Bull. Aust. Math. Soc. 110 (2024), 346–354 doi[:10.1017/S0004972723001405](http://dx.doi.org/10.1017/S0004972723001405)

MULTIPLE SOLUTIONS FOR *p*(*x*)-LAPLACIAN EQUATIONS WITH NONLINEARITY SUBLINEAR AT ZER[O](#page-0-0)

SHIBO LI[U](https://orcid.org/0000-0001-8623-9028)®

(Received 21 November 2023; accepted 6 December 2023; first published online 29 January 2024)

Abstract

We consider the Dirichlet problem for $p(x)$ -Laplacian equations of the form

$$
-\Delta_{p(x)}u + b(x)|u|^{p(x)-2}u = f(x,u), \quad u \in W_0^{1,p(x)}(\Omega).
$$

The odd nonlinearity $f(x, u)$ is $p(x)$ -sublinear at $u = 0$ but the related limit need not be uniform for $x \in \Omega$. Except being subcritical, no additional assumption is imposed on $f(x, u)$ for $|u|$ large. By applying Clark's theorem and a truncation method, we obtain a sequence of solutions with negative energy and approaching the zero function $u = 0$.

2020 *Mathematics subject classification*: primary 35J60; secondary 35D05.

Keywords and phrases: *p*(*x*)-Laplacian, Clark's theorem, truncation, (*PS*)*^c* condition.

1. Introduction

Let $\Omega \subset \mathbb{R}^N$ be a bounded smooth domain, $p : \overline{\Omega} \to \mathbb{R}$ be Lipschitz continuous and

$$
1 < p_{-} := \inf_{x \in \Omega} p(x) \le \sup_{x \in \Omega} p(x) =: p_{+} < N. \tag{1.1}
$$

We consider the Dirichlet problem for the $p(x)$ -Laplacian equation

$$
\begin{cases}\n-\Delta_{p(x)}u + b(x)|u|^{p(x)-2}u = f(x, u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(1.2)

where $\Delta_{p(x)} u = \text{div}(|\nabla u|^{p(x)-2} \nabla u)$ is the *p*(*x*)-Laplacian of *u* and $b \in L^{N/p(x)}(\Omega)$. The definition of the space $L^{N/p(x)}(\Omega)$ is given in the next section. Note that *b* can be sign-changing. Let

$$
p^*(x) = \frac{Np(x)}{N - p(x)}.
$$

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

We assume the following conditions on the nonlinearity $f(x, u)$:

 (f_1) $f: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies the Carathéodory condition and

$$
|f(x,t)| \le C_1 + C_2 |t|^{q(x)-1} \quad \text{for all } (x,t) \in \Omega \times \mathbb{R},
$$

where $q \in C(\overline{\Omega})$ and $1 < q(x) < p^*(x)$ for all $x \in \Omega$; (*f*₂) there is a ball $B_r(a) \subset \Omega$ such that

$$
\lim_{|t| \to 0} \frac{F(x,t)}{|t|^{p_-}} = +\infty \quad \text{for almost every (a.e.) } x \in B_r(a), \text{ where } F(x,t) = \int_0^t f(x,\cdot). \tag{1.3}
$$

When $p(x) \equiv 2$ (thus $p_-\equiv 2$) and $f(x, \cdot)$ is sublinear at zero, then [\(1.3\)](#page-1-0) holds with $p_$ = 2. For this reason, we say that our problem [\(1.2\)](#page-0-1) is $p(x)$ -sublinear at zero. We emphasise that the limit (1.3) is a pointwise limit, while condition (f_1) means that the nonlinearity $f(x, u)$ is subcritical. Under these mild conditions, we shall prove the following theorem.

THEOREM 1.1. *Suppose that the conditions* (f_1) *and* (f_2) *hold. If* $f(x, \cdot)$ *is odd for all* $x \in \Omega$, *then* [\(1.2\)](#page-0-1) has a sequence of solutions u_n such that $\Phi(u_n) \leq 0$, $\Phi(u_n) \to 0$; where Φ *is the energy functional given in [\(3.1\)](#page-3-0).*

This theorem generalises a recent result of He and Wu [\[5\]](#page-7-0), where the semilinear case $p(x) \equiv 2$, namely

$$
\begin{cases}\n-\Delta u + b(x)u = f(x, u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(1.4)

is considered assuming $b \in L^{N/2}(\Omega)$ and $f(x, u)$ is subcritical. In particular, He and Wu assumed the pointwise limit

$$
\lim_{|t| \to 0} \frac{F(x,t)}{|t|^2} = +\infty \quad \text{for } x \in \Omega.
$$
 (1.5)

However, in their argument, to verify the condition [\(1.6\)](#page-2-0) in Proposition [1.2](#page-2-1) below, they need the inequality

$$
F(x,t) \ge c_k^{-2}|t|^2 \qquad \text{for } |t| \le r \text{ and a.e. } x \in \Omega.
$$

This could not be true unless the limit [\(1.5\)](#page-1-1) holds *uniformly*. In the proof of our Theorem [1.1,](#page-1-2) we fill this gap (see Lemma [3.4\)](#page-6-0) and generalise their result to the quasilinear variable exponent case. Moreover, the verification of the $(PS)_c$ condition, which is crucial for applying variational methods, has been greatly simplified (see Remark [3.3\)](#page-5-0).

Both [\[5\]](#page-7-0) and our result are based on a new version of Clark's theorem recently proved by Liu and Wang [\[8\]](#page-8-0). Our Theorem [1.1](#page-1-2) is motivated by [\[5\]](#page-7-0).

 348 S. Liu [3]

PROPOSITION 1.2 [\[8,](#page-8-0) Theorem 1.1]. *Let W be a Banach space and* $\Phi \in C^1(W, \mathbb{R})$ *be an even coercive functional satisfying the* $(PS)_c$ *condition for* $c \leq 0$ *and* $\Phi(0) = 0$ *. If for any* $k \in \mathbb{N}$ *there are a k-dimensional subspace* W_k *and* $\delta_k > 0$ *such that*

$$
\sup_{W_k \cap S_{\delta_k}} \Phi < 0,\tag{1.6}
$$

where $S_r = \{u \in W : ||u|| = r\}$ *for* $r > 0$ *, then* Φ *has a sequence of critical points* $u_k \neq 0$
such that $\Phi(u_k) < 0$ $u_k \to 0$ *such that* $\Phi(u_k) \leq 0$, $u_k \to 0$.

Variable exponent variational problems appear in many applications (see $[2, 6, 9]$ $[2, 6, 9]$ $[2, 6, 9]$ $[2, 6, 9]$ $[2, 6, 9]$). In particular, there has been great interest in elliptic boundary value problems involving the $p(x)$ -Laplacian in the last two decades. In [\[7\]](#page-8-3), a sequence of negative energy solutions of the $p(x)$ -Laplacian equation in [\(1.2\)](#page-0-1) subject to a nonlinear boundary condition is obtained; in addition to (f_1) and (f_2) , it is assumed that [\(1.3\)](#page-1-0) holds uniformly for $x \in \Omega$ and that the nonlinearity is $p(x)$ -sublinear at infinity. In [\[10\]](#page-8-4), the existence of positive solutions of [\(1.2\)](#page-0-1) with concave and convex nonlinearities is studied via Nehari's method. For other recent results, we refer to [\[11\]](#page-8-5) for $p(x)$ -Laplacian systems and to [\[1\]](#page-7-2) for $(p(x), q(x))$ -Laplacian problems.

2. Variable exponent spaces

To study the problem [\(1.2\)](#page-0-1), we recall the variable exponent Lebesgue space and Sobolev space (see [\[4\]](#page-7-3) for more details). For a Lipschitz continuous function $p : \overline{\Omega} \to \mathbb{R}$ satisfying [\(1.1\)](#page-0-2), let

$$
L^{p(x)}(\Omega) = \Big\{ u : \Omega \to \mathbb{R} : u \text{ is measurable and } \int |u|^{p(x)} < \infty \Big\}.
$$

Here and below, all integrals are taken over Ω . Equipped with the Luxemburg norm,

$$
|u|_{p(x)} = \inf \bigg\{ \lambda > 0 : \int \bigg| \frac{u}{\lambda} \bigg|^{p(x)} \leq 1 \bigg\},\
$$

 $L^{p(x)}(\Omega)$ becomes a separable uniformly convex Banach space.

The variable exponent Sobolev space $W_0^{1,p(x)}(\Omega)$ is the completion of $C_0^{\infty}(\Omega)$ under the norm

$$
||u|| = |\nabla u|_{p(x)} = \inf \bigg\{ \lambda > 0 : \int \bigg| \frac{\nabla u}{\lambda} \bigg|^{p(x)} \leq 1 \bigg\},\
$$

which is also a separable uniformly convex Banach space.

From now on, we denote $W = W_0^{1,p(x)}(\Omega)$. The functional $\rho : W \to \mathbb{R}$ defined by

$$
\rho(u) = \int \frac{1}{p(x)} |\nabla u|^{p(x)}
$$

is crucial for investigating $p(x)$ -Laplacian equations like [\(1.2\)](#page-0-1).

LEMMA 2.1 [\[3,](#page-7-4) Theorem 3.1]. *The functional* ρ *is of class C*¹*. Moreover, the functional* $\rho' : W \to W^*$ *is of type* (S_+) *. Thus, if* $u_n \to u$ *in W* and

$$
\overline{\lim}_{n\to\infty}\langle \rho'(u_n),u_n-u\rangle\leq 0,
$$

then $u_n \to u$ *in W.*

From the definition of the norm $\|\cdot\|$, it is easy to see that:

(1) if $||u|| \ge 1$, then

$$
||u||^{p_-} \leq \int |\nabla u|^{p(x)} \leq ||u||^{p_+};
$$

(2) if $||u|| \le 1$, then

$$
||u||^{p_+} \leq \int |\nabla u|^{p(x)} \leq ||u||^{p_-}.
$$

The following lemma is an easy consequence because $p_-\leq p(x) \leq p_+$.

LEMMA 2.2

 (1) *If* $||u|| \ge 1$ *, then*

$$
\frac{1}{p_+}||u||^{p_-}\leq \rho(u)\leq \frac{1}{p_-}||u||^{p_+};
$$

 (2) *if* $||u|| \le 1$ *, then*

$$
\frac{1}{p_+} \|u\|^{p_+} \leq \rho(u) \leq \frac{1}{p_-} \|u\|^{p_-}.
$$

3. Proof of Theorem [1.1](#page-1-2)

For the variable exponent Sobolev space $W = W_0^{1,p(x)}(\Omega)$, it is well known that weak solutions of [\(1.2\)](#page-0-1) are precisely critical points of the C^1 -functional $\Phi : W \to \mathbb{R}$,

$$
\Phi(u) = \int \left(\frac{1}{p(x)} (|\nabla u|^{p(x)} + b(x)|u|^{p(x)}) \right) - \int F(x, u). \tag{3.1}
$$

At first glance, because *b* may be sign-changing, the principle part (the first term) of Φ appears to be indefinite. We observe that if we set

$$
\tilde{f}(x,t) = f(x,t) - b(x)|t|^{p(x)-2}t,
$$

then the problem [\(1.2\)](#page-0-1) becomes

$$
\begin{cases}\n-\Delta_{p(x)} u = \tilde{f}(x, u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,\n\end{cases}
$$

 350 S. Liu [5]

in which the new nonlinearity $\tilde{f}(x, u)$ satisfies the *same* conditions (f_1) and (f_2) , and

$$
\lim_{|t|\to 0} \frac{\tilde{F}(x,t)}{|t|^{p-}} = \lim_{|t|\to 0} \left(\frac{F(x,t)}{|t|^{p-}} - \frac{b(x)}{p(x)} \frac{|t|^{p(x)}}{|t|^{p-}} \right) = \lim_{|t|\to 0} \frac{F(x,t)}{|t|^{p-}} = +\infty
$$

for almost every $x \in B_r(a)$, because $p(x) \ge p_-\text{. Here, } \tilde{F}(x, t) = \int_0^t \tilde{f}(x, \cdot)$.

In other words, to prove Theorem [1.1,](#page-1-2) it suffices to consider the case $b(x) = 0$. The reason that we state our problem [\(1.2\)](#page-0-1) with the term $b(x)|u|^{p(x)-2}u$ is to allow comparison with the results of [\[5,](#page-7-0) [7,](#page-8-3) [10\]](#page-8-4).

Therefore, in what follows, we assume $b(x) = 0$ so that the functional given in [\(3.1\)](#page-3-0) becomes $\Phi : W \to \mathbb{R}$,

$$
\Phi(u) = \rho(u) - \int F(x, u) = \int \frac{1}{p(x)} |\nabla u|^{p(x)} - \int F(x, u),
$$

whose critical points are solutions of (1.2) with $b(x) = 0$. To prove Theorem [1.1,](#page-1-2) we shall apply Proposition [1.2](#page-2-1) to find a sequence $\{u_n\}$ of critical points for Φ .

Since we have not assumed any conditions on the nonlinearity $f(x, t)$ for |*t*| large (except the subcritical growth condition (f_1)), it is not possible to verify the $(PS)_{c}$ condition for Φ. To overcome this difficulty, we adopt the truncation method of He and Wu [\[5\]](#page-7-0).

Let $\phi : [0, \infty) \to [0, 1]$ be a decreasing C^{∞} -function such that $|\phi'(t)| \leq 2$,

 $\phi(t) = 1$ for $t \in [0, 1]$ and $\phi(t) = 0$ for $t \in [2, \infty)$.

We consider the truncated functional $\Psi : W \to \mathbb{R}$,

$$
\Psi(u) = \rho(u) - \phi(\rho(u)) \int F(x, u).
$$

The derivative of Ψ is given by

$$
\langle \Psi'(u), v \rangle = \langle \rho'(u), v \rangle - \phi(\rho(u)) \int f(x, u)v - \left(\int F(x, u) \right) \phi'(\rho(u)) \langle \rho'(u), v \rangle
$$

$$
= \left(1 - \left(\int F(x, u) \right) \phi'(\rho(u)) \right) \langle \rho'(u), v \rangle - \phi(\rho(u)) \int f(x, u)v \tag{3.2}
$$

for $u, v \in W$.

LEMMA 3.1. *The functional* Ψ *is coercive.*

PROOF. We note that by Lemma [2.2,](#page-3-1) for $||u|| \ge 1 + (2p_+)^{1/p_-}$,

$$
\rho(u) \ge \frac{1}{p_+} ||u||^{p_-} \ge 2.
$$

Hence, $\phi(\rho(u)) = 0$ and

$$
\Psi(u) = \rho(u) \ge \frac{1}{p_+} ||u||^{p_-}.
$$

This implies that Ψ is coercive. \Box

LEMMA 3.2. *The functional* Ψ *satisfies* $(PS)_{c}$ *for* $c \leq 0$ *.*

$$
-\phi(\rho(u_n))\int F(x, u_n) = \Psi(u_n) - \rho(u_n) \le \frac{1}{2} - \rho(u_n). \tag{3.3}
$$

We claim that

Then for *n* large,

$$
1 - \left(\int F(x, u_n)\right) \phi'(\rho(u_n)) \ge 1. \tag{3.4}
$$

For this purpose, we consider two cases. If $\rho(u_n) < 1$, then $\phi'(\rho(u_n)) = 0$ and [\(3.4\)](#page-5-1) is an equality If $\rho(u_n) > 1$, then the right-hand side of (3.3) is negative. Noting $\phi(\rho(u_n)) > 0$ equality. If $\rho(u_n) \geq 1$, then the right-hand side of [\(3.3\)](#page-5-2) is negative. Noting $\phi(\rho(u_n)) \geq 0$, we have

$$
\int F(x, u_n) \ge 0. \tag{3.5}
$$

So we also have [\(3.4\)](#page-5-1) because $\phi'(\rho(u_n)) \leq 0$.
The coerciveness of Ψ implies that the (

The coerciveness of Ψ implies that the $(PS)_c$ sequence $\{u_n\}$ is bounded in *W*. We may assume that $u_n \rightharpoonup u$ in *W*. Since *f* is subcritical (condition (f_1)), by the compact embedding $W \hookrightarrow L^{q(x)}(\Omega)$, Hölder's inequality and the boundedness of the Nemytsky operator

$$
\mathcal{N}_f: L^{q(x)}(\Omega) \to L^{q(x)/(q(x)-1)}(\Omega), \quad (\mathcal{N}_f u)(x) = f(x, u(x)),
$$

(as shown in [\[4\]](#page-7-3)), it is well known that up to a subsequence,

$$
\left| \int f(x, u_n)(u_n - u) \right| \le 2|f(x, u_n)|_{q(x)/(q(x)-1)}|u_n - u|_{q(x)} \to 0. \tag{3.6}
$$

Setting $v = u_n - u$ in [\(3.2\)](#page-4-0), from $\langle \Psi'(u_n), u_n - u \rangle \to 0$, [\(3.6\)](#page-5-3) and the boundedness of $\phi(\rho(u_n))$, we obtain

$$
\left(1 - \left(\int F(x, u_n)\right) \phi'(\rho(u_n))\right) \langle \rho'(u_n), u_n - u \rangle
$$

= $\langle \Psi'(u_n), u_n - u \rangle + \phi(\rho(u_n)) \int f(x, u_n)(u_n - u) \to 0.$ (3.7)

We deduce from this and (3.4) that

$$
\langle \rho'(u_n), u_n - u \rangle \to 0.
$$

It follows from Lemma [2.1](#page-3-2) that $u_n \to u$ in W.

REMARK 3.3. Although our problem [\(1.2\)](#page-0-1) is much more general than the problem [\(1.4\)](#page-1-3) considered in [\[5\]](#page-7-0), our verification of the $(PS)_c$ condition is much simpler than in [5], where the convergence of $\{u_n\}$ is deduced by estimating $||u_n - u||^2$ by the sum of $\langle \Psi'(u_n) - \Psi'(u), u_n - u \rangle$ and four additional complicated terms (see [\[5,](#page-7-0) (2.20)]). The key points in our proof are the (S_+) property of ρ' and the observation [\(3.4\)](#page-5-1).

 352 S. Liu [7]

We should also point out that the verification of $(PS)_c$ for $c = 0$ in [\[5\]](#page-7-0) contains a gap. For the $(PS)_0$ sequence $\{u_n\}$, [\[5,](#page-7-0) (2.19)] is derived from $2\Psi(u_n) - ||u_n||^2 \leq 0$. However, this may be false because $\Psi(u_n)$ may be positive, even though $\Psi(u_n) \to 0$.

LEMMA 3.4. *For any* $k \in \mathbb{N}$ *, there are a k-dimensional subspace W_k of W and* $\delta_k > 0$ *, such that*

$$
\sup_{W_k \cap S_{\delta_k}} \Psi < 0.
$$

PROOF. Let $X = \{u \in W : \text{supp } u \subset B_r(a)\}$, W_k be a *k*-dimensional subspace of *X*. If the result is not true then, for all $n \in \mathbb{N}$,

$$
\sup_{W_k \cap S_{1/n}} \Psi \geq 0.
$$

This implies that there is a sequence $\{u_n\} \subset W_k \cap S_{1/n}$, such that

$$
||u_n|| = \frac{1}{n} \to 0, \quad \Psi(u_n) \ge -\frac{1}{n^{p_-}}.
$$
 (3.8)

Since all norms on W_k are equivalent, from $||u_n|| \to 0$, we deduce $|u_n|_{\infty} \to 0$.

Let $\eta : \Omega \to [-\infty, \infty]$ be defined by

$$
\eta(x) = \lim_{n \to \infty} \frac{F(x, u_n(x))}{\|u_n\|^{p_-}}.
$$

Then η is measurable. For $x \in B_r(a)$, from the *pointwise* limit [\(1.3\)](#page-1-0) in (f_2), there is $r_x > 0$ such that $F(x, t) \ge 0$ for $t \in [-r_x, r_x]$. Hence, if $n \gg 1$, then $|u_n|_{\infty} \le r_x$ and $F(x, u_n(x)) \ge 0$, and so $\eta(x) \ge 0$ for a.e. $x \in B_r(a)$. Consequently, $\eta(x) \ge 0$ for a.e. $x \in \Omega$, because supp $u_n \subset B_r(a)$.

Let $v_n = ||u_n||^{-1}u_n$. Since dim $W_k < \infty$, we have $v_n \to v$ in W_k for some $v \in W_k$, note that $||v|| = 1$. For $x \in \{v \neq 0\}$, using [\(1.3\)](#page-1-0) again,

$$
\eta(x) = \lim_{n \to \infty} \frac{F(x, u_n(x))}{\|u_n\|^{p_-}} = \lim_{n \to \infty} \frac{F(x, u_n(x))}{\|u_n(x)\|^{p_-}} |v_n(x)|^{p_-} = +\infty.
$$

By Fatou's lemma, since $\{v \neq 0\}$ has positive Lebesgue measure,

$$
\underline{\lim}_{n\to\infty}\int\frac{F(x,u_n)}{||u_n||^{p_-}}\geq \int\underline{\lim}_{n\to\infty}\frac{F(x,u_n)}{||u_n||^{p_-}}=\int\eta\geq \int_{\nu\neq 0}\eta=+\infty.
$$
 (3.9)

Because $||u_n|| \leq 1$, we have (see Lemma [2.2\)](#page-3-1)

$$
\rho(u_n) \leq \frac{1}{p_-} ||u_n||^{p_-} \leq 1.
$$

Thus, $\phi(\rho(u_n)) = 1$ and

[8] Multiple solutions for $p(x)$ -Laplacian equations 353

$$
\Psi(u_n) = \Phi(u_n) = \rho(u_n) - \int F(x, u_n)
$$

\n
$$
\leq \frac{1}{p_-} ||u_n||^{p_-} - \int F(x, u_n)
$$

\n
$$
= ||u_n||^{p_-} \left(\frac{1}{p_-} - \int \frac{F(x, u_n)}{||u_n||^{p_-}}\right) = \frac{1}{n^{p_-}} \left(\frac{1}{p_-} - \int \frac{F(x, u_n)}{||u_n||^{p_-}}\right).
$$

Now, from [\(3.9\)](#page-6-1), we deduce n^p - $\Psi(u_n) \to -\infty$, contradicting [\(3.8\)](#page-6-2).

PROOF OF THEOREM [1.1.](#page-1-2) Lemmas [3.1,](#page-4-1) [3.2](#page-5-4) and [3.4](#page-6-0) permit us to apply Proposition [1.2,](#page-2-1) and deduce that Ψ has a sequence of critical points $u_k \neq 0$ such that Ψ(u_k) < 0 and $u_k \to 0$ in W For some $K \in \mathbb{N}$ if $k > K$ u_k → 0 in *W*. For some $K \in \mathbb{N}$, if $k \ge K$,

$$
\rho(u_k) \leq \frac{1}{p_-} ||u_k||^{p_-} < 1.
$$

Since $\Psi(u) = \Phi(u)$ for $u \in \rho^{-1}[0, 1)$, we see that u_k with $k \geq K$ are critical points of Φ as well, satisfying $\Phi(u_k) < 0$ and $u_k \to 0$ in W.

REMARK 3.5. Liu and Wang [\[8,](#page-8-0) Theorem 3.1] treat the case in which $p(x)$ is a constant $p > 1$. Assuming that $f(x, \cdot)$ is odd *only* in $(-\delta, \delta)$ for some $\delta > 0$, and

$$
\lim_{|t| \to 0} \frac{F(x, t)}{|t|^p} = +\infty
$$
\n(3.10)

uniformly on some small ball $B_r(x_0) \subset \Omega$, a sequence of negative energy solutions approaching zero is obtained. Liu and Wang truncated the nonlinearity $f(x, t)$ for $|t| > \delta/2$, resulting in a new nonlinearity $\hat{f}(x, t) = 0$ for $|t| > \delta$. Then Proposition [1.2](#page-2-1) is applied to get a sequence of solutions u_n for the truncated problem. Since $u_n \to 0$ in $W_0^{1,p}(\Omega)$, a regularity argument then yields $|u_n|_{\infty} < \delta/2$ for large *n*. Such u_n are then solutions of the original problem solutions of the original problem.

To the best of our knowledge, a suitable *L*[∞]-regularity theory is not available for the $p(x)$ -Laplacian operator and, at present, we can only deal with the case in which $f(x, \cdot)$ is globally odd and subcritical, as we have done in Theorem [1.1.](#page-1-2) Our argument in proving Lemma [3.4](#page-6-0) can be used to slightly improve [\[8,](#page-8-0) Theorem 3.1], requiring only that the limit [\(3.10\)](#page-7-5) holds pointwise in $B_r(x_0)$.

References

- [1] A. Chinnì, A. Sciammetta and E. Tornatore, 'Existence of non-zero solutions for a Dirichlet problem driven by (*p*(*x*), *q*(*x*))-Laplacian', *Appl. Anal.* 101(15) (2022), 5323–5333.
- [2] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, *Lebesgue and Sobolev Spaces with Variable Exponents*, Lecture Notes in Mathematics, 2017 (Springer, Heidelberg, 2011).
- [3] X. Fan and Q. Zhang, 'Existence of solutions for *p*(*x*)-Laplacian Dirichlet problem', *Nonlinear Anal.* 52(8) (2003), 1843–1852.
- [4] X. Fan and D. Zhao, 'On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$ ', *J. Math. Anal. Appl.* 263(2) (2001), 424–446.
- [5] W. He and Q. Wu, 'Multiplicity results for sublinear elliptic equations with sign-changing potential and general nonlinearity', *Bound. Value Probl.* 2020 (2020), Article no. 159, 9 pages.
- 354 S. Liu [9]
- [6] V. V. Jikov, S. M. Kozlov and O. A. Ole˘ınik, *Homogenization of Differential Operators and Integral Functionals* (Springer-Verlag, Berlin, 1994). Translated from the Russian by G. A. Yosifian.
- [7] S. Liang and J. Zhang, 'Infinitely many small solutions for the *p*(*x*)-Laplacian operator with nonlinear boundary conditions', *Ann. Mat. Pura Appl. (4)* 192(1) (2013), 1–16.
- [8] Z. Liu and Z.-Q. Wang, 'On Clark's theorem and its applications to partially sublinear problems', *Ann. Inst. H. Poincaré Anal. Non Linéaire* 32(5) (2015), 1015–1037.
- [9] M. Růžička, *Electrorheological Fluids: Modeling and Mathematical Theory*, Lecture Notes in Mathematics, 1748 (Springer-Verlag, Berlin, 2000).
- [10] S. Taarabti, 'Positive solutions for the *p*(*x*)-Laplacian: application of the Nehari method', *Discrete Contin. Dyn. Syst. Ser. S* 15(1) (2022), 229–243.
- [11] L. Tavares and J. V. C. Sousa, 'Multiplicity results for a system involving the *p*(*x*)-Laplacian operator', *Appl. Anal.* 102(5) (2023), 1271–1280.

SHIBO LIU, Department of Mathematics and Systems Engineering, Florida Institute of Technology, Melbourne 32901, FL, USA e-mail: sliu@fit.edu