to exist is proved. All full dualities in the literature can be obtained from these results and many new
strong dualities can be derived. In particular, we show that within congruence distributive varieties every
duality can be upgraded to a strong duality. Amongst the new strong dualities are the dualities of Davey,
Priestley and Werner for the varieties of pseudocomplemented distributive lattices which are either strong
as they stand or can easily be made strong by the addition of partial operations to the dual structures.

1991 Mathematics subject classification (Amer. Math. Soc): 08C05, 08C15, 18A40.
Keywords and phrases: duality theory, full duality, strong duality, congruence distributivity, near unan-
imity.

A topological duality provides us with a uniform way to represent each algebra
in the quasi-variety srf = ISFM generated by a finite algebra M as the algebra
of all (continuous) morphisms over its associated dual space in some category 3C
of structured Boolean spaces. This approach originated with Stone's representation
theorem for Boolean algebras [23] and Birkhoff's representation for finite distributive
lattices [2]. In the late 1960s and early 1970s it gained considerable impetus from
the very useful dualities of Priestley for all distributive lattices [22] and of Hofmann,
Mislove and Stralka for semilattices [19].

A number of additional examples culminated in a general theory of topological du-
alities for finitely generated quasi-varieties which appeared in Davey and Werner [16].
Their approach is to impose on the carrier M of M the discrete topology together with
a collection of carefully chosen operations, partial operations and relations to form
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[2] The quest for strong dualities 249

a dual structure M as generator of a dual category X'. If this is done in a special
but very natural way, then the homsets £(X) = X(X, ^J), where X e X, and
D(A) = ^/(A, M), where A € ^ , will be (closed) substructures of the powers
Mx and ^&A respectively, and E : X —>• ̂  and D : si ^>- X will be a pair of
adjoint contravariant functors such that each A 6 si is concretely represented as
A = ED(\). In this case we say that Ĵ J yj'eWs a duality on £/.

The association of algebras and homomorphisms in si with topological structures
and morphisms in X provides not only a concrete representation of the algebras, but
also preserves much of the structure of these categories as well. This fact led Davey
and Werner [16] and, more extensively, Clark and Krauss [5] to investigate choices of
X for which the association would be a dual equivalence between the categories si
and X. When this happens we say that ^J yields a full duality on s/.

A review of the literature shows that a number of additional features may be present
under a full duality which do not follow from category dual equivalence.

[A] Embeddings in X may be associated with surjections in si'.
[B] M may be injective in X.
[C] Embeddings in si may be associated with surjections in X.
[D] M may be injective in si.

In the presence of full duality it will not be hard to show that [A] and [B] are equivalent
and are implied by [C] and [D], which are also equivalent. This study is built around
the observation that all existing proofs of full duality actually establish a condition
which is stronger, more natural and more useful than full duality. We will say that
5$ yields a strong duality when this condition is met. Serendipitously, strong duality
always gives us [A] and [B] as well. Because strong duality provides our only apparent
access to full duality and is required for almost all interesting full duality theorems
and applications, we have made it the central focus of this study. We will show in a
later paper that conditions [C] and [D] hold exactly when the strong duality can be
obtained without the use of partial operations in the dual category.

Building on the work of Davey and Werner [16] and Clark and Krauss [5], we will
develop a number of methods for modifying a choice of ^J, which is already known
to yield a duality, to obtain one which yields a strong duality by adding operations as
well as partial operations to its structure. In particular, we will see just why partial
operations are in general necessary to do this. While it is not known if every duality
can be upgraded to a full duality or to a strong duality, the efficacy of the methods
presented here is evidenced by the fact that they can now be successfully applied
to upgrade every known duality to a strong duality by adding finitely many (partial)
operations to M-

One recurrent theme in our development will be the schizophrenic nature of the
various personalities we encounter in the categories si and X. Another will be the
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frequent identification of finitary versions of the conditions that interest us, with the
ultimate hope of showing that the finitary version is sufficient to establish the condition
in general.

Recent literature has shown that full dualities (which were actually strong dualities)
provide a very detailed understanding of the quasi-variety si. In these cases many
questions that arise in si can be translated, via a strong duality, into equivalent (yet
often much easier) problems in the dual category 36'. Such translations depend on our
ability to formulate questions fully in terms of algebras and their homomorphisms,
although they are not always given in this form. For example, the compactness
theorem for propositional logic translates into the assertion that the dual space of the
Lindenbaum algebra is compact (Stone [23]). Strong dualities were used by Cornish
and Fowler to characterize free de Morgan algebras and coproducts of de Morgan
algebras in [7]. Adams and Clark [1] use them to reconstruct algebras in certain
quasi-primal varieties from their endomorphism monoids. They are used by Davey,
Quackenbush and Schweigert [15] to determine which order-primal algebras generate
congruence distributive varieties. Clark uses them to provide a general technique for
identifying and axiomatizing algebraically and existentially closed structures in si,
and this is applied to Stone algebras and double Stone algebras in Clark [3] and to the
variety %\ of pseudocomplemented distributive lattices in Clark and Schmid [6].

In Section 1 we review the necessary background from Davey and Werner [16].
This material can be found in an updated though outline form in Davey [11] and will
soon appear in the full exposition of Clark and Davey [4]. Section 2 constitutes a
revised, simplified and updated formulation of the material in Clark and Krauss [5]
on full dualities. In Section 3 we show how the notion of strong duality arises, prove
that it is equivalent to full duality plus the injectivity of J$ in SC, and we prove three
general theorems telling how it can be obtained. These efforts culminate in the next
section where we prove the Two-for-One Strong Duality Theorem and the NU-Strong-
Duality Theorem, each of which gives finitary conditions for a strong duality to exist.
Some readers may wish to familiarize themselves with the definitions and then go
directly to these theorems to obtain a strong duality for their favorite quasivarieties.
We leave it to the reader to check that these theorems do convert every existing full
duality into a strong duality, or to see this fact checked directly in the upcoming text by
the authors [4]. (Added in proof. Recently, R. W. Quackenbush and the second author
have established strong dualities (for certain varieties of groups and quasigroups),
which do not follow directly from the results of this paper, thereby opening up the
possibility of theorems more general than those proved here.)
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1. Dual adjunctions and duality

251

We begin by laying out the few category theoretic concepts necessary for our work.
Suppose that si and SC are categories, D : si -> SC and E : % ->• si are
contravariant functors and for each A e si and X e X there are morphisms

ek : A -* ED(A) and sx : X - • DE(X).

, that D and £ are
adjoint to £ if the

We say that {D, E, e, e) is a <iwa/ adjunction between si and
dually adjoint, that £ is a dwa/ adjoint to D, and that D is a
following conditions hold:

(a) for u : A —>• B in si and >̂ : X -> Y in SC, the diagrams in Figure 1 commute.
(b) for A € .fi/andX e SC there is a bijection between ̂ ( A , £(X)) and JT(X, D(A))

associating u and ^ as given in the commuting diagrams of Figure 2.

ED (A)

B

ED(u)
D£(X)

FIGURE 1

<P

DE(<p)
DE(Y)

e\ ex
• ££>(A)

u >». 1
£(X)

X

FIGURE 2

> D£(X)

D(A)

General duality theory grows out of a simple mechanism of Davey and Wener [16]
for generating a profusion of dual adjunctions for the quasi-variety si = ISPM
generated by any finite algebra M. To present their method we must first de-
scribe the objects of the dual category SC. They will be topological structures
X = (X; Gx, Hx, Rx, &x) where 3~x is a topology on X and Gx is a set of finitary
total operations, Hx is a set of finitary partial operations and Rx is a set of finitary
relations on X.

Since the usual constructions are not fully standardized when partial operations are
present, we will review them here. Let G, H and R be fixed sets of finitary operation
symbols, partial operation symbols and relation symbols, each carrying its own finite

https://doi.org/10.1017/S1446788700038283 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038283


252 David M. Clark and Brian A. Davey [5]

arity. lfY = (Y;GY,HY,RY, !?Y) is a topological structure of the same type as X,
we say that Y is a substructure of X, written Y < X, provided that

(a) for each w-ary h e G U H, the domain dom(hY) of hY is dom(n*) n Y", and hY

agrees with hx on this set,
(b) for each n-ary r e R,v/e have rY = rx n Y", and
(c) 2TY is the relative topology obtained from 2fx.

Products are defined over nonempty index sets in the usual manner using pointwise
(total) operations and relations and the product topology, and partial operations are
defined (pointwise) whenever they are defined at each point.

A continuous map cp : X —> Y is a morphism, written <p : X —> Y, if for each n-ary
h G G U H and each (xu ..., xn) e dom{hx), we have (<pxu . . . , <pxn) e dom(hY)
and

<phx\xu ..., xn) = hY(<pxu...,(pxn)

and for each n-ary r e / ? and each (xu ..., xn) e rx we have ((pxu ..., cpxn) e rY.
A morphism <p : X —> Y is an embedding if it is one-to-one, <p(X) determines a
substructure ^(X) of Y and <p~x : (p(X) —> X is a morphism. A surjective embedding
is an isomorphism.

For a class ^ of similar topological structures, B^, § c ^ , P ^ denote, respectively,
the classes of isomorphic copies of members of ^ , topologically closed substructures
of members of ^ , and products (over non-empty index sets) of members of &'.

We will normally suppress the superscripts on the (partial) operation and relation
symbols when the associated structure is clear from the context.

Given a finite algebra M, we seek a structure ^J = {M; G, H, R, 3?) which
shares the carrier M of M and has the discrete topology 3" such that there is a dual
adjunction {D, E,e,e) between the quasi-variety srf = ISPM and the topological
category X = I§C1P^J. Our first lemma gives a useful characterization of any such
category X.

1.1 SEPARATION LEMMA. (Clark and Krauss [5, 1.3]) LetX be a compact structure
of the same type as the finite discretely topologized structure tyj- Then Y e l ' =
i§cPM if and only if the following conditions hold:

(a) for each x, y e Y where x ^ y, there is a<p : Y —> ftj such that <p(x) ^ <p(y),
(b) for each n-ary h e H and y e Y" \ dom(hY), there is a <p : Y —> l̂ J such that

<p(y) $ dom(«M),
(c) for each n-ary r € Randy e Y" \rr, there is a <p : Y -> ftj such that <p(y) grM.

We say that an operation, a partial operation or a relation on M is algebraic over M if
it is a subalgebra of a power of M. Notice that an n-ary (partial) operation h c M"+1

is algebraic over M if and only if it is a homomorphism from a subalgebra of M" into
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M. We say that M is algebraic over M if each relation and each (partial) operation of
M is a subalgebra of a power of M.

1.2 LEMMA. (Davey and Werner [16, 1.1]) For a finite algebra M and a discrete
topological structure IJkJ having the same carrier M as M, conditions (b), (c) and (d)
below are equivalent and imply condition (a):
(a) for each A € s/, the homset s/{A, M) determines a closed substructure of^A;
(b) for each X e 3£, the homset &(X, 1$) determines a subalgebra ofMx;
(c) each operation (and therefore each term function) ofM is a morphism from a

power of M into M and each nullary operation (constant) of M determines a
substructure ofM all of whose relations and partial operations are nonempty;

(d) M is algebraic over M.

If M is algebraic over M, we can define D :
for A , B e ^ a n d u : A -> B

3C and E : si where,

and D(u) : D(B)

D(\) = s/(A, M) < MA

D(A) is given by D(u)(x) — x o u and, for X, Y € SC and

E(X) = < M*
and E(<p) : £(Y) ->• £(X) is given by E(<p)(a) =ao<p. Moreover, for each A e /
and each X e f w e define the evaluation maps

and

(See Figure 3.)

D(A)

M ;

<?A : A -* ED(A) by eA(a)(x) = x(a)

ex : X —*• DE(X) by ex(x)(a) = a(x).

E(X)

M M

FIGURE 3
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The next theorem, which is straightforward to verify, shows that in this context a
large part of the construction we seek is present as soon as M is algebraic over M.

1.3 DUAL ADJUNCTION THEOREM. (Davey and Werner [16, 1.5]) //M isalgebraic
over M, then (D, E,e,s) is a dual adjunction between si and X such that, for any
u : A —> B in si and <p : X —> Y in SC, the following additional properties
hold:

(a) the evaluation maps eA and ex ore embeddings,
(b) D and E are faithful,
(c) ifu is a surjection, then D(u) is an embedding,
(d) if D(u) is a surjection, then u is an embedding,
(e) if<p is a surjection, then E(<p) is an embedding,
(f) if E(<p) is a surjection, then cp is an embedding.

The remainder of this paper is devoted exclusively to the study of the setting
described in the Dual Adjunction Theorem. In particular, there will never be occasion
to refer to a choice of a structure M which is not algebraic over M. We therefore
assume without further mention that all operations, partial operations and relations on
M are algebraic over M.

A dual adjunction reflects the structure of each of the categories si and X in
the other. From the algebraic point of view, our first aim must be to represent each
algebra A 6 si as the algebra E(X) = X(X, ^ ) of all structure preserving maps
(that is, morphisms) from X into M- A dual adjunction provides us with a very natural
choice, namely X = D(A), for the representing space as well as a very natural choice,
eA : A -> ED (A), for the required isomorphism. Consequently we say that ^J yields
a duality on si if it is algebraic over M (and therefore yields a dual adjunction) and
for each A in si, the evaluation eA is an isomorphism. Given that ^ is algebraic over
M and therefore ek is already an embedding, this says precisely that, for each A in
si, every morphism from D(A) into M is an evaluation. We will make frequent use
of a simple consequence of this observation.

Let M = (M; G, H, R, £?} and M' = (M; G', H\ R', ST). Define % = !§CPM
and SC' = J§CIPM' and let D : si -»• X, E : X - • si, D' : si -*• X', E' :
X' —> si be the corresponding hom-functors obtained from IJfcJ and ftj' respectively.
We say that (the structure on) ^J' generates a relation r or (partial) operation h
if, for all A e si, every morphism <p e X'(D'(A),y$) preserves the relation r
or (partial) operation h. We say that (the structure on) ftj' generates (the structure
on) M if J$' generates each relation and (partial) operation in G U H U R, that is, if
X'(D'(A), M') £ X(D(A), M)- When proving that fcj' generates M it is common to
prove the following stronger statement: X\X, M') £ XQL, M) whenever X < tys
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andX' < (M)5 have the same carrier X c Ms.

1.4 M-SHIFT DUALITY LEMMA. IfW generates J$ and M yields a duality on s/,
then W also yields a duality on s/.

PROOF. Assume that JkJ' generates M and that M yields a duality on si'. Let
A e s/\ then s/(A, M) determines substructures D(A) < $&.* and D'(\) < (W)A-
Thus, from our hypothesis,

E'D'{A) = <£"'(£>'(A), M')

and consequently every morphism from D'(A) to M' is also an evaluation.

In particular, this lemma tells us that duality is not lost if we add structure to ftj,
nor is it affected if we choose to view some operations as partial operations and some
partial operations as relations. As a result, relations alone are sufficient as long as
we are interested only in dualities. A list of commonly used constructions for finding
relations generated by M may be found in [16] and [11].

The next step is to find practically verifiable conditions under which a particular
choice of ^J will yield a duality on &/. The structure ftj is injective in the category
3C if, for every morphism a : X -> ^J and embedding cp : X —>• Y in 3£, there is a
morphism f$ : Y —> M such that y8 o <p = a. This notion plays a central role in this
study.

1.5 FIRST DUALITY THEOREM. (Davey and Werner [16, 1.8]) The following are
equivalent:

(a) 1$ yields a duality on si';
(b) for all Ass/, every morphism a : D(A) —> M extends to an A-ary term

function z : MA —>• M ;
(c) the following two conditions hold:

(INJ) ^ | is injective with respect to those embeddings in X which are of
the form D(u) : D(B) —>• D(A) where u : A —>• B is a surjective
homomorphism, that is, for each morphism a : D(B) —> ftj there exists
a morphism /3 : D(A) —»• ^J such that P o D(u) = a,

(CLO) for each n e N, every morphism x : M" —*• ^ is an n-ary term function
onM.

By Lemma 1.1 (c), every term function of M is a morphism in X. The condition
(CLO) adds the converse: duality requires that the term functions on M must be
exactly the morphisms from finite powers of M into ftj. Thus (CLO) says precisely
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that the structure on ]J$ determines the clone of term functions on M. Given that M is
finite, it is easy to see that (CLO) implies the following stronger version (see Davey
and Werner [16, 1.8(1)]):

(CLO)00 for each nonempty set 5, the morphisms from M5 t o M are precisely
the S-ary term functions on M.

Note that (INJ), which is a special case of the injectivity of M in 3C, has been proven
in every example to date by actually demonstrating that ftj is injective in 3£'. For the
finite members of 3E we notice that (INJ) and (CLO) follow from the stronger but
simpler interpolation condition:

(IC) for each n e N and each substructure X of ffi, every morphism
or : X -> M extends to a term function x : M" -> M of the algebra
M.

Most known dualities can be obtained by verifying (IC) and then invoking the follow-
ing fundamental theorem of [16].

1.6 SECOND DUALITY THEOREM. (Davey and Werner [16,1.16]) Assume that
l̂ J = (M; G, R, 2f), that is, the structure on ftj includes no partial operations, and
that R is finite. If (IC) holds, then ftj yields a duality on #/ and M is injective in SC.

This theorem reflects the spirit of the results that we will seek in this paper. It
gives us a simple finitary condition which yields both a dual adjunction between the
categories srf and 3t and a topological representation of each algebra in &f, but it
requires us to do no category theory and no topology!

One of the most important and oft used consequences of the Second Duality
Theorem is the NU-Duality Theorem. A (k + l)-ary term n(x\,..., xk+\) is called a
near-unanimity term on M if M satisfies the identities

n(x,..., x, y) « n(x,..., x, y, x) «s • • • « n(y,

A 3-ary near-unanimity term on M is usually called a majority term. For example,
on any algebra with an underlying lattice structure, the median

m(x, v, z) := (x A y) v (y A z) V (z A x)

is a majority term since it satisfies the identities

m(x, x, y) « m(x, y, x) s» m(y, x, x) « x.

1.7 NU-DUALITY THEOREM. (Davey and Werner [16, 1.19]) Let k > 2 and as-
sume that M has a (k + \)-ary near-unanimity term. If the structure on ty generates
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[10] The quest for strong dualities 257

all subalgebras ofMk, then &J yields a duality on si and ty is injective in SE.

Assume that (D, E, e, e) is a dual adjunction between the categories si and SC.
We say that (D, E, e, e) is a dual equivalence between si and X if, for each A e s/
and X e 5P, both eA : A -> ED (A) and ex : X ->• DE(X) are isomorphisms.
If ^ = ISPM, if SE = ISCPM. and if the dual equivalence arises from a duality
yielded by $& on .t/, then we say that M yields a/«// duality on .s/.

As was remarked above, a duality is, in particular, a representation theorem: every
algebra A e si is isomorphic to £(X) = JT(X, tyj) for some X € 3E. In symbols,
.c/ = iE(SE). If M yields a full duality on si, then we also have a representation on
the topological side: every structure X 6 3E is isomorphic to D(A) = ^ ( A , M) for
some A e .e^. In symbols, SE = W(sf). As the next lemma shows, in the presence
of a duality, such a representation on the topological side is enough to guarantee that
the canonical choice, namely s% : X —*• DE(X), is always an isomorphism, whence
the duality between s/ and 3& is full. At the same time, we shall see that while
a duality between si and 3E need not be full, it always yields a dual equivalence
between si and a natural subcategory of 3C.

1.8 FULL DUALITY LEMMA. (i) Assume that M yields a duality on si. Let
SC' = W(si) and let E' and s' be the restrictions of E and s to 3E'. Then
(D, E', e, e') is a dual equivalence between si and SC'.

(ii) The following are equivalent:

(a) 1$ yields a full duality on si;
(b) ex is an isomorphism for each A in si (that is, M yields a duality on si)

andSC = WD(s/);
(c) ex is an isomorphism for each X in 3E and si — D£(^T).

Moreover, the same is true if si and 3E are replaced by the subcategories s/^ and
3C'fin consisting of their respective finite members.

PROOF. Assume that IJkJ yields a duality on si and let X e SC'. Then there is
an A e si and an isomorphism (p : X -* D(A). Let u : A -> E(X) be the
corresponding homomorphism given in the definition of a dual adjunction (see Figure
2). By assumption, eA is an isomorphism, and E{cp) is an isomorphism since <p is.
Consequently u is an isomorphism, whence D(u) is an isomorphism and therefore
£x = D(u)~l o <p is an isomorphism. Thus (i) holds.

Part (ii) follows almost at once from (i). It is trivial that (a) implies both (b) and
(c); that (b) implies (a) is a consequence of (i); and (c) implies (a) by symmetry. Note
that these arguments apply equally well to the finitary version of the lemma.
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2. Full duality and the dual category

In this section we will investigate when the duality given by a structure ]J$ can be
upgraded to a full duality on si'. A brief review of the last section reveals a rich source
of raw materials out of which we might begin to build full dualities. If JkJ yields a
duality on si', then Part (i) of the Full Duality Lemma (1.8) tells us that D and E yield
a dual equivalence between si and the subcategory $D(s/) of SC. By itself this fact
is of rather limited value since in practice we have no way to identify members of
iD(si) within 3£. But now the M-Shift Duality Lemma (1.4) comes into play. If M
yields a duality on si, then it will do so regardless of whether its operations and partial
operations are viewed as members of G U H or they are viewed, via their graphs, as
relations in R. Also, duality will not be affected by the addition to G, H and R of
new (partial) operations and relations which are algebraic over M. This means that
we have considerable freedom to modify a choice of M» which yields a duality on si,
without jeopardizing that duality. By adding new (partial) operations to G U H and
transferring relations which are graphs of operations from R to G U H we will be able
to eliminate structures from 3£ which are not in iD(si). Ultimately we will seek to
add enough structure to M to obtain X — iD(si).

We begin by examining the structure imposed on the category SC by the dual
adjunction arising from an arbitrary choice of the generating structure M- Our ana-
lysis depends on two different descriptions of the dual category W(si) which will
give us a basic conceptual model to tell when M yields a full duality on si. This
section constitutes a revised exposition of Lemma 2.14 to Theorem 2.26 of Clark and
Krauss [5].

Let / be an arbitrary nonempty set, B a subalgebra of M7 and h : B —• M a
homomorphism, that is, h is an algebraic I-ary partial operation on M. Just as we
do in the finitary case, we may extend h pointwise to an 7-ary partial operation h on
any power Ms of M. For each s e S, let ns '• Ms —• M denote the 5th projection
given by ns(y) = y(s) for each y € Ms. Then the domain of the extension h is

dom(h) = {x € (Ms)' | ns o x e B for all s e 5} c (Ms)'

and h : dom(h) -> M5 is defined by (h(x))(s) = h(ns o x) for x e dom(h). As
is customary, we say that a subset X of Ms is closed under h provided h(x) G X
whenever x e dom(h) and x(/) e X for each i e / . We shall say that X is horn-closed
(in Ms) if, for each nonempty set / , the set X is closed under every algebraic /-ary
partial operation h on M.

For an arbitrary nonempty set S, the subalgebra of M M S (^-freely) generated by
the projections {ns\s e S] is called the algebra of S-ary term functions on M and
is denoted by Ts. We say that a subset X of Ms is term-closed (in Ms) if for all
y € Ms \ X there exist S-ary term functions a, x : Ms ->• M on M that agree on
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X but not at v. Thus X is term-closed in Ms provided it is an intersection of the
equalizer sets

Eq(a, r) = {x e Ms \a(x) = T(X)}

of pairs (a, r) of 5-ary term functions from Ts.
Despite their disparate origins, these two notions of closure prove to be equivalent.

The proof of this fact requires a modification of the embedding ex- Let S ^ 0, let
X < iyjx and let Ts [x < M* be the restriction of the algebra of S-ary term functions
toX:

Define the evaluation map Sx : X ->• D(TS fx) by 8x(x)(r \-x) = z{x) for x e X
and T e Ts. (See Figure 4.)

Ts C M

Tstx

M M

Mi X

FIGURE 4

hi the proof of (b) implies (c) below, notice the schizophrenic nature of X, which
acts simultaneously as a substructure of a power of | $ and as the exponent of a power
ofM!

2.1 CLOSURE THEOREM. If S ^ 0 and 0 ^ Z c Ms, then the following are
equivalent:
(a) X is term-closed in Ms;
(b) X is hom-closed in Ms;
(c) every homomorphism u : Ts ^ —> M w an evaluation map;
(d) X e f ff/iaf /s, X is a closed substructure of l$s) and the map <5X : X —>

D(Ts tx) is an isomorphism.

PROOF. Assume that X is term-closed in Ms. Let B be a subalgebra of M7, let
h : B -»• M and let x G X' be in the domain of h. We will show that h(x) is in the term
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closure of X. Since Ts is generated by {TTJ | s € S), each member of Ts is of the form
T ( T S ) ( ^ , , . . . , nSn) where r is an «-ary term. Assume, then, that T(TS)(^J, . • • •» ^ J
and aiTs)(nSl,..., nSn) agree on X. Observe that

TB(nSl o x , . . . , nSn o x), CTB(7rS| o x , . . . , nSn o x) e M'

and that, for any i e I,

rB(nSl ox,...,7tSno x)(i) = zK(7tSlx(i), ..., nSnx(i))

= r(Ts)(nSi,..., nj(x(i)) = a(Ts\nSl,..., nSn)

= CT^CTT^XO'), • • •, 3rlBx(/)) = aB(nSl ox i , , o x)(/)

from which we conclude that rB(nSl o x , . . . , nSii ox) = crB(nSl ox,... ,nSit ox). Thus

T '̂CTT,,, . . . , 7tJ(h(x)) = TM(

= T^-(h(nSl ox),..., h{nSn o x)) = hxB{{nSy o x ) , . . . , (nSii o x))

= haB((nSl o x ) , . . . , {nSn o x)) = a M ( / i ( ^ , o x ) , . . . , h(nSn o x))

^ ) = a^iit,,,..., 7 r J ( h ( x ) ) .

Since h(x) is in the term-closure of X, it is in X. Thus (a) implies (b).
Assume that (b) holds. In order to prove (c), we apply (b) to the closure of X under

u. Let B = Tstx < M* and let i e (Ms)x be the inclusion map i(;c) = x. Then
i e dom(u) since ns o i = ns[x, for each s e S. By hom-closure, u(i) 6 X. We
check that u is exactly the evaluation <5x(u(i)). Since both are homomorphisms, it is
sufficient to see that they agree on each generator ns [x where s e S:

Sx(u(i))(7rs h) = 7rs(u(i)) = u(\)(s) = u{ns o i) = u{ns \x).

We now show that (c) implies (a). Suppose z e Ms and any two 5-ary term
functions which agree on X also agree at z. Then the map u : Ts [x —*• M defined by
w(r \X) = r(z)is a well-defined homomorphism. By (c) there is an x e X such that u
is evaluation at x. Thus for all 5 e S we have

z(s) = ns(z) = u(ns fx) = ns(x) = x(s)

and consequently z = x e X. Hence X is term closed.
Since it is trivial that (d) implies (c), to complete the proof it suffices to prove that (a)

and (b) together imply (d). Topological closure is an immediate consequence of term-
closure, and closure under algebraic (partial) operations is an immediate consequence
of hom-closure. Thus X e SC'. The proof that <5X is an embedding is routine, and is
exactly the same as the proof of Lemma 1.5 of Davey and Werner [16].
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2.2 LEMMA. (Clark and Krauss [5, 2.17]) D(A) is term-closed (= horn-closed) in
MAforallA€£/.

PROOF. Let y e MA and assume that any two term functions in TA that agree
on D(A) also agree at y. Let / be an n-ary operation in the type of s/ and let
au ... ,an G #/. For any x e D(A), the maps a — 7T/(ai an) andr = f(nai,... ,nan)
agree at x:

o{x) = Jtf(a an)(x) = xifia^,...,x(an)) = /(x^),...,x{an))

= / (7r a , ( j r ) , . . . . nan(x)) = f(nai,..., naj(x) = x(x).

Consequently, a and r also agree at y. Thus

y(f(au ..., an)) = nf(a an)(y) = a{y) = x{y) =
f(nai,..., naj(y) = f(nax{y),..., nan(y)) = f{y(ax),..., y(an)),

whence y e D(A).

If M yields a duality on #f, then Part (i) of the Full Duality Lemma (1.8) tells us
that D and E (restricted to D D (gf)) yield a dual equivalence between the categories srf
and ID(^) . As an immediate consequence of these results we get two fundamental
descriptions of the dual category W(&/) that will be used throughout the rest of this
paper.

2.3 COROLLARY. (Clark and Krauss [5, 2.26]) Let X e f . Then X € OD(^) if
and only if X is isomorphic to a term-closed (= hom-closed) subset of l$.s for some
nonempty set S.

The content of the last three results is summarized in Figure 5.

= ISPM X = ISCP M

FIGURE 5. subcategories of 3£ under a dual adjunction. Here §t
term-closed and hom-closed subsets.

SCPM

W(A)
= IStmP M

StmPM
= Sho

§hom denote, respectively,

https://doi.org/10.1017/S1446788700038283 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038283


262 David M. Clark and Brian A. Davey [15]

The following variant of the First Duality Theorem (1.5) is more exactly suited to
our needs. Here we have replaced (INJ) with the injectivity condition (INJ)' which is
expressed fully in terms of the category X.

2.4 THIRD DUALITY THEOREM. (Clark and Krauss [5, 2.25]) The following are
equivalent:

(a) 5$ yields a duality on srf';

(b) if X is a term-closed substructure of tyys for some S ^ 0,then E(X) = Ts[x,that

is, every morphism a : X —• ^J extends to an S-ary term function x : MS -*• W>'
(c) the following conditions hold:

(INJ)' ]J# is injective with respect to term-closed sets X c ]̂ J5 (with S ^ 0) and
their inclusion maps, that is, each morphism a : X —>• ^J extends to a
morphism ft : l$.s —> ftj,

(CLO) for each n e H, every morphism r : J$" -> ^J is an n-ary term function
onM.

Moreover, the same is true if si is replaced by ^/fin in (a) and S is restricted to finite
sets in (b) and (c).

PROOF. Assume that ^f yields a duality on si and that X is term-closed in ^Js.
The dual adjunction yields the triangles in Figure 6, where i : T5fx -*• E(X) is
the inclusion map. If M yields a duality on s/, then e(Ts tx) is surjective. By the
Closure Theorem (2.1), <5X is an isomorphism and hence E(SX) is an isomorphism. By
the left-hand triangle, the inclusion map i is surjective and we have E(X) = Ts[x-
Hence, (a) implies (b).

FIGURE 6. An application of Figure 2

Since (b) implies (c) trivially, it remains to prove that (c) implies (a). We verify the
second condition of the First Duality Theorem (1.5). Let A e s/ and let a : D(A) —>
M- By Lemma 2.2, the set D(A) is term-closed and therefore, by (INJ)' it follows
that or extends to a morphism ft : ^JA -*• ^J which, since (CLO) implies (CLO)°°, is
an A-ary term function on M.

To prove the finitary version ('Moreover,...'). first observe that the same argument
again establishes that (a) implies (b), and that now (b) and (c) are identical. To prove
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that (b) implies (a), consider n € N and r? : D(A) -* ^J where A < M". By
Lemma (2.2), the set D(A) is term-closed and consequently y3 extends to an A-aiy
term function x. Thus there are a, b, c,... e A such that for all x e D{Pi), we have
that

r)(x) = r(na, nb, nc,.. .)(x) = T(x(a), x(b), x(c),...)

= x(r(a, b,c,...)) = eA(r(a, b,c,.. . ) ) « •

Thus eA is surjective and we have (a).

In practice we will normally begin with a duality which we seek to upgrade to a full
duality. Our characterization of the dual category tells us just what will be required to
do this.

2.5 FULL DUALITY THEOREM. If$. yields a duality on srf, then the following are
equivalent:

(a) M yields a full duality on &/;

(b) X = W(A);
(c) every closed substructure of a power o /M is isomorphic to a term-closed (-

hom-closed) substructure of a power ofM-

Moreover, the same is true if si and 3£ are replaced by ,c/fin and ^Tfin in (a) and (b),
and (c) is restricted to finite powers o/M-

PROOF. Combine Part (ii) of the Full Duality Lemma (1.8) with Corollary 2.3.

This theorem tells us that the duality, which J# yields on sf, will be full exactly
when we have the cleaner arrangement of subcategories of SC illustrated in Figure 7.
We turn next to the question of how and when this will be the case.

A = \E{X)

X = W(A)
= IStmM

SCPM

StmPM

FIGURE 7. Subcategories of 3£ under a full duality.
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3. Strong duality and the role of injectivity

Assume that ftj yields a duality on si. To establish that M yields a full duality on
si, the Full Duality Theorem (2.5) says that we must find, for each nonempty set 5
and each closed substructure X of Ms, a nonempty set T and term-closed (= hom-
closed) substructure Y of tyjJ such that X is isomorphic to Y. Now this seemingly
daunting assignment is actually carried out in every known example of full duality by
establishing that the natural candidate Y = X will suffice, that is, that every closed
substructure of a power o/M is either term-closed or hom-closed. When this is true
we say that M yields a strong duality on si'. While proving strong duality is the
most natural way to establish a full duality, it also provides a valuable enhancement
of full duality which will prove useful in many ways. In this section we will see that
strong duality implies the injectivity of ^J in 3£, and, conversely, that a full duality
for which ^ is injective in 3C is necessarily strong. The injectivity of ftj considerably
strengthens the dual equivalence between si and 3£. We will prove several theorems
giving different criteria for establishing a strong duality. In particular we will see
how the criteria become simpler and more direct as the structure on ftj becomes more
tractable. Note that in Figure 7 the duality is strong when the two inner boxes on the
right are really one.

Once we have a structure ^J which yields a strong duality on si, we often wish to
modify the structure on ]J$ without destroying the strong duality.

3.1 M-SHIFT STRONG DUALITY LEMMA. Assume that M = (A/; G, H,R,3F)
yields a strong duality on si. Then ftj' will also yield a strong duality on si if it
is obtained from Ijfl. by:

(a) enlarging G, H or R,or
(b) deleting members of G or H which can be obtained as compositions of the

remaining members ofG and H and the projection mappings.

Moreover, ifty yields a duality on si and is obtained from ftj by

(c) deleting members of R, or
(d) deleting members of H which have an extension in G or H,

then y$ will also yield a strong duality on si'.

PROOF. Use the M-Shift Duality Lemma (1.4) to show that duality is not disturbed
in (a) and (b), and the hom-closure definition of strong duality to show that strong
duality is not disturbed in all four cases.

Assume that ]J# yields a duality on si^, that is, eA : A -> ED (A) is an iso-
morphism for every finite algebra A in si. We say that M yields a full duality on
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•Ĝfm if £x : X —*• DE(X) is an isomorphism for every finite X in 3C and that ^J
yields a strong duality on ^ f i n if every (closed) substructure of a finite power of JJ is
term-closed (= hom-closed).

It was pointed out by Clark and Krauss [5 ] that every example of a full duality known
to them was strong. Davey and Werner [16] noted that in every full duality known
to them the structure ^J was injective in SC. As it happens, these two enhancements
of full duality turn out to be equivalent. (The theorem below strengthens the result
announced in Davey [11, 3.4].)

3.2 FIRST STRONG DUALITY THEOREM. M yields a strong duality on srf if and only
' /M yields a full duality on &/ and is injective in X'. The corresponding result holds
at the finite level, that is, ftj yields a strong duality on s/Rn if and only ifljfr yields a
full duality on s/Rn and is injective in X'fln.

PROOF. Assume M yields a strong duality on srf. Then M yields a full duality on
srf by the Full Duality Theorem (2.5). To prove injectivity, let cp : Y —> M5 be an
embedding and let a : Y —> ftj be a morphism in SC. Then the image of Y under q>
is a closed substructure X of IJfcJ5 and we have acp~l : X —>• ^J. By strong duality X is
term-closed in M5, and by the Third Duality Theorem (2.4), the map a<p~l extends to
an 5-ary term function x on M. Thus x o <p : Y —• ̂ J is the required extension of a.

Conversely, suppose ftj yields a full duality on si and is injective in X. Let
S ,£ 0, let X < M5 and let v e Ms \ X. Denote by Y the closed substructure of M5

generated by X U {v}, that is, Y is the intersection of all closed substructures of ^J5

which contain X U {v}. Let i : X -> Y be the inclusion map. By injectivity, each
member of E(X) has an extension in £(Y), that is to say, E(i) : E(Y) —*• E(X) is
surjective. Since X ^ Y, the inclusion i is not an isomorphism and hence E(i) is not
an isomorphism. Thus E(i) is not an embedding and we must have a, x e E(Y) with
a ^ r but erf* = x\x- Suppose that o (v) = r(v). ThenXU{y} c Eq(a, T),whence
f c E q {a, T), by the definition of Y, since Eq (o, x) is a closed substructure of MS-
Thus Y = Eq(a, T), which contradicts the fact that a ^ r. Hence, CT(V) ̂  t ( j ) .
Finally, a and T extend to morphisms on ftj5 by injectivity, and these are S-ary term
functions by Part (b) of the Third Duality Theorem (2.4).

The same proof, restricted to finite powers of M> yields the finite version.

In the presence of full duality, the injectivity of ftj in 3£ has immediate algebraic
consequences. It says precisely that embeddings go to surjections under E, but in this
setting it says more. (See the Dual Adjunction Theorem (1.3).)

3.3 LEMMA. Assume that ftj yields a full duality on &/. Then the following are
equivalent:
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(a) 5J is injective in X;
(b) (p : X - • Y is an embedding in 3£ (if and) only if E(cp) : £(Y) ->• £(X) is a

surjection in si';
(c) u : A —>• B is a surjection in si if (and only if) D(u) : D(B) —> D(A) is an

embedding in 3£.

PROOF. The equivalence of (a) and (b) is an immediate consequence of the defini-
tions.

To prove that (b) implies (c), we use the fact that each eA is an isomorphism. Let
D(u) be an embedding. By (b), the map ED(u) is surjective. From Figure 1 (since
D and E are dually adjoint) we have that u — e^1 o ED(u) o eA is also surjective.

To prove that (c) implies (b), we use the fact that each ex is an isomorphism. Let
<p be an embedding. From Figure 1 we have that DE(<p) = eY o tp o e^1 is also an
embedding. By (c), we conclude that E(cp) is surjective.

The First Duality Theorem (1.5) and the Third Duality Theorem (2.4) say that many
instances of the injectivity of M in 3£ must hold once we have a duality. If duality
is to be established by means of the Second Duality Theorem (1.6), then M must,
indeed, be injective in X. Nevertheless, it is not known whether or not the injectivity
of M in 3C is actually required for ^J to yield a full duality. In the view of the authors,
this is one of the most fundamental open question in the foundations of duality theory.

3.4 PROBLEM. Does there exist a finite algebra M and a choice o/ftj such that 1$
yields a duality on &/ = ISIPM which is full but not strong, or equivalently, such that
^J yields a full duality on si with M non-injective in 3£?

In every known full duality, M is injective in X'. The corresponding statement
about M is false: let M be the 4-element chain as a Heyting algebra — see The-
orem (5.2). In many instances we come to duality with prior information about the
injectivity of M in s/. The injectivity of M in s/ says precisely that D maps embed-
dings to surjections, and from this we obtain the following analog of Lemma 3.3 for
M by the exact dual argument.

3.5 LEMMA. Assume that M yields a full duality on s/. Then the following are
equivalent:

(a) M is injective in s/;
(b) u : A -»• B is an embedding in s/ (if and) only if D(u) : £>(B) -> D(A) is a

surjection in SC';
(c) (p : X —> Y is a surjection in & if (and only if) E(<p) : E(Y) —> E(X) is an

embedding in si.
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PROOF. The proof is the same as that of Lemma 3.3. The equivalence of (a) and
(b) is an immediate consequence of the definitions. To prove that (b) implies (c), use
the fact that each exis an isomorphism. To prove that (c) implies (a), use the fact that
each eA is an isomorphism.

If M = (Af; G, R, &), that is, every operation of ^J is total rather than partial, then
we call M a total structure. In this case we find that we can establish strong duality
by checking term-closure for just the substructures of finite powers of M- We state
this condition explicitly in the next theorem, where the equivalence of (a) and (c) is a
reformulation of Lemma 2.33 of Clark and Krauss [5]. On a first reading, it is easy to
miss the point where this argument depends on the absence of partial operations in M-

3.6 SECOND STRONG DUALITY THEOREM. Ifl& is a total structure which yields a
duality on si', then the following are equivalent:

(a) M yields a strong duality on &/;
(b) M yields a strong duality on s/f,n;
(c) M satisfies the Finite Term Closure condition —

(FTC) IfX is a substructure o/ftj" for some n e N and y e M"\X, then there
exist term functions a, r : ^J" —• ftj on M (that is, morphisms) which
agree on X but not at y.

PROOF. It is trivial that (a) implies (b), and (b) is equivalent to (c) since (FTC) is
precisely the condition for a duality on ,e/fin to be a strong duality on s/^.

Finally, to prove that (c) implies (a), assume (FTC). Let X be a closed substructure
of M5, and let z e Ms \ X. Then there is a basic clopen set U containing z and not
intersecting X given as U — [x € Ms\nF (x) = nF (z)} where F c Sis finite and
nF : M5 —* MF is the projection morphism. Then we have that nF{z) g nF(X) and
that 7TF(X) is a closed substructure of ftJF. By (FTC) there are F-ary term functions
a and r that agree on nF(X) but disagree at nF(z). Consequently the 5-ary term
functions a o nF and r o nF agree on X but not at z.

The careful reader will note that the image of X under the morphism nF need not be
a substructure of Mf if partial operations are present. This point will play a significant
role in the remainder of this study. While Lemmas 3.3 and 3.5 highlight the symmetry
between M in si and 1J# in X which has characterized our development of duality
theory, this symmetry begins to break down in the presence of partial operations in 5$.
For example, partial operations preclude a full converse to Proposition 1.11 of Davey
and Werner [16] which we present here.
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3.7 INJECTIVITY LEMMA. Assume that J$ yields a full duality on s/'. If M is
injective in s/, then J$ is injective in X'. The converse is true when M is a total
structure.

PROOF. We will verify the third item of Lemma 3.3. Let u : A ->• B in s/ and
assume that D(u) is an embedding. Because s/ is a quasi-variety of (total) algebras,
we can factor u = w o v where v : A -> C is a surjection and w : C -» B is an
embedding. Then D(u) — D(v) o D(w). Focusing on D(w) we notice that it is
an embedding since D(u) is an embedding, and it is a surjection by Lemma (3.5).
Consequently D(w) is an isomorphism, whence ED(w) is an isomorphism as well.
By Figure 1, w = e^1 o ED(w) o ec is an isomorphism, and from this it follows that
u is a surjection. This establishes (c) of Lemma (3.3) which gives us the injectivity of

The converse is established by the same argument applied dually, where we observe
that the factoring of u into a surjection followed by an embedding can be mimicked
when ^J is a total structure.

Combining the Second Duality Theorem (1.6) and the Second Strong Duality
Theorem (3.6) we can now give purely finite conditions for the existence of a strong
duality when ^ is a total structure and R is finite.

3.8 THIRD STRONG DUALITY THEOREM. Assume that M = {M; G, R, 2?) is a
total structure and that R is finite. Then the following are equivalent:

(a) 5J yields a strong duality on si;
(b) Ĵ J yields a strong duality on si^;
(c) (IC) and (FTC) hold.

PROOF, (a) implies (b) trivially, so now assume (b). To prove (IC), let n e N and
let X < ftf". By (b) we have that X is term-closed, and from the finitary version
of the Third Duality Theorem (2.4) we conclude that each morphism from X into J#
extends to an /i-ary term function on M. Since (FTC) is given directly by (b), we have
(c). Finally, (c) implies (a) since duality follows from (IC) by the Second Duality
Theorem (1.6) and strong duality follows from (FTC) by the Second Strong Duality
Theorem (3.6).

4. Producing strong dualities

In this section we will gather together the theory that we have developed so far
and use it to prove two theorems: the Two-for-One Strong Duality Theorem and the
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NU-Strong-Duality Theorem. These two results can be used to produce all presently
known full dualities, all of which are, in fact, strong dualities. The Two-for-One
Strong Duality Theorem is derived from our description of the dual category OD(^)
as the isomorphs of term-closed sets, while the NU-Strong-Duality Theorem derives
from our characterization of W(#/) as the isomorphs of hom-closed sets. It is here
that these two divergent approaches come to fruition.

We first address the case where both partial operations and relations can be avoided
so that our strongest results will apply. These results reduce the discussion to properties
of .e/fin and ^Tfin where topology vanishes. Thus there arises a complete symmetry
between the roles of M and M which allows us to get two strong dualities for the price
of one. If 5$ = (M; G, 5T) that is, the sets H of partial operations and R of relations
are empty, then we say that ftj is a total algebra.

4.1 TWO-FOR-ONE STRONG DUALITY THEOREM. Let M = {M; F) and assume
that M = (M; G, &) is a total algebra. Define M = (M; G) and &/' = DSPM', and
define^ = (M; F, &)and3C' = DSCPM'- Then the following are equivalent:

(a) (IC) and (FTC) hold with respect to M/
(b) (IC) and (FTC) hold with respect to M'/
(c) the algebras M and M' satisfy the following symmetric conditions:

(i) every homomorphism from a subalgebra of M° into M extends to an
n-ary term function on M',

(ii) every homomorphism from a subalgebra o/(M')" into M' extends to an
n-ary term function on M;

(d) (IC) holds with respect to both M and ]\J';
(e) M and ftj' yield strong dualities on srf and &/' respectively.

PROOF. For the purposes of this argument, we will say that M yields a coduality on
&/ (on s/Rn) if ex is an isomorphism for each X in 3E (in >$£*«„).

We will first establish the equivalence of (a), (b) and (e). Observe that M yields a
duality (a coduality) on ^ f i n if and only if ]\J' yields a coduality (a duality) on s/'Rn,
since exactly the same maps are involved. Consequently, M yields a full duality on
.s/fin if and only if JfcJ' yields a full duality on srf'^.

We now claim that the same is true of strong dualities. To prove it, assume that
W yields a strong duality on s/'. By the First Strong Duality Theorem (3.2), ftj'
is injective in 3C''. Applying the Injectivity Lemma (3.7) we conclude that M' is
injective in stf' and therefore ftj is injective in &&„. Since ftj yields a strong duality
on s/'fo, it also yields a full duality on s/'^ and therefore M yields a full duality on
S/M- By the First Strong Duality Theorem (3.2) we conclude that ft! yields a strong
duality on ̂ f i n . From the Third Strong Duality Theorem (3.8) it follows that ^J yields
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a strong duality on si'. Since the converse holds by the same argument, we have that
M yields a strong duality on s/ if and only z/M' yields a strong duality on sf'. By
the Third Strong Duality Theorem (3.8), the former statement is equivalent to (a) and
the latter to (b), and their conjunction is clearly equivalent to (e). Thus (a), (b) and (e)
are all equivalent.

Condition (c) is simply an explicit version of (d) expressed as (finitary) properties
of the algebras alone. Since (a) and (b) trivially imply (d), it remains to prove the
converse: if (IC) holds with respect to both J# and J^', then so does (FTC). Again
applying the Second Duality Theorem (1.6), the fact that (IC) holds with respect to
M tells us that J$ yields a duality on s/^, that is, ftj' yields a coduality on s/'nn,
and, moreover, that M is injective in S^6tl. Similarly, (IC) holding with respect to W
tells us that 1$ yields a duality on s/'^, that is, ^J yields a coduality on s/Rn, and,
moreover, that ftj' is injective in SE'^. Putting these facts together and applying the
First Strong Duality Theorem (3.2), we conclude that if (d) holds, then ])$ and 1$
yield strong dualities on <3Tfin and ^"6n, respectively. By the Third Strong Duality
Theorem (3.8), (FTC) holds with respect to both M and W, and therefore (a) and (b)
hold.

Given M, where do we find the algebra M'? Many applications come from the
following corollary which tells us when we can use the first candidate that comes to
mind.

4.2 STRONG SELF-DUALITY THEOREM. Let M = (M; F, 8?) be obtained by aug-
menting M — (M;F) with the discrete topology. Then ̂ J yields a strong duality on
srf (and M is injective in s/) if and only if (IC) holds.

Underlying our quest for strong dualities is a fundamental question: can every
duality be upgraded to a strong duality? We state this question more precisely below.

4.3 PROBLEM. Assume that ftj yields a duality on s/. Can we extend the structure
ftj by adding (finitely many) partial or total operations and so obtain a structure Ĵ J'
which yields a strong duality (or a full duality) on si?

Consider, for example, a finite algebra M which is a lattice under some pair of binary
term functions. The NU-Duality Theorem (1.7) gives us a duality on s/ = ISPM by
taking for R (a generating set of) the binary algebraic relations on M. Can finite G
and H be chosen to make this into a full duality? a strong duality? We can now give
an extension of Theorem 2.37 of Clark and Krauss [5] which provides affirmative
answers in all of these cases, producing many new strong dualities. Our approach is
to look for partial operations which will insure that substructures of powers of M are
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hom-closed. The key is to observe that, in a congruence distributive variety, Bjarni
J6nsson has already done all but a finite amount of the work for us and that a handful
of partial operations will do the rest!

4.4 LEMMA. Let M be a finite set, let U be an ultrafilter on a set I, and let
f : M' —»• M be defined by

f(ft) = a if and only if p-\a) e U.

Then every topologically closed subspace X of a product space Ms is closed under

f-

PROOF. Let x e X'. To show that f(x) e X we let F c S be finite and check that
f(x) agrees with a member of X on F. For each s e F, denote f(ns o x) € M by as.
Thus (ns o x)~'(tfj) e U. Since F is finite,

J = f]{(nsox)-l(as)\seF}eU.

Then for any j e / we find that f(x) agrees with x(y) on F since, if s € F, then

f(x)(s) = /(TT, O X) = as = (ns o x)(j) = \(j)(s).

Every congruence on a finite algebra Q is a meet of meet-irreducible congruences
on Q. Let irr (Q) be the least n such that the zero congruence on Q is a meet of n
meet-irreducible congruences, and let

Irr (M) = max {irr (Q) | Q is a subalgebra of M}.

By the clone of M we mean the clone of partial functions generated by G U H.

4.5 LEMMA. Assume that M generates a congruence distributive variety and that
the clone o/^J includes all n-ary algebraic partial operations on Mfor n < Irr (M).
Then every closed substructure of a power of$ is hom-closed.

PROOF. Let X < ^Jx be a closed substructure, B < M7 a subalgebra and g :
B ^ M a homomorphism. Since g(B) < M, there are k < Irr (M) meet-irreducible
congruences fa, \jr2, . . . , fa on B with (~]x/fi = ker(g). Since M generates a
congruence distributive variety we can apply Jdnsson's Lemma [20] to get ultrafilters
Ui, U2,..., Uk on I determining congruences 0{ c fa,'O2 Q fa\, • • •, Ok ^ fa on B.
For i — 1,2,... ,k,let f : M' —• M be the homomorphism defined by

/, (/?) = a if and only if / T ' (a) e Ui
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and let / = ( / „ f 2 , . . . , /*) : M7 - • M*. where f(P) = ( / , (£) , f2(P),..., fk(P))
for 0 e M'. Let A < M* be the image of B under / , and let / \B : B -> A be the
restriction of / . We claim that g can be factored through / f~B, that is, that there is a
homomorphism h : A —>• M such that g = h o f [B. To prove this we must show that
ker(/ tB) C ker(g). Let p, y e B with f(fi) = f(y). Then, for i = 1, 2, ...,k, we
have

fi(P) = fi(y) = a, for some a, e M.

Consequentiy, p~l(at) and y~'(a,) are in t/, and therefore p~x (at) C\ y~l (ad £ i/i-
Moreover, P and y have the same value, at, on P~x(at) D /" '(a,) which means that
(P, y) e ft. Since this is true for each /, we have

(P, y) e p|{6,,\i = 1,...,k} c p | { ^ , 11 = 1,...,k) = ker(g).

From this we conclude that ker(/ fB) c ker(^).
The structure X is closed under each ft, by Lemma 4.4, and is closed under the

fc-ary partial operation h by hypothesis. Assume that xe X' such that, for each s e S,
the composition ns o x is in B. Then

g(x)(s) = g(ns o x) = hf(ns o x) = M/ i fo o x), / 2 ( ^ o x ) , . . . , fk(ns o x)),

whence g(x) e X since X is closed under h. Thus X is hom-closed.

This result allows us to offer the following partial solution to Problem 4.3.

4.6 THEOREM. Assume that M generates a congruence distributive variety and
that 1J$ yields a duality on si'. /f M' is obtained from J$ by adding to G U H all n-ary
algebraic partial operations where n < Irr (M), then M' yields a strong duality on

Since any algebra which has a near-unanimity term generates a congruence dis-
tributive variety (Mitschke [21]), we can combine these results with the NU-Duality
Theorem (1.7) to obtain our final strong duality theorem.

4.7 NU-STRONG DUALITY THEOREM. Let k > 2 and assume that M has a(k + \)-
ary near-unanimity term. If the structure on M generates all subalgebras ofMk and
the clone o/M includes all n-ary algebraic partial operations on Mfor n < Irr (M),
then M yields a strong duality on s/.
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5. Examples of strong dualties

The original presentation of natural dualities of Davey and Werner [16] includes
fourteen detailed examples of full dualities which can be obtained in a uniform manner
from their methods. We observe here, without examining them individually, that a
direct application of our theorems of the previous section will confirm that each of
these is indeed a strong duality as well. The strong dualities for vector spaces, abelian
groups of exponent at most n, and semilattices follow from the Strong Self-Duality
Theorem (4.2); the strong duality for sets and the Morita duality for modules require
the Two-for-One Strong Duality Theorem (4.1) and all of the remaining examples
are obtainable from the NU-Strong Duality Theorem (4.7). For almost all of their
examples, Davey and Werner give an axiomatization of the dual category 3E. Such
an axiomatization greatly increases the utility of a full or strong duality. The general
question of axiomatizing the topological quasi-variety SC = ISc^M is considered in
depth in Clark and Krauss [5]. For this section we have selected a few new examples
of strong dualities that can be established to illustrate further the scope, applicability
and limitations of the various theorems we have presented.

Davey, McKenzie and Heindorf [12] have recently shown that, in a congruence
distributive variety, the only finite algebras M whose generated quasivariety srf admit
a duality at all are those with a near-unanimity term. There are of course many such
examples, but they have attracted very little attention partly because it was never
known or expected that these dualities could be upgraded to full dualities. Our NU-
Strong Duality Theorem (4.7) now guarantees that this can be done in every instance.
Apart from the Heyting algebras and distributive p -algebras given below, we have
not pursued this construction in individual cases; particularly not in any cases that
would require more than unary (partial) operations. Doing so would mean sufficiently
simplifying the structure on ftj to make it possible to find a useful description for the
dual category 3C. We hope to see such examples developed and applied in the future.

Heyting Algebras We consider first Heyting algebras A = ( A ; A , V , ^ , 0 , 1)
consisting of a distributive lattice {A; A, v, 0, 1) with smallest element 0 and largest
element 1, endowed with the induced Heyting implication ->•. The linear sum, A © B,
of bounded distributive lattices (Heyting algebras) A and B is obtained by placing
(the lattice reduct of) A below (that of) B to form a new distributive lattice, and then
using this lattice order to define the new Heyting implication —>. The reduced sum of
A and B is obtained from A © B by identifying the 1 of A with the 0 of B. A finite
Heyting algebra M is subdirectly irreducible if and only if has the form M = L © 1 f or
some finite distributive lattice L, and in this case all of its subalgebras are subdirectly
irreducible as well.

Since (x A y) v (x A z) V (y A z) determines a majority operation on any Heyting
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algebra, we obtain, from the NU-Strong Duality Theorem (4.7), a strong duality for
the quasi-variety generated by M = L © 1 by taking all homomorphisms between
subalgebras of M as (partial) operations H on M and all subalgebras of M2 as relations
R on ^J. In general this yields a rather unwieldy structure, but there are many cases
where it can be reduced to a simple generating set. Davey and Werner [18] consider
choices of L which satisfy the following additional property:

(*) Every subdirectly irreducible subalgebra of a homomorphic image ofh (re-
garded as a Hey ting algebra) can be embedded into M.

They show that if L satisfies (*), then the set Horn (M) of internal homomorphisms
of M, that is, unary algebraic (partial) operations on M, is enough to yield a duality
on si'. Moreover they prove that there are many such L by showing that the class
of all distributive lattices satisfying (*) is closed under direct product, linear sum
and reduced linear sum. As an immediate application of the NU-Strong Duality
Theorem (4.7) we see that these dualities are strong and therefore full.

5.1 THEOREM. IfM — L © 1 is a finite Heyting algebra such that L satisfies (*),
then M = (M; Horn (M), &) yields a strong duality on si' — DSPM.

In more special cases we can use our theory to improve this result by further
simplifying the structure on M. We say that M is (strongly) endo-dualizable if
M = {M; End(^J), 3?) yields a (strong) duality on si'. For example, Davey [8]
showed that each finite Heyting rt-chain M^ is endo-dualizable. See Davey [10],
Davey and Werner [ 16] and Davey and Priestley [ 14] for alternative, and progressively
simpler, proofs.

5.2 THEOREM, (a) The Heyting algebra M = 22 © 1 is strongly endo-dualizable.
(b) The Heyting algebra n-chain is strongly endo-dualizable if and only ifn < 4.
(c) Let h be the internal isomorphism of the Heyting algebra 4-chain M4 between

the two three-element subalgebras of M4 which moves the third element down
to the second. Then the structure ̂ J = (M4; End (M^, h, &) yields a strong
duality on si.

PROOF, (a) The simplest proof that M is endo-dualizable is due to Davey and
Priestley [14] (see also [11]). It is easy to check that each internal homomorphism
of M extends to an endomorphism. The result now follows from Theorem (5.1)
and the M-Shift Strong Duality Lemma (3.1).

(b) If n — 2 or n — 3, every internal homomorphism extends to an endomorphism
and we obtain, as above, strong endo-dualizability. Let n > 4 and let

Mn = { 0 , au ..., an-2, U w i t h 0 < ax < ••• < an_2 < 1-
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It is easily seen that X = Mn \ {a^ is closed under the endomorphisms of M^
but is not closed under the partial map h : X ->• Mn, given by h(a2) = ax and
h(a) = a for a ^ a2. Thus X is not hom-closed in Mn and consequently M^ is
not strongly endo-dualizable.

(c) We observe that every internal homomorphism other than h extends to an endo-
morphism and then argue as in (a).

Continuing in the spirit of item (c), we can find generating sets for the internal
homomorphisms of longer finite Heyting algebra chains and then use the M-Shift
Strong Duality Lemma (3.1) to simplify their strong dualities.

Distributive /^-Algebras A distributive p-algebra (A; V, A, *, 0, 1) consists of a
bounded distributive lattice {A; v, A, 0, 1) with a pseudocomplementation operation*.
The proper subvarieties of distributive/^-algebras form an co-chain 3§0 C ^ i C 38 2 C
.. . where 38n is generated by the linear sum B^ = 2" © 1. Stone's theorem [23] shows
that g = {{0, 1}; &) yields a full duality on 380 (the variety of Boolean algebras).
Taking B, = ({0, e, 1}; v, A, *, 0, 1,), where 0 < e < 1, Davey [9, 10] showed
that B = ({0, e, 1}; a, <, 3") yields a duality on 88X (the variety of Stone algebras),
where

(i) a fixes 0 and takes e and 1 to 1, and
(ii) <={(0,0) , ( l , l) ,(e,e),(l ,e)},

and proved this to be a full duality. An alternative proof, more in the style of
this paper, was given in Davey and Werner [16]. Later, via a completely different
technique, Davey and Werner [17, 18] obtained a duality for 3§2, with generator
B2 = ({0, p, q, e, 1}; V, A, *, 0, 1) where p and q are atoms joining to e. This
duality, which was not previously known to be full, arises by taking

%2 = ({0,p,q,e, 1}; a,a, <, H, P),

where

(i) a fixes 0, e and 1, and interchanges p and q,
(ii) a takes 0 and q to 0 and takes 1, e and p to 1,

(iii) ^ is the order whose only strict comparability is 1 < e,
(iv) H = {(0, 0), (1, 1), (e, e), (1, e), (0, q), (1, p), (e, p)},

(see Figure 8). For each n > 3, Davey and Priestley [13] found a duality for SSn via a
structure with n binary relations and three total unary operations (endomorphisms of

5.3 THEOREM, (a) The above dualities for 38n, where n < 2, are strong dualities.
(b) The above dualities for 38 n, -where n > 2, are neither strong nor full, but can be

made strong by adding (a generating set for) the internal homomorphisms ofB^.
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a

0 q p 1

(fully reflexive)

0 1
H

(reflexive at 0. 1, e)

FIGURE 8. The relations and H on B2.

PROOF, (a) In each of these cases we apply the NU-Strong Duality Theorem (4.7)
to see that a strong duality is obtained by adding to B all unary algebraic
operations on B,,. Using the M-Shift Strong Duality Lemma (3.1) we can quickly
eliminate all but the given operations.

(b) For n > 2 we can easily find subsets of Bn, which are closed under the endo-
morphisms of B,,, but are not hom-closed. (For example, let X consist of the top,
the bottom and the atoms of B^; then X is closed under the endomorphisms of B^
but is not closed under the partial unary operations on Bn.) Since a near-unanimity
term is present, (IC) holds and hence, by the Second Duality Theorem (1.6;, B,
is injective in SC. From the Second Strong Duality Theorem (3.6) we conclude
that the duality is not full. Nevertheless the subalgebras of B^ are all subdirectly
irreducible and hence the NU-Strong Duality Theorem (4.7) assures us that the
duality can be made strong by including (a generating set for) for the internal
homomorphisms.

Finite Dimensional Vector Spaces over a Finite Field For a finite field F, the
Strong Self-Duality Theorem (4.2) shows that we obtain a strong duality for the variety
s/ of vector spaces A = {A; +, 0, F) over F by taking the one dimensional space
F as generator for srf and then choosing JE to be F with the discrete topology. As an
application of the Two-For-One Strong Duality Theorem (4.1) that cannot be obtained
from the Strong Self-Duality Theorem (4.2), we give another strong duality for si
where we choose M = <M; +, 0, F) to be an arbitrary n-dimensional vector space
overF, where« > 1. Let {bu b2, ...,bn] be a basis for M and let B,̂  be the subspace
spanned by bt. Thus M = B; © B2 0 • • • © Bn is an internal direct sum. For each
i < n, let p,; : M -> B, be the jth projection and for 1 < i, j < n let gtj be the unary
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operation on M which interchanges the coefficients of bt and bj. Consider the set

G = {+,0}\JFU{g,J}U[pi}

of (total) operations on M.

5.4 THEOREM. M = {M;G,^} yields a strong duality on the (quasi-) variety
of vector spaces over F with the arbitrary finite vector space M = (M; +, 0, F)
as generating algebra, and JfcJ' = (M; +, 0, F, 0?) yields a strong duality on the
quasi-variety generated by M' = (Af; G).

We shall prove this theorem by verifying Condition (d) of the Two-for-One Strong
Duality Theorem (4.1), namely, that (IC) is satisfied with respect to both ^J and
^J'. This will illustrate the kind of interplay that can exist between M, which has
rather few operations, and tyj, which has many more. We consider homomorphisms
r : X - > M a n d « : A - • M' where X < W and A < (MY- We will see that the
many operations on M insure that r has so much to preserve that it can only be (the
restriction of) a term function on M, and that there are enough operations on M' to
build u as (the restriction of) a term function on M'.

5.5 LEMMA. (IC) holds with respect to M

PROOF. We first show that X, viewed as a vector space, has a direct sum decom-
position as X = Yi © Y2 ffi • • • © Y« where each Y, is a subspace of Bf. Let
Y, = piX c Bf. Then clearly X c Y , © - - © Y n . The reverse containment follows
from the fact that X is closed under each /?,-.

Next we show that there are w-ary vector space term functions t j , . . . , rn such that
if x — y\ + • • • + yn according to the above decomposition, then

T(X) = riCyiH \-rn(yn).

Let T, be the restriction of r to Y,. For y e K, we have

r,-()0 = r(y) = T(p,-00) = Pitiy) €

from which we conclude that T, : Y, —> B,. Using the duality mentioned above for
B, we conclude that r, is an m-ary term function.

Finally, we verify that for each / = 1 , . . . , n and each yt e Th we have r,(j,) =
^(j i ) . from which we will obtain

x{x) = r^yx)^ \-Tn(yn)

)H l-ri(yn)

H \-yn) =
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f o r x = y , H h y n e Y , © • • • © Y B . T o d o s o , l e t y,- = {fxbt,..., f m b t ) w h e r e

e a c h fj e F. T h e n

r.-Cy,-) = r ( y , )

= T ( 0 + • • • + fib,, + • • • , . . . , 0 + • • • + fmbi• + • • • )

= r g , , ( / , & ! + ••• + 0 + • • • , . . . , / m f e , + ••• + 0 + • • • )

bi,..., fmbi)

since Ti is linear, and this is exactly xx (y,).

5.6 LEMMA (IC) holds with respect to ftj'-

PROOF. Consider u : A -> ftj' where A is a subspace of (M')m- Let F be the one
dimensional space over F. If a e A, we can express

u{a) = pi o u{a) H h p » o «(a)

Thus we must show, for / = 1 , . . . ,« , that p,> o u : A —• B,• < 5kJ' is a term function
of M'. For i = 1 , . . . , « , we can view A as a subspace of F"1" and pt o u a s a linear
transformation from A into B, = F. By the duality for F, we know that p, o u extends
to a term function of F. This means that there is a set

[fkj\ 1 < * < m, l < j < n } c F

such that if a = ( f l j , . . . , am) € A, where ak = ek\b\ + • • • + eknbn € M and ekJ € F ,
then

Pi o u(a) = Y^ {fk,ekjbi \ 1 < * < m, 1 < j < n}.

Now observe that ekjbj can be obtained from ak by first replacing the coefficient eki

of bi in ak with the coefficient ekj of bj in ak, and then extracting the /th coordinate of
the result. This gives us

Pi o u(a) = ^ {fkjPigij(ak) | 1 < k < m, 1 < j <n),

whence pt o u is the restriction of a term function of M'.
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Finite Abelian Groups The quasi-variety (= variety) s/ generated by a finite
abelian group M = (M; +, —, 0) is also generated by the finite cyclic group M^, of
order n for some n. If we decide to base our duality for s/ on M^ rather than on M,
then after choosing ^Jn to be M,,, with the discrete topology, we quickly see that (IC)
holds and therefore, by the Strong Self-Duality Theorem (4.2), we find that the duality
of Davey and Werner [16] is a strong duality.

Now suppose that we would like to base our duality for s/ on the arbitrary finite
abelian group M instead. If M happens to have the property that its prime-power-
order cyclic factors are isomorphic for any fixed prime, then we can proceed as we
did for vector spaces. Take M' to be M augmented by the projections onto each of
its prime-power-order cyclic factors together with a transposition to interchange each
pair of isomorphic coordinates. It is now straight forward to check that the argument
given for vector spaces will establish (IC) with respect to both M and ftj' and hence,
by the Two-for-One Strong Duality Theorem (4.1), we obtain a strong duality for
each of the generated quasi-varieties.

If M does not happen to have this special form, then none of the theorems of
Section 4 can be used to generate a strong duality. While a strong duality in this case
would be unlikely to provide new information about abelian groups, it might very
well be a stepping stone to a new wave of strong duality theorems.
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