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Abstract

In this article, we establish the Grothendieck–Serre conjecture over valuation rings: for a
reductive group scheme G over a valuation ring V with fraction field K, a G-torsor over V
is trivial if it is trivial over K. This result is predicted by the original Grothendieck–Serre
conjecture and the resolution of singularities. The novelty of our proof lies in overcoming
subtleties brought by general nondiscrete valuation rings. By using flasque resolutions
and inducting with local cohomology, we prove a non-Noetherian counterpart of Colliot-
Thélène–Sansuc’s case of tori. Then, taking advantage of techniques in algebraization,
we obtain the passage to the Henselian rank-one case. Finally, we induct on Levi sub-
groups and use the integrality of rational points of anisotropic groups to reduce to the
semisimple anisotropic case, in which we appeal to properties of parahoric subgroups
in Bruhat–Tits theory to conclude. In the last section, by using extension properties of
reflexive sheaves on formal power series over valuation rings and patching of torsors, we
prove a variant of Nisnevich’s purity conjecture.
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1. The Grothendieck–Serre conjecture and Zariski’s local uniformization

Originally conceived by Serre [Ser58, p. 31, Remark] and Grothendieck [Gro58, pp. 26–27,
Remark 3] in 1958, the prototype of the Grothendieck–Serre conjecture predicted that for an
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algebraic group G over an algebraically closed field k, a G-torsor over a nonsingular k-variety
is Zariski-locally trivial if it is generically trivial. With its subsequent generalization to regular
base schemes by Grothendieck [Gro68, Remark 1.11.a] and the localization by spreading out, the
conjecture became the following.

Conjecture 1.1 (Grothendieck–Serre). For a reductive group scheme G over a regular local
ring R with fraction field K, the following map between nonabelian étale cohomology pointed
sets has trivial kernel:

H1
ét(R, G)→ H1

ét(K, G);

in other words, a G-torsor over R is trivial if its restriction over K is trivial.

Diverse variants and cases of Conjecture 1.1 were derived in the last few decades. A nice survey
of the topic is [Ces22b]. For state-of-the-art results, a more general variant of Conjecture 1.1
over regular semilocal rings containing fields was established by Panin [Pan20] and Fedorov and
Panin [FP15]; Česnavičius [Ces22a] settled the unramified quasi-split case (the prior split case
is [Fed22]); recently, Guo and Liu [GL23] proved the conjecture for constant group schemes and
the smooth projective case was proved by Guo, Panin, and Stavrova [GP23, PS23a, PS23b]. The
goal of this article is to settle the analogue of Conjecture 1.1 when R is instead assumed to be a
valuation ring. This variant is expected because of the following consequence of the resolution of
singularities conjecture, a weak form of Zariski’s local uniformization.

Conjecture 1.2 (Zariski). Every valuation ring is a filtered direct limit of regular local rings.

Even though Conjecture 1.2 is weaker than Zariski’s local uniformization, all its known results
come from resolutions or alternations. For a variety X over a field k, when char k = 0, the local
uniformization was resolved by Zariski [Zar40]; when char k > 0, it was proved for 3-folds [Abh66,
Cut09, CP08, CP09] and surfaces [Abh56]. Temkin [Tem13] achieved the local uniformization after
taking a purely inseparable extension of function fields. For a valuation ring V whose fraction field
K has no degree-p extensions (e.g. K is algebraically closed) where p is the residue characteristic,
Conjecture 1.2 follows from p-primary alterations [Tem17]. When dimX ≥ 4 and char k > 0, the
local uniformization is widely open.

By assuming Conjecture 1.2, a limit argument [Gir71, VII, 2.1.6] reduces the
Grothendieck–Serre over valuation rings to Conjecture 1.1. In particular, Conjectures 1.1 and 1.2
predict the following main result.

Theorem 1.3. For a reductive group scheme G over a valuation ring V with fraction field K,
the following map is injective:

H1
ét(V, G)→ H1

ét(K, G). (♦)

The special case of Theorem 1.3 when G is an orthogonal group for a nondegenerate quadratic
form and V is a valuation ring in which 2 is invertible was proved in [C-TS87, 6.4] and [CLRR80,
Theorem 4.5].

In addition to its connection to the resolution of singularities, the considered variant
Theorem 1.3 offers a few glimpses of the behavior of torsors in the nonarchimedean geometry
(more precisely, the rigid-analytic geometry), where the building blocks are affinoids over frac-
tion fields of certain valuation rings (indeed, nonarchimedean fields) and valuation rings usually
emerge as rings of definition in Huber pairs. Not to mention, the simplest objects in perfectoid
spaces, perfectoid fields, are required to be nondiscrete valued fields, whose valuation rings are
non-Noetherian. Furthermore, the following proposition shows that the Grothendieck–Serre over
valuation rings yields patching of torsors with respect to arc-covers (cf. [BM21]).
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Proposition 1.4 (Corollary 4.6). For a valuation ring V of rank n > 0, the prime p ⊂ V of
height n− 1, and a reductive V -group scheme G, the following map is surjective:

Im(G(Vp)→ G(κ(p))) · Im(G(V/p)→ G(κ(p))) � G(κ(p)).

The non-Noetherianness of general valuation rings introduces considerable subtleties, even
when G is a torus. Namely, in this case we can no longer adopt the method of [C-TS87, 4.1] and
need to devise alternative arguments. For instance, a crucial ingredient of [C-TS87, 4.1] is the
exact sequence of étale sheaves

0→ Gm,S → i∗(Gm,ξ)→ ⊕x∈S(1)ix∗(Zx)→ 0, (1.4.1)

where S is a semilocal regular scheme with the union of generic points i : ξ → S and x ranges
over the points of codimension 1. Being used in the proof of [C-TS87, 2.2], however, the short
exact sequence (1.4.1) fails for general valuation rings. For a valuation ring with fraction field K
and value group Γ, we have

0→ V × → K× → Γ→ 0,

where the abelian group Γ is typically infinitely generated, rendering the arguments in [C-TS78,
C-TS87] knotty to emulate. To circumvent this, after using a flasque resolution of tori, we apply
local cohomology techniques to induct on the Krull dimension of the valuation ring. This reduces
us to the following:

for a flasque torus F over a valuation ring (V, mV ) of finite rank, we have H2
mV

(V, F ) = 0. (∗)

For a flasque torus with character group Λ, by definition (§ 2.5), the Galois action on Λ has
special properties, so certain Galois cohomology of Λ vanishes, which leads to the vanishing of
local cohomology (∗) and therefore the case of tori.

Proposition 1.5 (Proposition 2.7). For a torus T over a valuation ring V with fraction field
K, the map

H1
ét(V, T ) ↪→ H1

ét(K, T ) is injective.

For a multiplicative-type group M of finite type over V , the map between pointed sets of fpqc
cohomology

H1
fpqc(V, M) ↪→ H1

fpqc(K, M) is injective.

This case of tori, in turn, yields the simplest case of the product formula stated in (1.5.1) (or
see Lemma 4.4), which is essential for further reduction of Theorem 1.3.

A practical advantage of Henselian rank-one valuation rings is that several techniques of
Bruhat–Tits theory, especially in [BT84, §§ 4 and 5], become available. The goal of §§ 3 and 4 is
to reduce Theorem 1.3 to this case: after a limit argument that leads to the case of finite rank, we
induct on the rank n of a valuation ring V by patching torsors. The induction hypothesis implies
that our G-torsor over V is a gluing of trivial torsors. For this gluing, we choose an a ∈ V such
that the a-adic completion V â is a rank-one Henselian valuation ring with Kâ := Frac V â ; so
that, V [ 1a ] is a valuation ring of rank n− 1. Similar to the Beauville–Laszlo’s gluing of bundles,
our patching is reformulated as the product formula

G(Kâ ) = Im
(
G(V [ 1a ])→ G(Kâ )

)
·G(V â ). (1.5.1)

The strategy for proving this formula is a ‘dévissage’ that establishes approximation properties
of certain subgroups of G

V̂ a . In this procedure, techniques of algebraization [BC22, § 2] play an
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important role, especially for a Harder-type approximation (see § 3) and the following higher rank
counterpart of [Pra82].

Proposition 1.6 (Proposition 4.3). For a reductive anisotropic group scheme G over a Henselian
valuation ring V with fraction field K, we have G(V ) = G(K).

Based on its special case when K = Kâ is complete due to Maculan [Mac17, Theorem 1.1], our
approach to Proposition 1.6 is a reduction to completion that rests on techniques of algebraiza-
tion to approximate schemes characterizing the anisotropicity of G

V̂ a . Indeed, Proposition 1.6
is an anisotropic version of the product formula (1.5.1). Proposition 1.6 is helpful, not only for
the reduction to the Henselian rank-one case, but also for the induction on Levi subgroups when
reducing to the semisimple anisotropic case in § 5. After these reductions, we transfer Theorem 1.3
into the injectivity of a map of Galois cohomologies. We conclude by taking advantage of
properties of parahoric subgroups in Bruhat–Tits theory, see Theorem 6.1.

In addition to techniques of algebraization, another crucial element of our reduction to the
Henselian rank-one case is a lifting property of maximal tori of reductive group schemes.

Lemma 1.7 (Lemma 3.10). For a reductive group scheme G over a local ring (R, κ) with a
maximal κ-torus T , if the cardinality of κ is at least dim(Gad), then G has a maximal R-torus
T such that

Tκ = T.

This strengthens a result of Grothendieck [SGA2, XIV, 3.20] that a maximal torus of a
reductive group scheme exists Zariski-locally on the base. By a correspondence of maximal tori
and regular sections, the novelty is to lift regular sections instead of merely proving their existence
Zariski-locally. Depending on inspection of the reasoning for [SGA2, XIV, 3.20], the key point
is [Bar67], which guarantees that Lie algebras over fields with large cardinalities contain regular
sections. For lifting regular sections, we need the functorial property of Killing polynomials.
Indeed, Killing polynomials over rings were defined ambiguously in the original literature, see
[SGA2, XIV, 2.2]. Therefore, to establish Lemma 1.7, we first add the supplementary details § 3.8
for Killing polynomials over rings. Subsequently, for a Lie algebra with locally constant nilpotent
rank, we use the functoriality of Killing polynomials to deduce the openness of the regular locus.
This openness permits us to lift regular sections, which amounts to lifting maximal tori.

In § 7, we acquire a variant of Nisnevich’s purity conjecture [Nis89, 1.3], whose statement is
the following.

Conjecture 1.8 (Nisnevich’s purity). For a reductive group scheme G over a regular local ring
R with a regular parameter f ∈ mR\m2

R, every Zariski-locally trivial G-torsor over R[ 1
f ] is trivial,

that is, we have

H1
Zar

(
R[ 1

f ], G
)

= {∗}.

This conjecture generalizes Quillen’s conjecture [Qui76, Comments] when G = GLn and was
proved by Gabber [Gab81] for G = GLn and PGLn when dimR ≤ 3. In this article, we consider
a variant: for a valuation ring V and its ring of formal power series V [[t]], we let R = V [[t]] and
f = t, hence R[ 1

f ] = V ((t)).

Proposition 1.9 (Corollary 7.6). For a reductive group scheme G over a valuation ring V , every
Zariski-locally trivial G-torsor over V ((t)) is trivial, that is, we have

H1
Zar(V ((t)), G) = {∗}.
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This Proposition 1.9 follows from the injectivity of the map H1
ét(V ((t)), G)→ H1

ét(K((t)), G)
proved in Proposition 7.5. In fact, by cohomological properties of reflexive sheaves (see § 7.1), every
étale GLn-torsor over V ((t)) is trivial. With an embedding G ↪→ GLn, we obtain Proposition 1.9
by patching torsors.

1.10 Notation and conventions
For various notions and properties about valuation rings and valued fields, see Appendix A. We
adopt the notion in [GP] for reductive group schemes: they are group schemes smooth affine over
their base schemes, such that each geometric fiber is connected and contains no normal subgroup
that is an iterated extension of Ga. For a valuation ring V , we denote by mV the maximal ideal
of V . When V has finite rank n, for the prime p ⊂ V of height n− 1 and a ∈ mV \p, we denote by
V â the a-adic completion of V . For a module M finitely generated over a topological ring A, we
endow M with the canonical topology as the quotient of the product topology via π : A⊕n � M .
By [GR18, 8.3.34], this topology on M is independent of the choice of π.

2. The case of tori

The goal of this section is to prove the Grothendieck–Serre conjecture over valuation rings for tori,
a non-Noetherian counterpart of Colliot-Thélène–Sansuc’s result [C-TS87, 4.1], then we extend it
to groups of multiplicative type (Proposition 2.7(ii)). Colliot-Thélène and Sansuc defined flasque
resolutions of tori over arbitrary base schemes, yielding several cohomological properties of tori
over regular schemes. In particular, they proved that for a torus T over a semilocal regular ring
R with total ring of fractions K, the map

H1
ét(R, T ) ↪→ H1

ét(K, T ) is injective, (2.0.1)

which is a stronger version of the Grothendieck–Serre conjecture for tori, see [C-TS87, 4.1].
Nevertheless, if we substitute R in (2.0.1) with a valuation ring V , then the method in [C-TS87,
4.1] no longer works because of the non-Noetherianness of V . Seeking an alternative argument
in this case, we induct on the rank of V and use local cohomology. This case of tori obtained in
Proposition 2.7 is crucial for subsequent steps of the proof of Theorem 1.3, such as for patching
torsors (see Propositions 4.5 and 4.7).

2.1 Group schemes of multiplicative type
For a scheme S and an S-group scheme G, the Cartier dual of G is an fpqc sheaf DS(G) :=
HomS-gr.(G, Gm,S). Recall [SGA2, IX, 1.1] that G is of multiplicative type, if every s ∈ S has
an fpqc neighborhood U such that GU 
 DU (MU ) = HomU -gr.(MU , Gm,U ) for a commutative
group M . An S-group G of multiplicative type is isotrivial, if there exists a finite étale surjective
morphism S′ → S such that DS′(GS′) is a constant commutative group on each connected com-
ponent of S′ (see [SGA2, IX, 1.4.1]). Assume that S is connected. One can replace S′ by one of its
connected component and apply [Sta18, 0BN2] to find an S-morphism S′′ → S′ of schemes for a
Galois cover S′′ of S (by [SGA1, V, 5.11], S′′ is a connected ΓS-torsor for a finite group Γ). Then,
since Γ has finitely many quotients, there is a minimal Galois cover S̃/S such that D

S̃
(G

S̃
) is

constant: the minimality of S̃/S means that there are no nontrivial Galois subcovers S̃ → S̃′ → S
such that D

S̃′(GS̃′) is constant. We also say that S̃/S is a minimal Galois cover splitting G (or
such that G

S̃
splits). Moreover, since S is assumed to be connected, for every geometric point

s : Spec Ω→ S of S with fundamental group π := πét
1 (S, s), where Ω is an algebraically closed
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field, there is an anti-equivalence [SGA2, X, 1.2]{
isotrivial multiplicative

type S-groups

}
∼−→

{
π-modules with

continuous actions

}
,

G �→M (G) := Ds(Gs) = HomΩ-gr.(Gs, Gm,s).

In particular, the category of isotrivial S-tori is anti-equivalent to the category of finite type
Z-lattices with continuous π-actions. Thus, every isotrivial S-torus T of rank n corresponds to
an equivalence class of representations

ρT : π → GLn(Z) such that ker ρT ⊂ π is an open normal subgroup.

If ρT and ρ′T are in the same equivalence class, then ker ρT = ker ρ′T . The finite quotient Γ :=
π/ ker ρT then yields a minimal Galois cover S̃/S splitting T with Galois group Γ and πét

1 (S̃) 

ker ρT . Hence, all minimal Galois covers splitting T are isomorphic to each other via the Galois
group Γ-action.

Lemma 2.2. For an irreducible geometrically unibranch scheme S of function field K and an
S-torus T ,

T contains G
k
m,S if and only if TK contains G

k
m,K .

Proof. It suffices to assume that G
k
m,K ⊂ TK and to deduce that G

k
m,S ⊂ T . Let η be a geomet-

ric point over the generic point Spec K
η→ S. We have M (T ) = Homη-gr.(Tη, Gm,η) = M (TK).

Note that G
k
m,K corresponds to a quotient lattice Λ of M (TK) such that Λ is of rank k with

trivial πét
1 (K)-action. On the other hand, by [Sta18, 0BQI], the natural map πét

1 (K) � πét
1 (S) is

surjective. Therefore, M (T ) has a quotient lattice that has rank k with trivial πét
1 (S)-action.

This implies that G
k
m,S ⊂ T . �

Recall [GD60, 2.1.8] that a scheme S is locally integral, if for every s ∈ S, the local ring OS,s

is integral. Hence, by definition, every connected component of S is both an open and closed
subset of S. With this notion, we generalize Grothendieck’s result [SGA2, X, 5.16] by relaxing
its Noetherian constraint.

Lemma 2.3. For a locally integral, geometrically unibranch scheme S, every S-group scheme M
of multiplicative type and of finite type is isotrivial. In particular, for every torus T over a normal
domain R, there is a minimal Galois cover R̃ of R such that T

R̃
splits.

Proof. Since every connected component of S is open, we may assume that S is connected. Then,
M is fpqc locally of the form D(H) for a finite-type abelian group H (determined by M). For
P := IsomS-gr.(M, DS(H)), our goal is to find a finite étale cover S′ → S such that P (S′) �= ∅.
By [SGA2, X, 5.8, 5.10 (i)], P is representable by a clopen subscheme of HomS-gr.(M, DS(H))
and there is an étale surjective morphism S̃ → S such that P

S̃
is a disjoint union of copies of S̃.

In particular, P is S-étale. By [GD67, 18.8.15, 18.10.7], S̃ is locally integral and geometrically
unibranch. We prove the following.

Claim 2.3.1. Every irreducible component Pi of P is finite étale over S.

Proof of the claim. Let η ∈ S be the generic point and let ξi be the generic point of Pi. By [GD65,
2.3.4], the S-flatness of P implies that every ξi lies over η. Therefore, (Pi)η is the closure of ξi

in Pη. The quasi-finiteness of P → S implies that Pη is discrete, so we have (Pi)η = {ξi}. On
the other hand, since S is integral and geometrically unibranch, by [GD67, 18.10.7], all Pi are
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geometrically unibranch, and
P =

⊔
ξi∈Pη

Pi.

Therefore, every Pi is clopen in P . Since it suffices to show that each (Pi)S̃
is S̃-finite, note that

every connected component of S̃ is open, we may assume that S̃ is connected so that P
S̃
∼=

⊔
Ψ S̃

for a set Ψ. Each Pi ⊂ P satisfies that (Pi)S̃
∼=

⊔
Φi

S̃ for a subset Φi ⊂ Ψ. As (Pi)η = {ξi} is a
single point, this forces that Φi is finite. Consequently, the base change (Pi)S̃

is finite over S̃, so
Pi is S-finite. �

As S is connected and all Pi → S are finite étale, take S′ := Pi, whose image is S. The
canonical embedding S′ ↪→ P then induces a section of PS′ → S′, so we get MS′ 
 DS′(H), as
desired. �
Proposition 2.4. Let X be a connected scheme, let T be an isotrivial X-torus, and let Y → X
be a minimal Galois cover splitting T . For a morphism f : X ′ → X of connected schemes, every
connected component of Y ′ := Y ×X X ′ is a minimal Galois cover splitting TX′ .

Proof. Let Γ := AutX(Y ) be the Galois group of Y/X, then Y is a ΓX -torsor on X, and Y ′

is a ΓX′-torsor on X ′. In particular, Γ acts transitively on each X ′-fiber of Y ′, hence induces
isomorphisms among connected components of Y ′. We choose a geometric point η′ → Y ′, and
denote its composites as η → Y , ξ′ → X ′, and ξ → X, respectively. Recall [Sta18, 0BND] that the
fiber functors Fξ : FÉtX

∼−→ Finite-πét
1 (X, ξ)-sets and Fξ′ : FÉtX′

∼−→ Finite-πét
1 (X ′, ξ′)-sets are

equivalences of categories. In addition, f induces a continuous homomorphism f∗ : πét
1 (X ′, ξ′)→

πét
1 (X, ξ) of profinite groups, fitting into the following commutative diagram.

Thus, we have Fξ′(Y ′) = f∗Fξ(Y ) = Fξ(Y ) = Γ set-theoretically and the short exact sequence

1→ πét
1 (Y, η)→ πét

1 (X, ξ)→ Γ ∼= AutΓ-set(Fξ(Y ))→ 1.

By the commutative diagram above, the πét
1 (X ′, ξ′)-action on Fξ′(Y ′) is equal to the πét

1 (X ′, ξ′)-

action on Fξ(Y ) via the composite πét
1 (X ′, ξ′) f∗→ πét

1 (X, ξ) � Γ, whose image is denoted by Γ′ ⊂ Γ.
The surjection πét

1 (X ′, ξ′) � Γ′ gives rise to the πét
1 (X ′, ξ′)-set structure on Fξ′(Y ′). Precisely, the

πét
1 (X ′, ξ′)-action on Fξ′(Y ′) is just the restriction Γ′ × Γ→ Γ of Γ× Γ→ Γ, leading to the coset

decomposition for Γ′ ⊂ Γ
Γ =

⊔
γ∈Γ′\Γ(Γ′ · γ)

so that all left Γ′-actions on Γ′ · γ are simply transitive and all Γ′ · γ have the same Γ′-set
structure. Hence, the equivalence Fξ′ : FÉtX′

∼−→ Finite-πét
1 (X ′, ξ′)-sets (combined with [Sta18,

03SF]) implies that (Γ′ · γ)γ∈Γ′\Γ correspond to Galois covers (Y ′
γ)γ∈Γ′\Γ of X ′ that are isomorphic

to each other. Further, the finite πét
1 (X ′, ξ′)-set Fξ′(Y ′) corresponds to Y ′, which decomposes into

connected components
Y ′ =

⊔
γ∈Γ′\Γ Y ′

γ ,

where Y ′
γ are Galois covers of X ′ with Galois group Γ′. If η′ → Y ′ factors through Y ′

γ0
, then

1→ πét
1 (Y ′

γ0
, η′)→ πét

1 (X ′, ξ′)→ Γ′ = Gal(Y ′
γ0

/X ′)→ 1
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is a short exact sequence. Since the torus T induces a representation ρT : πét
1 (X, ξ)→ GL(Zn)

with the image Γ, where Zn 
 Homξ-gr.(Tξ, Gm), its base change TX′ induces a representation
f∗ ◦ ρT : πét

1 (X ′, ξ′)→ GL(Zn). By construction of Γ′, we have Γ′ = Im(f∗ ◦ ρT ). Thus, the desired
minimality of Y ′

γ0
amounts to the equality Γ′ = πét

1 (X ′, ξ′)/πét
1 (Y ′

γ0
, η′), which follows from the

last displayed short exact sequence. �

2.5 Flasque resolution of tori
The concepts of quasitrivial and flasque tori are rooted in two special Galois modules that serve as
character groups: permutation and flasque modules. For a finite group G, let LG be the category
of G-modules that are finite type Z-lattices. If a module M ∈ LG has a Z-basis on which G acts
via permutations, then M is a permutation module; in this case, M 
 ⊕iZ[G/Hi] for certain
subgroups Hi ⊂ G. If a module N ∈ LG satisfies H1(G, HomZ(N, Q)) = 0 for any permutation
module Q, then N is a flasque module. For example, a trivial G-module Q0 ∈ LG is a permutation
module and H1(G, HomZ(N, Q0)) = 0 for any flasque G-module N . For a scheme S and an S-
torus T , if every connected component Z of S has a Galois cover Z ′ → Z with Galois group
G splitting T such that the G-module DS(T )(Z ′) is flasque (respectively, permutation), then T
is flasque (respectively, quasitrivial). When S is connected, every quasitrivial torus is a finite
product of Weil restrictions ResS′

i/S(Gm) for finite étale connected covers S′
i → S. As proved in

[C-TS87, Theorem 1.3], for a torus T over a scheme S whose every connected component is open,
there is a short exact sequence of S-tori, that is, a flasque resolution of T :

1→ F → P → T → 1, where F is flasque and P is quasitrivial. (2.5.1)

Lemma 2.6. For a flasque torus F over a valuation ring V of finite rank, the local cohomology
vanishes:

H2
mV

(V, F ) = 0.

Proof. Let X = SpecV and Z = Spec(V/mV ). Let n ≥ 1 be the rank of V , then X\Z is the
spectrum of a valuation ring of rank n− 1. By excision [Mil80, III, 1.28], we may replace X
by its Henselization Xh. For a variable X-étale scheme X ′ with preimage Z ′ := X ′ ×X Z, let
Hq

Z(−, F ) be the étale sheafification of the presheaf X ′ �→ Hq
Z′(X ′, F ). By the local-to-global E2

spectral sequence

Hp
ét(X,Hq

Z(X, F ))⇒ Hp+q
Z (X, F ) [SGA4II, V, 6.4]

to show that H2
Z(X, F ) = 0, it suffices to obtain the vanishings

H0
ét(X,H2

Z(X, F )) = H1
ét(X,H1

Z(X, F )) = H2
ét(X,H0

Z(X, F )) = 0.

Subsequently, in the following two paragraphs, we calculate Hq
Z(X, F ) for 0 ≤ q ≤ 2.

Let x→ X be a geometric point. If x factors through X\Z, then Hq
Z(X, F )x = 0. Now, we

take x as a fixed geometric point over mV , so Hq
Z(X, F )x = Hq

mV
(V sh, F ), where V sh is the strict

Henselization of V with the maximal ideal mV . The local map V → V sh of local rings is faithfully
flat [Sta18, 07QM] and preserves value groups [Sta18, 0ASK]. Therefore, for the prime p ⊂ V of
height n− 1, there is a unique prime ideal P ⊂ V sh lying over p (that is, pV sh = P). By [SGA4II,
V, 6.5], we have the exact sequence

· · · → H i
ét(V

sh, F )→ H i
ét((V

sh)P, F )→ H i+1
mV

(V sh, F )→ H i+1
ét (V sh, F )→ · · · . (2.6.1)

First, we compute Hq
mV

(V sh, F ) when q = 0 and 2. The injectivity of H0
ét(V

sh, F ) ↪→
H0

ét((V
sh)P, F ) and the vanishings of H1

ét((V
sh)P, F ) and H i

ét(V
sh, F ) for i = 1, 2 (see
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[Sta18, 03QO]) imply the following:

H0
mV

(V sh, F ) = H2
mV

(V sh, F ) = 0. (2.6.2)

This (2.6.2) leads to H0
Z(X, F ) = H2

Z(X, F ) = 0, so we get H0
ét(X,H2

Z(X, F )) = H2
ét(X,H0

Z

(X, F )) = 0.
Next, we calculate H1

mV
(V sh, F ). From (2.6.1) we obtain the following short exact sequence:

0→ H0
ét(V

sh, F )→ H0
ét((V

sh)P, F )→ H1
mV

(V sh, F )→ H1
ét(V

sh, F ) = 0.

For the Cartier dual DX(F ) of F , let Λ := DX(F )(V sh) and Λ∨ := HomZ(Λ,Z). By Cartier
duality,

H0
ét(V

sh, F ) ∼= F
(
V sh

)
∼= HomV -gr.(DX(F ), Gm)(V sh) = HomZ(Λ, (V sh)×) ∼= Λ∨ ⊗Z (V sh)×,

and similarly,
H0

ét((V
sh)P, F ) ∼= Λ∨ ⊗Z (V sh)×P.

The value group ΓV sh/P of V sh/P, by Proposition A.2 (v), is isomorphic to (V sh)×P/(V sh)×.
Therefore,

H1
mV

(V sh, F ) = (Λ∨ ⊗Z (V sh)×P)/(Λ∨ ⊗Z (V sh)×) ∼= Λ∨ ⊗Z ΓV sh/P.

Since X is Henselian local and H1
Z(X, F ) is an abelian sheaf on X, by [SGA4II, VIII, 8.6], we

have

H1
ét(X,H1

Z(X, F )) ∼= H1(πét
1 (V ), H1

mV
(V sh, F )) ∼= H1(πét

1 (V ), HomZ(Λ, ΓV sh/P)). (2.6.3)

To see the action of πét
1 (V ) on HomZ(Λ, ΓV sh/P), by Lemma 2.3, we first note that the πét

1 (V )-
action on Λ factors through its quotient Gal(Y/X), where Y is the minimal Galois cover of X
splitting F . In addition,

ΓV sh/P
[Sta18, 05WS]

==== Γ(V/p)sh
[Sta18, 0ASK]

==== ΓV/p,

so πét
1 (V ) acts trivially on ΓV sh/P

∼= Frac(V/p)×/(V/p)×. Thus, the πét
1 (V )-action on

HomZ(Λ, ΓV/p) factors through Gal(Y/X). Since πét
1 (V ) is a projective limit of finite groups

Gal(Xα/X), where Xα ranges over Galois covers of X, a limit argument [Ser02, I, § 2.2,
Corollary 1] reduces (2.6.3) to

H1
ét(X,H1

Z(X, F )) 
 lim−→α
H1

(
Gal(Xα/X), HomZ(Λ, ΓV/p)πét

1 (Xα)
)
. (2.6.4)

We express ΓV/p as a direct limit of finite type Z-submodules (Γi)i∈I . Since Λ is Z-finitely
presented,

lim−→i∈I
HomZ(Λ, Γi)

∼−→ HomZ(Λ, ΓV/p). (2.6.5)

Combining the isomorphism (2.6.5) with a limit argument [Ser02, I, § 2.2, Proposition 8], we
reduce (2.6.4) to

lim−→α
H1

(
Gal(Xα/X), lim−→i∈I

HomZ(Λ, Γi)πét
1 (Xα)

)
= lim−→

α

lim−→
i∈I

H1
(
Gal(Xα/X), HomZ(Λ, Γi)πét

1 (Xα)
)
.

It suffices to calculate for a large α0 such that Xα0 splits F . In this situation, πét
1 (Xα0) acts

trivially on HomZ(Λ, Γi). Since F is a flasque torus, its character group Λ is a flasque Gal(Xα0/X)-
module. As aforementioned, Gal(Xα0/X) acts trivially on ΓV/p, so the Γi are finite-type
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Z-lattices with trivial Gal(Xα0/X)-action. The example in § 2.5 implies H1(Gal(Xα0/X),
HomZ(Λ, Γi)) = 0, which verifies that

H1
ét(X,H1

Z(X, F )) = 0. �

Proposition 2.7. For a valuation ring V and a finite-type V -group scheme M of multiplicative
type:

(i) H2
fpqc(V, M) ↪→ H2

fpqc(Frac V, M) is injective; in particular, the restriction of Brauer group

Br(V ) ↪→ Br(Frac V )

is injective;
(ii) H1

fpqc(V, M) ↪→ H1
fpqc(Frac V, M) is injective.

Proof. As V is a filtered direct union of valuation subrings of finite rank [BM21, 2.22], a limit
argument [SGA4II, VII, 5.7] reduces us to the case when V has finite rank n. Note that for a
quasitrivial V -torus P , we have P 


∏
S′

i
ResS′

i/ Spec V Gm for finite étale connected V -schemes S′
i,

so [GP, XIX, 8.4] gives an isomorphism H1
ét(V, P ) ∼=

∏
S′

i
H1

ét(S
′
i, Gm). The Grothendieck–Hilbert

90 [SGA2, VIII, 4.5] identifies H1
ét(S

′
i, Gm) 
 H1

Zar(S
′
i, Gm), which are trivial by [Bou98, II, § 5,

no. 3, Proposition 5]. Thus, we have

H1
ét(V, P ) = {∗} for every quasitrivial V -torus P .

(i) First, we reduce to the case for flasque tori. By the short exact sequence [C-TS87, 1.3.2]

1→M → F → P → 1,

where F is flasque and P is quasitrivial, we obtain the commutative diagram with exact rows

where H1
fpqc(V, P ) = H1

ét(V, P ) = {∗}. Hence, it suffices to prove the assertion for the flasque F .
Next, we induct on the rank n of V . The case of V = FracV is trivial, so when n ≥ 1, for the

prime p of V of height n− 1, we assume that the assertion holds for Vp (which has rank n− 1).
Let X = SpecV and Z = Spec(V/mV ). By [SGA4II, V, 6.5], we have the long exact sequence:

· · · → H2
Z(X, F )→ H2

fpqc(X, F )→ H2
fpqc(X − Z, F )→ H3

Z(X, F )→ · · · . (2.7.1)

We conclude by the induction hypothesis and H2
Z(X, F ) = 0 proved in Lemma 2.6.

(ii) We first reduce to the case when M is a torus. The isotriviality of M yields a short exact
sequence

1→ T →M → μ→ 1,

where T is a V -torus and μ is a finite multiplicative type V -group. For the commutative diagram
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with exact rows, the valuative criterion for properness of μ leads to μ(V ) = μ(Frac V ) and the
injectivity of H1

fpqc(V, μ) ↪→ H1
fpqc(Frac V, μ). Thus, a diagram chase reduces us to showing that

H1
ét(V, T )→ H1

ét(Frac V, T ) is injective.

A flasque resolution of T as (2.5.1) leads to the following commutative diagram with exact rows

where H1
ét(V, P ) = {∗}. Since the map H2

ét(V, F ) ↪→ H2
ét(Frac V, F ) is injective by part (i), the

map
H1

ét(V, T ) ↪→ H1
ét(Frac V, T ) is injective. �

Corollary 2.8. For a flasque torus F over a valuation ring V with fraction field K, the map

H1
ét(V, F ) ∼−→ H1

ét(K, F ) is an isomorphism.

Proof. The injectivity follows from Proposition 2.7 (ii). A limit argument reduces us to the case
when V has finite rank, then we iteratively use Lemma 2.6 with the exact sequence (cf. 2.7.1)

H1
ét(V, F )→ H1

ét(Spec V \{mV }, F )→ H2
mV

(V, F ) = 0,

to reduce the rank of valuation rings by removing closed points, so the surjectivity follows. �

3. Algebraizations and a Harder-type approximation

The upshot of this section is Proposition 3.19, a higher-height analogue of Harder’s weak approxi-
mation [Har68, Satz. 2.1] to reduce Theorem 1.3 to the case of Henselian rank-one valuation rings.
To prove this, we take advantage of techniques of algebraization from [BC22, § 2] and Conrad’s
topologization of points.

3.1 Topologizing R-points of schemes
For a topological ring R and an R-scheme (or R-algebraic stack) X, the problem of topologizing
X(R) functorially in X compatible with the topology of R has been studied in recent years.
Precisely, we expect a topology on X(R) satisfying some of the following:

(i) each R-morphism X → X ′ induces a continuous map X(R)→ X ′(R);
(ii) for every integer n ≥ 0, we have a canonical homeomorphism A

n(R) 
 Rn;
(iii) each closed immersion X ↪→ X ′ induces an embedding X(R) ↪→ X ′(R);
(iv) each open immersion X ↪→ X ′ induces an open embedding X(R) ↪→ X ′(R); and
(v) for all R-morphisms X ′ → X ← X ′′ of R-schemes, the identifications

(X ′ ×X X ′′)(R) = X ′(R)×X(R) X ′′(R) are homeomorphisms.

For all affine schemes X of finite type over R, Conrad proved [Con12, Proposition 2.1] that there is
a unique way to topologize X(R) such that parts (i)–(iii) and (v) are satisfied. Such topologization
is realized by taking a closed immersion X ↪→ A

n
R and endowing X(R) with the subspace topology

from Rn. The resulting topology is not dependent on the choice of embeddings. For schemes X
locally of finite type over R, topologizing X(R) is reduced to the affine case by patching open affine
subschemes of X, which calls for several extra constraints on R. Namely, under the assumption
that R is local and R× ⊂ R is open with continuous inversion (e.g., Hausdorff topological fields
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and arbitrary valuation rings with valuation topology), Conrad showed [Con12, Proposition 3.1]
that there is a unique way to topologize X(R) satisfying parts (i)–(v) for all schemes X locally
of finite type over R. Subsequently, Česnavičius generalized Conrad’s result to algebraic stacks
(cf. [M-B01, § 2] for the case of Hausdorff topological fields). Without the local assumption, if
R× ⊂ R is open with continuous inversion, then X(R) can be topologized for (ind-)quasi-affine
or (sub)projective R-schemes X, see [BC22, § 2.2.7]. Note that all aforementioned results are
generalizations of Conrad’s version, hence they are compatible when restricting the families of X
or of R. Since we only consider schemes, our topologization only involves the following formation
of Conrad.

Lemma 3.2 [Con12, Proposition 3.1]. Let R be a local topological ring such that R× ⊂ R is open
with continuous inversion. There is a unique way to topologize X(R) satisfying parts (i)–(v) for
all schemes X locally of finite type over R. Moreover, if R is Hausdorff and X is R-separated,
then X(R) is Hausdorff.

Lemma 3.3 [Con12, Example 2.2]. For any continuous map R′ → R of topological rings and
any affine scheme X of finite type over R, the natural homomorphism X(R)→ X(R′) is
continuous. Moreover, if R′ ⊂ R is closed (respectively, open) subring, then X(R) ↪→ X(R′) is a
closed (respectively, open) embedding.

Definition 3.4. For a topological ring R and a scheme X locally of finite type over R, if X(R)
can be topologized as in § 3.1, then we say that X(R) has a topology induced from R. In particular,
if there is an ideal I ⊂ R such that the topology on R is I-adic, then the induced topology on
X(R) is called I-adic.

Now, we apply Conrad’s formation to our case when R is a valued field. Recall Appendix A.3
and Proposition A.4 that for every valued field (K, ν), there is a valuation topology determined by
ν and it is Hausdorff. By Appendix A.8, a valued field (K, ν) is nonarchimedean, if the valuation
topology on K is induced by a nontrivial rank-one valuation, or equivalently, the valuation ring
V (ν) of K has a prime of height one.

Lemma 3.5. Let (K, ν) be a valued field and let X be a scheme locally of finite type over K.

(i) The set X(K) has a topology induced from the valuation topology on K.
(ii) If X is separated over K, then X(K) is Hausdorff for the valuation topology.
(iii) For the valuation ring V ⊂ K and an affine finite type V -scheme Y , the natural map Y (V ) ↪→

Y (K) is a closed and open embedding for the valuation topology.
(iv) If K is Henselian nonarchimedean and X is K-smooth, then for the completion K̂ of K and

the topologies on X(K) and on X(K̂) induced from K and K̂, respectively, the following
map has dense image:

X(K)→ X(K̂).

Proof. For parts (i) and (ii), note that by Proposition A.4, K is Hausdorff so K× ⊂ K is open.
It is clear that the inversion on K× is continuous for the subspace topology. It suffices to use
Lemma 3.2 to topologize X(K); moreover, if X is separated over K, then X(K) is Hausdorff for
the valuation topology. Assertion (iii) follows from Lemma 3.3 and Proposition A.4 that the ball
V ⊂ K is closed and open.

For assertion (iv), we recall (Appendix A.11) that the topology on K is indeed a-adic for
an a ∈ V such that

√
(a) is of height one. Thus K̂ is the a-adic completion Kâ . We then apply

[BC22, 2.2.10 (iii)] and check the following conditions.
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– Let the topological ring B be K with a-adic topology. Then B̂ = Kâ and (Kâ )× ⊂ Kâ is an
open subring with continuous inversion.

– Let the nonunital open subring B′ be the ideal (a) of the valuation ring V . The induced
topology on (a) has an open neighborhood base of zero consisting of ideals (an)n≥1 ⊂ (a)
(Proposition A.10(i)).

– The nonunital ring (a) is Henselian in the sense of Gabber [BC22, 2.2.1], that is, every poly-
nomial f(T ) = TN (T − 1) + aNTN + · · ·+ a1T + a0 where ai ∈ (a) and N ≥ 1 has a (unique)
root in 1 + (a). Because V is Henselian, by [Sta18, 0DYD], the pair (V, (a)) is also Henselian.
Hence, Gabber’s criterion shows that (a) is Henselian, so the conditions in [BC22, 2.2.10 (iii)]
are satisfied. �

Lemma 3.6. For a Henselian valued field F :

(i) every smooth morphism f : X → Y between F -schemes locally of finite type induces an open
map of topological spaces ftop : X(F )→ Y (F );

(ii) for a monomorphism of F -flat locally finitely presented group schemes G′ ↪→ G where G′ is
F -smooth, and the F -algebraic space G′′ := G/G′, the map G(F )→ G′′(F ) is open.

Proof. For part (i), see [GGM-B14, 3.1.4] and note that the ‘topological Henselianity’ there yields
the desired openness by [GGM-B14, 3.1.2]. For part (ii), see [Ces15, 4.3 (a) and 2.8 (2)], where
R is our F . �

In addition to the topological properties above, the following lemma will be used repeatedly
in the sequel.

Lemma 3.7. For a topological group G, an open subgroup H ⊂ G, and a subset S ⊂ G, we have

S ·H = S ·H.

Proof. Since S ·H ⊂ S ·H, it suffices to see that S ·H = S ·H. The subset G\(S ·H) is a union
of giH for some gi ∈ G, hence is open. In particular, S ·H is closed, so the assertion follows. �

3.8 Regular sections, Cartan subalgebras, and subgroups of type (C)
Let R be a ring and let h be a Lie algebra over R as a locally free module of rank n. The Lie algebra
structure (Lie bracket) is a morphism A : h→ EndR(h). For any R-algebra R′, the ith coefficient
of the characteristic polynomial of degree n for B ∈ EndR′(hR′) is of the form (−1)n−iTr(∧n−iB),
so the ith coefficient of the characteristic polynomial is a morphism EndR(h)⊗i → R. Composing
A⊗i with the last morphism, we get

ci : h⊗i → R,

hence ci ∈ (h∨)⊗i ⊂ Γ(Sym
R
(h∨)). We define the Killing polynomial of h as Ph(t) := tn + c1t

n−1 +
· · ·+ cn ∈ Γ(Sym

R
(h∨))[t]. By construction, the formation of Killing polynomials commutes with

base change. When R is a field k, the largest r such that Ph(t) is divisible by tr is the nilpotent
rank of h. The nilpotent rank of the Lie algebra of a reductive group scheme is étale-locally
constant (see [SGA2, XV, 7.3] and [GP, XXII, 5.1.2, 5.1.3]). Every a ∈ h satisfying cn−r(a) �= 0 is
called a regular element. Let G be a reductive group scheme over a scheme S. For the Lie algebra
g of G, if a subalgebra d ⊂ g is Zariski-locally a direct summand such that its geometric fiber
ds at each s ∈ S is nilpotent and equals to its own normalizer, then σ is a Cartan subalgebra of
g (see [SGA2, XIV, 2.4]). We say an S-subgroup D ⊂ G is of type (C), if D is S-smooth with
connected fibers, and Lie(D) ⊂ g is a Cartan subalgebra. A section σ of g is a regular section, if
σ is in a Cartan subalgebra such that σ(s) ∈ gs is a regular element for all s ∈ S. A section of g

with regular fibers is quasi-regular, hence regular sections are quasi-regular.
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3.9 Schemes of maximal tori
For a reductive group scheme G defined over a scheme S, the functor

Tor(G) : Schop
/S → Set, S′ �→ {maximal tori of GS′}.

is representable by an S-affine smooth scheme [SGA2, XIV, 6.1]. For an S-scheme S′ and
a maximal torus T ∈ Tor(G)(S′) of GS′ , by [GP, XXII, 5.8.3], the morphism defined by
conjugating T ,

GS′ → Tor(GS′), g �→ gTg−1, (3.9.1)

induces an isomorphism GS′/NormGS′ (T ) ∼= Tor(GS′). Here, NormGS′ (T ) is an S′-smooth scheme
(see [SGA2, XI, 2.4bis]). Now, we establish the following lifting property of Tor(G).

Lemma 3.10. Let G be a reductive group scheme over a local ring R with residue field κ and
Z the center of G. If the cardinality of κ is at least dim(G/Z), then the following map is
surjective:

Tor(G)(R) � Tor(G)(κ).

Proof. An isomorphism [SGA2, XII, 4.7 c] of schemes Tor(G) 
 Tor(G/Z) reduces us to the
semisimple adjoint case, where the maximal tori of G are exactly the subgroups of type (C) [SGA2,
XIV, 3.18]. These subgroups are bijectively assigned by D �→ Lie(D) to the Cartan subalgebras of
g := Lie(G), see [SGA2, XIV, 3.9]. It suffices to lift a Cartan subalgebra cκ ⊂ gκ to that of g. Since
�κ ≥ dim(G/Z) = dim(G), by [Bar67, Theorem 1], cκ is of the form Nil(aκ) :=

⋃
n ker(ad(an

κ))
for some aκ ∈ cκ. Hence, [SGA2, XIII, 5.7] implies that each aκ ∈ cκ is a regular element of gκ.
We take a section a of g passing through aκ and claim that V := {s ∈ Spec R | as ∈ gs is regular}
is an open subset of Spec R. We may assume that R is reduced. Since the nilpotent rank of
g is locally constant, the Killing polynomial of g at every s ∈ Spec R is uniformly of the form
Pgs(t) = tr(tn−r + (c1)st

n−r−1 + · · ·+ (cn−r)s) such that (cn−r)s is nonzero. Thus, the regular
locus in g is the principle open subset {cn−r �= 0} ⊂W(g). The morphism W(g)→ Spec R is
flat, so V �= ∅ is open, forcing that V = Spec R. In particular, the regular elements aκ ∈ cκ lifts
to a quasi-regular section a ∈ g, which by [GP, XIV, 3.7], is regular. By definition of regular
sections, there is a Cartan subalgebra of g containing a and is the desired lifting of cκ. �

Next, we combine this lifting property with techniques of algebraization to deduce the den-
sity Lemma 3.15. The next pages will deal with localizations, a-adic topology, and completions
of valuation rings. It is therefore recommended that readers refer to Appendix A, especially
Appendix A.9 and Proposition A.10.

3.11 Rings of Cauchy sequences
To the best of the author’s knowledge, it is Gabber who first considered rings of Cauchy sequences
(see also its generalization to Cauchy nets [BC22, 2.1.12]). In this article, we take only one par-
ticular form to suit our need. Concretely, for a ring A and a t ∈ A such that 1 + t ⊂ A×, consider
the truncated Cauchy sequences (aN )N≥n in A[1t ] for an n ≥ 0. With termwise addition and mul-
tiplication, all truncated Cauchy sequences form a ring Cauchy≥n(A[1t ]). With this concept, one
can translate the approximation process into certain operations on rings of Cauchy sequences
and, thus, grasp the approximation properties through the algebrogeometric properties of the
ring Cauchy≥n(A[1t ]).

3.12 Setup
In the following, consider the subcase of § 3.11: let A = V be a valuation ring of rank n
and let t = a lie in mV \p for the prime p of height n− 1. By Proposition A.10, V [ 1a ] and
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the a-adic completion V â are valuation rings of ranks n− 1 and 1, respectively, and the a-
adic completion V [ 1a ]â of V [ 1a ] is Kâ := Frac V â . By Corollary A.12 and Proposition A.13,
Kâ is nonarchimedean and V â is a Henselian local ring. For every Kâ -scheme X locally of
finite type, we will endow X(Kâ ) with the a-adic topology.

Lemma 3.13. For the setup § 3.12, the lim−→m≥0
Cauchy≥m(V [ 1a ]) is a local ring with residue

field Kâ .

Proof. Taking a-adic completion of V [ 1a ] yields the surjection map

A := lim−→m≥0
Cauchy≥m(V [ 1a ]) � Kâ ,

whose kernel is denoted by I. For any sequence (bN )N ∈ I, its tail lies in Im(amV → V [ 1a ]) for
all m > 0, so the tail of (1 + bN )N consists of units in V that lie in Im((1 + amV )→ V [ 1a ]). Since
V [ 1a ] is local, the tail of (1 + bN )N is termwise invertible in V [ 1a ] and the inverses form a Cauchy
sequence. Since I ⊂ A is an ideal such that A/I is a field and 1 + I is invertible, A is a local ring
with residue field Kâ . �

Example 3.14. Consider the setup in § 3.12. Then Proposition A.4 implies that V â ⊂ Kâ is open
and closed. Let G be a reductive V -group scheme and recall Tor(G) (§ 3.9). By Lemma 3.5 (iii),
the subsets G(V â ) ⊂ G(Kâ ) and Tor(G)(V â ) ⊂ Tor(G)(Kâ ) are a-adically open and closed.

Lemma 3.15. Consider the setup § 3.12. For a reductive V -group scheme G,

the image of Tor(G)(V [ 1a ])→ Tor(G)(Kâ ) is a-adically dense.

Proof. As shown in Lemma 3.13, the ring lim−→m≥0
Cauchy≥m(V [ 1a ]) is local with residue field

Kâ . Since Tor(G) is finitely presented and affine over V [ 1a ], the lifting Lemma 3.10 leads to a
surjection as follows:

lim−→m≥0

(
Tor(G)(Cauchy≥m(V [ 1a ]))

)

 Tor(G)

(
lim−→m≥0

(Cauchy≥m(V [ 1a ]))
)

� Tor(G)(Kâ ).

Due to this surjection, all elements in Tor(G)(Kâ ) are limits of Cauchy sequences in
Tor(G)(V [ 1a ]), hence the image of the map Tor(G)(V [ 1a ])→ Tor(G)(Kâ ) is a-adically dense in
Tor(G)(Kâ ). �

Roughly speaking, this density permits us to ‘replace’ maximal tori of G
K̂a by those of GV [ 1

a
].

Next, we obtain openness of certain maps, then take images to construct an open normal subgroup
of G(Kâ ) contained in the closure of the image of G(V [ 1a ])→ G(Kâ ). First, recall some criteria
for openness.

Lemma 3.16. Consider the setup § 3.12. Let T be a torus over V [ 1a ].

(i) There is a minimal Galois cover R of V [ 1a ] splitting T (see § 2.1), and we have isomorphisms

R⊗V [ 1
a
] Kâ 
 Râ 


∏r
i=1 Li,

where Râ is the a-adic completion of R for the topology induced from V [ 1a ]. Each Li/Kâ is a
minimal Galois extension splitting T

K̂a and is a-adically complete; in particular, any minimal
Galois extension L0/K splitting T

K̂a is isomorphic to Li for all i, that is, L0 
 Li 
 Lj for
i �= j.
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(ii) For a minimal Galois field extension L0/Kâ splitting T
K̂a , the image U of the norm map

N
L0/K̂a : T (L0)→ T (Kâ )

is a-adically open in T (Kâ ) and contained in the closure T (V [ 1a ]) of Im(T (V [ 1a ])→ T (Kâ )).

Proof. (i) The existence of a minimal Galois cover R/V [ 1a ] splitting T follows from Lemma 2.3.
Since R is a finite flat V [ 1a ]-module, it is free and we have Râ 
 R⊗V [ 1

a
] Kâ 


∏r
i=1 Li, where

Li are a-adically complete fields. By Proposition 2.4 and § 2.1 we conclude.

(ii) First, we prove that U is a-adically open. For the norm map Res
L0/K̂a(TL0)→ T

K̂a , its
kernel T is a torus: after some base change, T

K̂a splits as G
k
m, so the associated Z-module of the

corresponding base change of T is the following Z-lattice with a trivial Galois action:

Coker
(
Zk → Z[Gal(L0/Kâ )]k, (ni) �→ (ni · id)

)

 Z[Gal(L0/Kâ )− {id}]k.

Thus, by [SGA2, IX, 2.1 e], as a torus, the kernel T is Kâ -smooth. By Lemma 3.6(ii), the map

N
L0/K̂a : T (L0)→ T (Kâ ), i.e. (Res

L0/K̂aTL0)(K
â )→

(
(Res

L0/K̂aTL0)/T
)
(Kâ )

is a-adically open so the image U = N
L0/K̂a(T (L0)) ⊂ T (Kâ ) is a-adically open.

Next, we prove that U ⊂ T (V [ 1a ]). The isomorphism Râ ∼=
∏r

i=1 Li obtained in part (i) implies
that the image of R× →

∏r
i=1 L×

i is a-adically dense. As TR is split, the image of the composite

T (R)→
∏r

j=1 T (Lj)
pr1→ T (L1) ∼= T (L0)

is a-adically dense. Composing this with N
L0/K̂a , we see that T (R) has dense image in

U = N
L0/K̂a(T (L0)). The composite T (R)→ T (L0)→ T (Kâ ) factors through the norm map

NR/V [ 1
a
] : T (R)→ T (V [ 1a ]), so the image of T (V [ 1a ]) is dense in U , that is, U ⊂ T (V [ 1a ]). �

Subsequently, we approximate the Kâ -points of a maximal torus of G
K̂a by using V [ 1a ]-points.

Lemma 3.17. Consider the setup § 3.12. For a reductive V -group scheme G, the closure G(V [ 1a ])
of the image of G(V [ 1a ])→ G(Kâ ), a maximal torus T of G

K̂a with minimal splitting field L0,
and the norm map

N
L0/K̂a : T (L0)→ T (Kâ ),

the image U = N
L0/K̂a(T (L0)) is an a-adically open subgroup of T (Kâ ) and is contained in

G(V [ 1a ]).

Proof. The a-adically open aspect of the assertion follows from Lemma 3.16(ii) because the
arguments there, by base change, apply to all Kâ -tori as well. The proof for U ⊂ G(V [ 1a ]) proceeds
as follows.

(i) Since Kâ is Henselian, by a criterion for openness Lemma 3.6(ii), the following map from
(3.9.1) is a-adically open:

φ : G(Kâ )→ Tor(G)(Kâ ), g �→ gTg−1.

Consequently, φ sends every a-adically open neighborhood W of id ∈ G(Kâ ) to an a-adically
open neighborhood of T . The density lemma (Lemma 3.15) of Tor(G)(V [ 1a ]) in Tor(G)(Kâ )
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implies that
φ(W ) ∩ Im(Tor(G)(V [ 1a ])→ Tor(G)(Kâ )) �= ∅.

Hence, there are a torus T ′ ∈ Tor(G)(V [ 1a ]) and a g ∈W such that gTg−1 = T ′
K̂a
∈ φ(W ).

(ii) For any u ∈ U , the map σu : G(Kâ )→ G(Kâ ) defined by g �→ g−1ug is continuous. Let
W := σ−1

u (U). By the construction in part (i), there are a w ∈W and a torus T ′ ∈ Tor(G)(V [ 1a ])
such that wTw−1 = T ′

K̂a
. Note that u ∈ wUw−1 = γN

L0/K̂a(T (L0))γ−1, which by transport
of structure, is equal to N

L0/K̂a(T ′
K̂a

(L0)). By Lemma 3.16, the last term is contained in

Im(T ′(V [ 1a ])→ T ′(Kâ )), so is contained in G(V [ 1a ]). �
Corollary 3.18. Consider the setup § 3.12 and a reductive V -group scheme G, we have

Im
(
Tor(G)(V â )→ Tor(G)(Kâ )

)
⊂ Im

(
Tor(G)(V )→ Tor(G)(Kâ )

)
.

More precisely, for every maximal torus T of G
V̂ a and every a-adically open neighborhood W of

id ∈ G(Kâ ), there exist a maximal torus T0 of G and a g ∈W such that (T0)K̂a = gT
K̂ag−1.

Proof. By the argument (i) for Lemma 3.17, φ(W ) ∩ Tor(G)(V â ) is an a-adically open neigh-
borhood of T

K̂a ∈ Tor(G)(Kâ ). Since V 
 V [ 1a ]×
K̂a V â (Proposition A.10(vii)) and Tor(G) is

affine, we get
Tor(G)(V ) ∼−→ Tor(G)(V [ 1a ])×

Tor(G)(K̂a)
Tor(G)(V â ).

By Lemma 3.15, the image of Tor(G)(V [ 1a ])→ Tor(G)(Kâ ) is a-adically dense, so we have

φ(W ) ∩ Tor(G)(V â ) ∩ Im(Tor(G)(V [ 1a ])) �= ∅,
giving a maximal torus T0 ∈ Tor(G)(V ) and g ∈W such that (T0)K̂a = gT

K̂ag−1 ∈ φ(W ). �
Next, we prove Proposition 3.19 by constructing an open subgroup in the closure of G(V [ 1a ]).

By lumping together the approximations in toral cases (Lemma 3.17), the resulting open subgroup
is normal. This normality is crucial for the dynamic argument for root groups for the product
formula Proposition 4.5.

Proposition 3.19. Consider the setup § 3.12. For a reductive V -group scheme G, the closure
G(V [ 1a ]) of the image of G(V [ 1a ])→ G(Kâ ) contains an a-adically open normal subgroup N of
G(Kâ ).

Proof. In the proof, all open subsets without the word ‘Zariski’ refer to a-adically open subsets.

(i) Fix a maximal torus T ⊂ G
K̂a . We denote by g the Lie algebra of G

K̂a and by h the Lie
algebra of T . For each g ∈ G

K̂a and the subspace gad(g) ⊂ g fixed by ad(g), by [SGA2, XIII,
2.6 b], dim gad(g) ≥ dimT . Let regular locus Greg ⊂ G

K̂a be the subscheme of all g ∈ G
K̂a that

satisfy dim(gad(g)) = dimT . By [SGA2, XIII, 2.7], Greg is Zariski open. By the equation

dim(gad(g)) = dim(had(g)) + dim((g/h)ad(g)),

an element t ∈ T is regular in G
K̂a (namely, t ∈ T reg := Greg ∩ T ) if and only if (g/h)ad(t) = 0.

(ii) Recall L0 and the open subgroup U ⊂ T (Kâ ) in Lemma 3.17, we claim that U ∩ T reg(Kâ ) �= ∅.
Consider the norm map Nm: Res

L0/K̂a(TL0)→ T . Note that TL0 
 G
k
m,L0

is isomorphic to a
Zariski-dense open subset of A

k
L0

, so Res
L0/K̂a(TL0) is also a Zariski-dense open subset of A

mk
K̂a

for
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m := [L0 : Kâ ]. The field Kâ is infinite, so we have (Res
L0/K̂a(TL0))(K

â ) ∩Nm−1(T reg)(Kâ ) �= ∅.
Applying Nm to this nonempty intersection, we proved our claim that U ∩ T reg(Kâ ) �= ∅.

(iii) For a fixed t0 ∈ U ∩ T reg(Kâ ), by (i), we have (g/h)ad(t0) = 0. So [SGA2, XIII, 2.2] implies
that

f : G
K̂a × T → G

K̂a , (g, t) �→ gtg−1

is smooth at (id, t0). Thus, there is a Zariski-open neighborhood W of (id, t0) such that f |W : W →
G

K̂a is smooth. By Lemma 3.6 (i), W (Kâ )→ G(Kâ ) is open. Thus, the open neighborhood W ′ :=
W (Kâ ) ∩ (G(Kâ )× U) of (id, t0) has open image under ftop. The G

K̂a-translations τh : (g, t) �→
(hg, t) for h ∈ G

K̂a induce automorphisms of G
K̂a × T , so f is also smooth at (h, t0). Similar to

the above, all G(Kâ )-translations of W ′ have open images under ftop. Thus, there is an open
subset U0 ⊂ U such that E := f(G(Kâ )× U0) is open. Let N be the subgroup of G(Kâ ) generated
by E. The openness of E implies that N is an open subgroup of G(Kâ ).

(iv) As E is stable under G(Kâ )-conjugation, N is normal in G(Kâ ). For each g ∈ G(Kâ ), we
let T g := gTg−1. Then Ug := N

L0/K̂a(T g(L0)) satisfies Ug = gUg−1. Lemma 3.17 applies to T g

and gives Ug ⊂ G(V [ 1a ]). Thus, E ⊂
⋃

g∈G(K̂a)
Ug ⊂ G(V [ 1a ]). Since E generates N , we obtain

N ⊂ G(V [ 1a ]). �

Corollary 3.20. With the notation in Proposition 3.19, G(V [ 1a ]) is an open subgroup of G(Kâ )
and

G(V [ 1a ]) ·G(V â ) = Im(G(V [ 1a ])→ G(Kâ )) ·G(V â ).

Proof. The image of G(V [ 1a ])→ G(Kâ ) is a subgroup of G(Kâ ), hence so is its closure G(V [ 1a ]).
Since G(V [ 1a ]) contains the open subset N , it is an open subgroup of G(Kâ ). Recall Example 3.14
that the subgroup G(V â ) ⊂ G(Kâ ) is open and closed. By Lemma 3.7, the desired equation
follows. �

4. Passage to the Henselian rank-one case: patching by a product formula

The aim of this section is to reduce Theorem 1.3 to the case when V is a Henselian valuation
ring of rank one. The key of our reduction Proposition 4.7 is the product formula Proposition 4.5
for patching torsors:

G(Kâ ) = Im(G(V [ 1a ])→ G(Kâ )) ·G(V â ).

To show this product formula, we use the Harder-type weak approximation Proposition 3.19.
First, we recall a criterion for anisotropicity [GP, XXVI, 6.14], which is practically useful.

Lemma 4.1. A reductive group scheme G over a semilocal connected scheme S is anisotropic if
and only if G has no proper parabolic subgroup and rad(G) contains no copy of Gm,S .

Precisely, to determine whether G is anisotropic, we consider the functor parametrizing
parabolic subgroups

Par(G) : Schop
/S → Set, S′ �→ {parabolic subgroups of GS′},
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which is representable by a smooth projective S-scheme (see [GP, XXVI, 3.5]).1 Note that G is
also an element in Par(G)(S); we denote this non-proper parabolic subgroup by ∗ ∈ Par(G)(S).

Recall from Appendices A.8 and A.11 that a valued field K is nonarchimedean if its valuation
ring V has a height-one prime ideal p1. The completion K̂ equals the a-adic completion Kâ of
K for an a ∈ p1\{0}.
Lemma 4.2. For a Henselian nonarchimedean valued field K with its completions K̂, a reductive
V -group scheme G, and the valuation topology on Par(G)(K̂) induced from K̂:

(i) the image of Par(G)(K)→ Par(G)(K̂) is dense;
(ii) let V ⊂ K and V̂ ⊂ K̂ be the valuation rings, if Par(G)(V̂ ) �= {∗}, then Par(G)(V ) �= {∗}.
Proof. The assertion (i) follows from Lemma 3.5 (iv). If Par(G)(V̂ ) �= {∗}, then the valua-
tive criterion for the separatedness of Par(G) implies that Par(G)(K̂) contains an x �= ∗. By
Lemma 3.5 (ii), Par(G)(K̂) is Hausdorff so x has an open neighborhood Ux that excludes ∗. The
density of the image of Par(G)(K)→ Par(G)(K̂) shown in (i) yields an y ∈ Par(G)(K) whose
image is contained in Ux. Therefore, y �= ∗ and Par(G)(K) �= {∗}. By the valuative criterion for
the properness of Par(G) over V , we conclude. �

The following proposition generalizes [Pra82, Theorem (BTR)] to valuation rings of higher
rank. For a reductive group scheme H over a scheme S, the S-split rank of G is the largest k
such that G

k
m,S ⊂ G. In particular, for any S-scheme S′, the HS′ is anisotropic if and only if it

has zero S′-split rank.

Proposition 4.3. Let G be a reductive group scheme over a valuation ring V with fraction
field K.

(a) A parabolic subgroup P ⊂ G is minimal if and only if the parabolic subgroup PK ⊂ GK is
minimal.

(b) The V -split rank of G equals the K-split rank of GK .
(c) If K is Henselian nonarchimedean, then for the completion V̂ of V and a minimal parabolic

subgroup P ⊂ G, the base change P
V̂

is a minimal parabolic subgroup of G
V̂

.
(d) If K is Henselian nonarchimedean, then for the completion V̂ of V ,

the V -split rank of G equals the V̂ -split rank of G
V̂

.

(e) If K is Henselian and V �= K, then G is anisotropic if and only if G(V ) = G(K).

Proof. (a) If PK is minimal, then any minimal parabolic subgroup Q of G contained in P satisfies
QK = PK . The valuative criterion for the separatedness of Par(G) over V implies that Q = P , so
P is minimal. Now, we assume that P ⊂ G is minimal. If there is a minimal parabolic subgroup
Q of GK contained in PK , then the valuative criterion for the properness of Par(G) lifts Q to a
parabolic Q̃ ⊂ G, which must be minimal. Then, by [GP, XXVI, 5.7 (ii)], two minimal parabolics
Q̃ and P are conjugated by an element of G(V ), which forces that PK = Q is minimal.

(b) When G is a V -torus, we note that Lemma 2.2 suffices. In the general case, we reduce to this
case of tori. Let L be a Levi subgroup of a minimal parabolic P ⊂ G and denote by rad(L)split

the maximal V -split subtorus of rad(L). By [GP, XXVI, 6.16], the V -split rank of G is equal
to dim(rad(L)split). By part (i), PK is still a minimal parabolic subgroup of GK thereby [GP,
XXVI, 6.16] applies: the K-split rank of G is equal to dim(rad(LK)split). Thus, we are reduced

1 For the formation of Par(G), the base scheme S does not have to be connected.
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to the known toral case [GP, XXII, 4.3.6] dim(rad(L)split) = dim((rad(L)K)split) for the V -torus
rad(L).

(c) Let L be a Levi subgroup of P , then L
V̂

is a Levi subgroup of P
V̂

. By [GP, XXVI, 1.20], the
set Par(L)(V̂ ) is the set of parabolics of G

V̂
that are contained in P

V̂
and Par(L)(V ) is the set

of parabolics of G that are contained in P . Hence, we conclude by Lemma 4.2(ii).

(d) For a Levi subgroup L of a minimal parabolic subgroup P of G, by part (c), L
V̂

is a
Levi subgroup of the minimal parabolic subgroup P

V̂
of G

V̂
. Therefore, a similar argument

in part (b) reduces us to the case when G is a V -torus T . Taking the quotient of T by
its maximal split subtorus Tsplit, we may assume that T is anisotropic. Consider the functor
[SGA2, X, 5.6]

X∗(T ) : Schop
/V → Set, R �→ HomR-gr.(TR, Gm,R),

which is representable by an étale locally constant group scheme. Since T is isotrivial (Lemma 2.3),
by [GP, XXVI, 6.6], the property X∗(T )(R) �= 0 is equivalent to that TR contains a copy of Gm,R.
If X∗(T )(V̂ ) �= 0, then by Proposition A.10(vi), the sets X∗(T )(V/mV ) = X∗(T )(V̂ /m

V̂
) contain

nonzero elements. Since V is Henselian and X∗(T ) is V -smooth, we have the surjection

X∗(T )(V ) � X∗(T )(V/mV ) �= 0.

Thus, T contains a copy of Gm,V , which is in contradiction to the anisotropic assumption on T .
This contradiction shows that X∗(T )(V̂ ) = 0, namely, T

V̂
is also anisotropic, hence we conclude.

(e) If we have G(K) = G(V ), then it is impossible for G to contain a Gm,V because K× =
Gm(K) ⊂ G(K) strictly contains V × = Gm(V ) ⊂ G(V ). Therefore, G is anisotropic. Now assume
that G is anisotropic and we show that G(K) = G(V ). By [BM21, 2.22], V is a filtered direct
union of valuation subrings Vi of finite rank, such that each Vi → V is a local ring map. By [GD67,
18.6.14 (ii)], V is a filtered direct union of Henselian valuation subrings V h

i of finite rank. Similarly,
K is a filtered direct union of Kh

i := Frac(V h
i ). Since G is finitely presented over V , there is an

index i0 and an affine group scheme Gi0 smooth and finitely presented [Nag66, Theorem 3’] over
V h

i0
such that Gi0 ×Vi0

V 
 G. Further, by [Con14, 3.1.11], Gi0 and hence (Gi)i≥i0 are reductive
group schemes. It is clear that all (Gi)i≥i0 are anisotropic. By a limit argument [Sta18, 01ZC], we
have G(V ) = lim−→i≥i0

G(V h
i ) and G(K) = lim−→i≥i0

G(Kh
i ). Subsequently, it remains to prove the

case when V is Henselian of finite rank n.
First, we prove the case when V is of rank one. For a ∈ mV \{0}, we form the a-adic completion

V â of V with Kâ := Frac V â . By part (d), G
V̂ a is anisotropic. For the nonarchimedean complete

valued field Kâ , by [Mac17, Theorem 1.1], G(V â ) is a maximal bounded2 subgroup of G(Kâ ).
On the other hand, a result of Bruhat, Tits, and Rousseau [Rou77, Theorem 5.2.3] (or [BT84,
p. 156, Remark]) shows that G(Kâ ) is bounded. Consequently, we have G(V â ) = G(Kâ ). The
rank-one assumption ensures that V ↪→ V â is injective [FK18, Chapter 0, Theorem 9.1.1 (2)], so
the map G(V ) ↪→ G(V â ) is injective. The equality V = K ×

K̂a V â (Proposition A.10(vii)) and
the affineness of G yield a bijection

G(V ) ∼−→ G(K)×
G(K̂a)

G(V â ) ∼= G(K).

2 Recall from [BT84, 1.7.3 (f) or 4.2.19] (cf. [BLR90, Chapter 1, Definition 2]) that for a valued field (K, ν) and a
K-scheme X, a subset P ⊂ X(K) is bounded, if for all f ∈ K[X], we have infx∈P ν(f(x)) > −∞. For instance, the
subset Zp ⊂ Qp is bounded because ν(Zp) ≥ 0; the subset {p−n}n≥1 is not bounded because ν(p−n) = −n tends
to −∞.
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When V is of rank n > 1, we assume the assertion holds for the case of rank ≤ n− 1 and prove
by induction. For the prime p ⊂ V of height n− 1, by Proposition A.2(vii), the localization Vp

and the quotient V/p are Henselian valuation rings. Due to Proposition A.10(iv), the rank of V/p

is one and the rank of Vp is n− 1. Since V is Henselian, sections of Par(G) and X∗(rad(G)) over
V/mV lift over V . Hence, GV/mV

is anisotropic and so is GV/p. As G is anisotropic, by part (b),
so are GK and GVp . By the settled rank-one case and the induction hypothesis, we have

G(V/p) = G(Vp/pVp) and G(Vp) = G(K). (4.3.1)

The affineness of G and the isomorphism V
∼−→ Vp×Vp/pVp

V/p lead to the isomorphism

G(V ) ∼−→ G(Vp)×G(Vp/pVp) G(V/p). (4.3.2)

Therefore, the combination of (4.3.2) and (4.3.1) gives us the desired equation G(V ) = G(K). �
The following lemma provides the version for tori of the product formula.

Lemma 4.4. For a valuation ring V of rank n > 0, the prime p ⊂ V of height n− 1, an element
a ∈ mV \p, the a-adic completion V â with Kâ := Frac V â , and a V -torus T , we have the product
formula

T (Kâ ) = Im(T (V [ 1a ])→ T (Kâ )) · T (V â ).

Proof. The left-hand side contains the right-hand side, so it remains to show that every element of
T (Kâ ) is a product of elements of Im(T (V [ 1a ])→ T (Kâ )) and T (V â ). Consider the commutative
diagram

where V h is the Henselization of V and the rows are exact sequences of local cohomology [SGA4II,
V, 6.5.3]. By [Sta18, 0F0L], V h is also the a-Henselization of V , hence the a-adic completion of
V h is V â (see [FK18, 0, 7.3.5]). By the tori case Proposition 2.7, the three horizontal morphisms
in the two rightmost squares are injective. The excision [Mil80, III, 1.28] combined with a limit
argument yield an isomorphism H1

V/(a)(V, T ) ∼= H1
V h/(a)

(V h, T ). Therefore, a diagram chase gives
the decomposition

T (V h[ 1a ]) = Im
(
T (V [ 1a ])→ T (V h[ 1a ])

)
· T (V h). (4.4.1)

By [BC22, 2.2.17], the image of T (V h[ 1a ])→ T (Kâ ) is dense. The openness of T (V â ) ⊂ T (Kâ )
provided by Lemma 3.5(iii), and Lemma 3.7 imply that

Im
(
T (V h[ 1a ])→ T (Kâ )

)
· T (V â ) = Im

(
T (V h[ 1a ])→ T (Kâ )

)
· T (V â ) = T (Kâ ). (4.4.2)

Combining (4.4.1) and (4.4.2), we obtain the product formula for the case of tori. �
Proposition 4.5. For a valuation ring V of rank n > 0, the prime p ⊂ V of height n− 1, an
element a ∈ mV \p, the a-adic completion V â of V with Kâ := Frac V â , a reductive V -group
scheme G, the subgroup G(V â ) ⊂ G(Kâ ) and the image Im(G(V [ 1a ])) of the map G(V [ 1a ])→
G(Kâ ), we have

G(Kâ ) = Im
(
G(V [ 1a ])

)
·G(V â ).
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Proof. The right-hand side is contained in the left-hand side, so it remains to show that every
element of G(Kâ ) is a product of elements of Im

(
G(V [ 1a ])

)
and G(V â ). The proof is divided into

two cases.

Case 1: without proper parabolic subgroups
The case when G

V̂ a is anisotropic follows from Proposition 4.3(e). If G
V̂ a contains no proper

parabolic subgroup and rad(G
V̂ a) contains a nontrivial split torus of G

V̂ a , we consider the
commutative diagram

(4.5.1)

with exact rows, where the equality follows from Lemma 4.1 and Proposition 4.3(e). Since
rad(G

V̂ a) is a torus, by Proposition 2.7, the last vertical arrow is injective. Thus, a diagram
chase gives G(Kâ ) = rad(G)(Kâ ) ·G(V â ) so the product formula for rad(G) (Lemma 4.4) leads
to the assertion.

Case 2: with a proper parabolic subgroup
By Lemma 4.1, the remaining case is when G

V̂ a contains a proper parabolic subgroup. For a
minimal parabolic subgroup P of G

V̂ a , denote its unipotent radical by U := radu(P ). As exhibited
in [GP, XXVI, 6.11], the centralizer of a maximal split torus T ⊂ P in G

V̂ a is a Levi subgroup L

of P . By [GP, XXVI, 2.4 ff.], there is a maximal torus T̃ ⊂ G
V̂ a containing T . The proof proceeds

as the following steps.

Step 1: for the maximal split subtorus T of P , we have T (Kâ ) ⊂ Im(G(V [ 1a ])) ·G(V â ). The
base change T̂ := T̃

K̂a is a maximal torus of G
K̂a . For T̃ we apply Corollary 3.18 to W :=

Im(G(V [ 1a ])) ∩G(V â ), so there are a g ∈W and a maximal torus T0 ⊂ G such that (T0)K̂a =
gT̂ g−1. The product formula for tori (Lemma 4.4) shows that T0(Kâ ) = Im

(
T0(V [ 1a ])

)
· T0(V â ).

Hence, we get

T̂ (Kâ ) = g−1T0(Kâ )g = g−1Im
(
T0(V [ 1a ])

)
· T0(V â )g ⊂ g−1Im

(
G(V [ 1a ])

)
·G(V â )g. (4.5.2)

Since g ∈ Im
(
G(V [ 1a ])

)
∩G(V â ), (4.5.2) implies that T̂ (Kâ ) ⊂ Im

(
G(V [ 1a ])

)
·G(V â ). Note that

Corollary 3.20 gives us Im(G(V [ 1a ])) ·G(V â ) = Im(G(V [ 1a ])) ·G(V â ). Consequently, we get

T (Kâ ) ⊂ T̃ (Kâ ) = T̂ (Kâ ) ⊂ Im
(
G(V [ 1a ])

)
·G(V â ). (4.5.3)

Step 2: we prove that U(Kâ ) ⊂ Im
(
G(V [ 1a ])

)
. The maximal split torus T acts on G

V̂ a via the
map

T ×G
V̂ a → G

V̂ a , (t, g) �→ tgt−1,

inducing a weight decomposition Lie(G
V̂ a) =

⊕
α∈X∗(T ) Lie(G

V̂ a)α, where X∗(T ) is the character
lattice of T . The subset Φ ⊂ X∗(T )− {0} such that Lie(G

V̂ a)α �= 0 is the relative root system of
(G

V̂ a , T ). By [GP, XXVI, 6.1; 7.4], Lie(L) is the zero-weight space of Lie(G
V̂ a) and the set Φ+

of positive roots fits into the decomposition

Lie(P ) = Lie(L)⊕
( ⊕

α∈Φ+
Lie(G

V̂ a)α
)

with Lie(U) =
⊕

α∈Φ+
Lie(G

V̂ a)α.

Let K̃/Kâ be a Galois field extension splitting G
V̂ a . By [GP, XXVI, 2.4 ff.], there is a split

maximal torus T ′ ⊂ L
K̃
⊂ P

K̃
of G

K̃
containing T

K̃
. The centralizer of T ′ in G

K̃
is itself,
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which is also a Levi subgroup of a Borel K̃-subgroup B ⊂ P
K̃

. The adjoint action of T ′ on G
K̃

induces a decomposition Lie(G
K̃

) =
⊕

α∈X∗(T ′) Lie(G
K̃

)α, whose coarsening is the base change
of Lie(G

V̂ a) =
⊕

α∈X∗(T ) Lie(G
V̂ a)α over K̃. For the root system Φ′ with the positive set Φ′

+

for the Borel B, [GP, XXVI, 7.12] gives us a surjective map η : X∗(T ′) � X∗(T ) such that
Φ+ ⊂ η(Φ′

+) ⊂ Φ+ ∪ {0}. By [GP, XXVI, 1.12], we have a decomposition

U
K̃

=
∏

α∈Φ′′ UK̃,α
, Lie(U

K̃
) =

⊕
α∈Φ′′ Lie(G

K̃
)α,

where Φ′′ ⊂ Φ′
+ and we have isomorphisms fα : U

K̃,α

∼←− G
a,K̃

. Since Lie(L) ⊂ Lie(G
V̂ a) is the

zero-weight space for the T -action, the restriction to T of weights in Lie(U
K̃

) must be nonzero,
that is η(Φ′′) ⊂ Φ+. For a cocharacter ξ : Gm → T , the dual map η∗ : X∗(T ) ↪→ X∗(T ′) of η sends
ξ to a cocharacter η∗(ξ) ∈ X∗(T ′) of T

K̃
. The adjoint action of Gm on U induced by ξ is denoted

by

ad: Gm(Kâ )× U(Kâ )→ U(Kâ ), (t, u) �→ ξ(t)uξ(t)−1.

For the open normal subgroup N ⊂ G(Kâ ) constructed in Proposition 3.19, the intersection N ∩
U(Kâ ) is open in U(Kâ ), nonempty and stable under T (Kâ )-action. We consider the following
commutative diagram.

Let � be a topologically nilpotent unit (Appendix A.6) of Kâ . For an integer m, the action of �m

on u ∈ U(Kâ ) is denoted by (�m) · u. Let ũ be the image of u in U(K̃). Since ũ =
∏

α∈Φ′′ fα(gα)
with gα ∈ K̃, the image of (�m) · u in U(K̃) is (η∗(ξ)(�m)) ũ (η∗(ξ)(�m))−1, expressed as∏

α∈Φ′′ (η∗(ξ)(�m)) fα(gα) (η∗(ξ)(�m))−1 =
∏

α∈Φ′′
fα

(
(�m)〈η

∗(ξ),α〉gα

)
=

∏
α∈Φ′′

fα

(
(�m)〈ξ,η(α)〉gα

)
.

Because η(Φ′′) ⊂ Φ+, we can choose a cocharacter ξ such that 〈ξ, η(α)〉 are strictly positive for
all α ∈ Φ′′. Then, when m increases, the element (�m) · u ∈ U(K̃) a-adically converges to the
identity, and so the same holds in U(Kâ ). Thus, since N ∩ U(Kâ ) is an open neighborhood of
identity, every orbit of the T (Kâ )-action on U(Kâ ) intersects with N ∩ U(Kâ ) nontrivially. Thus,
we have U(Kâ ) =

⋃
t∈T (K̂a)

t(N ∩ U(Kâ ))t−1 = N ∩ U(Kâ ), which implies that U(Kâ ) ⊂ N .
By combining with Proposition 3.19, we get

U(Kâ ) ⊂ Im
(
G(V [ 1a ])

)
. (4.5.4)

Step 3: we have P (Kâ ) ⊂ Im
(
G(V [ 1a ])

)
·G(V â ). By Proposition 4.3(e), the quotient H := L/T

satisfies H(Kâ ) = H(V â ). Since T is split, Hilbert’s theorem 90 gives the vanishing in the
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commutative diagram

(4.5.5)

with exact rows. A diagram chase yields L(Kâ ) = T (Kâ ) · L(V â ). Combining this with (4.5.3)
and (4.5.4), by Corollary 3.20, we conclude that

P (Kâ ) ⊂ Im
(
G(V [ 1a ])

)
·G(V â ). (4.5.6)

Step 4: the end of the proof. By [GP, XXVI, 4.3.2, 5.2], there is a parabolic subgroup Q of G
such that P ∩Q = L fitting into the surjection

radu(P )(Kâ ) · radu(Q)(Kâ ) � G(Kâ )/P (Kâ ). (4.5.7)

Applying (4.5.4) to (4.5.7) for U and radu(Q) gives G(Kâ ) ⊂ Im(G(V [ 1a ])) · P (Kâ ), which
combined with (4.5.6) yields G(Kâ ) ⊂ Im(G(V [ 1a ])) ·G(V â ). With the equality Im(G(V [ 1a ])) ·
G(V â ) = Im(G(V [ 1a ])) ·G(V â ) verified in Corollary 3.20, the desired product formula G(Kâ ) =
Im(G(V [ 1a ])) ·G(V â ) follows. �

The following corollary of independent interest shows that torsors under reductive group
schemes satisfy arc-patching (see [BM21]), where the arc-cover of Spec V is of the form SpecV/p �
Spec Vp.

Corollary 4.6. For a valuation ring V of rank n ≥ 1, the prime p ⊂ V of height n− 1, and a
reductive V -group scheme G, the following map is surjective:

Im(G(Vp)→ G(κ(p))) · Im(G(V/p)→ G(κ(p))) � G(Vp/p).

Proof. By a limit argument ([Sta18, 01ZC], [BM21, 2.22]), we may assume that V contains
an element a cutting out the height-one prime ideal of V/p. Note that V [ 1a ] = Vp and the a-adic
completion of V/p is V â . The affineness of G and Proposition A.10 (vii) V/p

∼−→ Vp/p×
Frac V̂ a V â

give us the isomorphism

G(V/p) ∼−→ G(Vp/p)×
G(Frac V̂ a)

G(V â ).

By Proposition 4.5, the image of G(Vp)×G(V/p) in G(Frac V â ) generates G(Vp/p). �
Proposition 4.7. For Theorem 1.3, proving that (♦) has trivial kernel for rank-one Henselian
V suffices.

Proof. A twisting technique [Gir71, III, 2.6.1(1)] reduces us to showing that the map (♦) has
trivial kernel. The valuation ring V is a filtered direct union of valuation subrings Vi of finite rank
(see, for instance, [BM21, 2.22]). Since direct limits commute with localizations, the fraction field
K = Frac(V ) is also a filtered direct union of Ki := Frac(Vi). A limit argument [Gir71, VII, 2.1.6]
gives compatible isomorphisms H1

ét(V, G) ∼= lim−→i∈I
H1

ét(Vi, G) and H1
ét(K, G) ∼= lim−→i∈I

H1
ét(Ki, G).

Thus, it suffices to prove that (♦) has trivial kernel for V of finite rank, say n ≥ 0. When n = 0,
the valuation ring V = K is a field, so this case is trivial. Our induction hypothesis is to assume
that Theorem 1.3 holds for two kinds of valuation rings V ′: (1) for V ′ Henselian of rank 1; (2) for
V ′ of rank n− 1. Indeed, type (1) is only used for the case n = 1.

Let X be a G-torsor lying in the kernel of H1
ét(V, G)→ H1

ét(K, G). For the prime p ⊂ V of
height n− 1, we choose an element a ∈ mV \p and consider the a-adic completion V â of V with
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fraction field Kâ . The induction hypothesis gives the triviality of X|V [ 1
a
] hence a section s1 ∈

X (V [ 1a ]). Consequently, X is trivial over Kâ and by the induction hypothesis again, trivial over
V â with s2 ∈ X (V â ). By the product formula G(Kâ ) = Im(G(V [ 1a ])) ·G(V â ) in Proposition 4.5,
there are g1 ∈ G(V [ 1a ]) and g2 ∈ G(V â ) such that g1s1 and g2s2 have the same image in X (Kâ ).
Since X is affine over V , by Proposition A.10(vii), we have X (V ) 
 X (V [ 1a ])×X (K̂a)

X (V â ),
which is nonempty, so the triviality of X follows. �

5. Passage to the semisimple anisotropic case

After the passage to the Henselian rank-one case Proposition 4.7, in this section, we further
reduce Theorem 1.3 to the case when G is semisimple anisotropic, see Proposition 5.1. For this,
by induction on Levi subgroups, we reduce to the case when G contains no proper parabolic sub-
groups. Subsequently, we consider the semisimple quotient of G, which is semisimple anisotropic.
By using the integrality of rational points of anisotropic groups and a diagram chase, we obtain
the desired reduction.

Proposition 5.1. To prove Theorem 1.3, it suffices to show that (♦) has trivial kernel in the
case when V is a Henselian valuation ring of rank one and G is semisimple anisotropic.

Proof. First, we reduce to the case when G contains no proper parabolics. If G contains a proper
minimal parabolic P with Levi L and unipotent radical radu(P ), then we consider the following
commutative diagram.

By [GP, XXVI, 2.3], the left horizontal arrows are bijective. If a G-torsor X lies in ker(lG),
then it satisfies X (K) �= ∅. By [GP, XXVI, 3.3; 3.20], the fpqc quotient X/P is representable
by a scheme which is projective over V . The valuative criterion of properness gives (X/P )(V ) =
(X/P )(K) �= ∅, so we can form a fiber product Y := X ×X/P Spec V from a V -point of X/P .
Since Y(K) �= ∅, the class [Y] ∈ ker(lP ). On the other hand, the image of [Y] in H1

ét(V, G) coin-
cides with [X ]. Consequently, the triviality of ker(lL) amounts to the triviality of ker(lG). By
[GP, XXVI, 1.20] and Proposition 4.7, we are reduced to proving Theorem 1.3 where V is
Henselian of rank one and G has no proper parabolic subgroup, more precisely, to showing
that ker(H1(V, G)→ H1(K, G)) = {∗} for such V and G.

For the radical rad(G) of G, the quotient G/ rad(G) is V -anisotropic, and by Proposition 4.3,
satisfies (G/ rad(G))(V ) = (G/ rad(G))(K), fitting into the following commutative diagram with
exact rows.

If ker(l(G/ rad(G))) is trivial, then by the case of tori Proposition 2.7 and Four Lemma, we
conclude. �
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6. Proof of the main theorem

In this section, we finish the proof of our main result Theorem 1.3. By the reduction of
Proposition 5.1, it suffices to deal with semisimple anisotropic group schemes over Henselian
valuation rings of rank one. In this situation, we argue by using techniques in Bruhat–Tits theory
and Galois cohomology to conclude.

Theorem 6.1. For a Henselian rank-one valuation ring V and a semisimple anisotropic
V -group G,

ker(H1
ét(V, G)→ H1

ét(Frac V, G)) = {∗}.
Proof. Let K := Frac V and let Ṽ be a strict Henselization of V at mV with fraction field K̃
as a subfield of a separable closure Ksep. For the three Galois groups Γ := Gal(Ṽ /V ), Γ

K̃
:=

Gal(Ksep/K̃), and ΓK := Gal(Ksep/K), since Γ ∼= Gal(K̃/K), we have ΓK/Γ
K̃

 Γ. An applica-

tion of the Cartan–Leray spectral sequence yields an isomorphism H1
ét(V, G) 
 H1(Γ, G(Ṽ )). By

[SGA4II, VIII, 2.1], we have H1
ét(K, G) 
 H1(ΓK , G(Ksep)). With these bijections, the composite

of the maps α and β,

H1(Γ, G(Ṽ )) α→ H1(Γ, G(K̃))
β→ H1(ΓK , G(Ksep)),

corresponds to the map H1
ét(V, G)→ H1

ét(K, G). Hence, it suffices to show that α and β have
trivial kernels. For β : H1(Γ, G(K̃))→ H1(ΓK , G(Ksep)), invoke the inflation–restriction exact
sequence [Ser02, 5.8 a]

0→ H1(G1/G2, A
G2)→ H1(G1, A)→ H1(G2, A)G1/G2 ,

for which G2 is a closed normal subgroup of a group G1 and A is a G1-group. It suffices to take

G1 := ΓK , G2 := Γ
K̃

, and A := G(Ksep).

For α : H1(Γ, G(Ṽ ))→ H1(Γ, G(K̃)), let z ∈ H1(Γ, G(Ṽ )) be a cocycle in kerα, which signifies
that

there is an h ∈ G(K̃) such that for every s ∈ Γ, z(s) = h−1s(h) ∈ G(Ṽ ). (6.1.1)

Now we come to Bruhat–Tits theory and consider G(Ṽ ) and hG(Ṽ )h−1 as two subgroups of
G(K̃). Let Ĩ (G) denote the building of G

K̃
. Since G

K̃
is semisimple, the extended building

Ĩ (G)ext := Ĩ (G)× (Hom
K̃-gr.(G, G

m,K̃
)∨ ⊗Z R) has trivial vectorial part and equals to Ĩ (G).

The elements of G(K̃) act on the building Ĩ (G). For each facet F ⊂ Ĩ (G), we consider its
stabilizer P †

F and its connected pointwise stabilizer P 0
F . In fact, there are group schemes G

†
F and

G0
F over Ṽ such that G

†
F (Ṽ ) = P †

F and G0
F (Ṽ ) = P 0

F , see [BT84, 4.6.28]. Note that the residue
field of Ṽ is separably closed and the closed fiber of G

Ṽ
is reductive, so, by [BT84, 4.6.22, 4.6.31],

there is a special point x in the building Ĩ (G) such that the Chevalley group G
Ṽ

is the stabilizer
G

†
x = G0

x of x with connected fibers. By definition [BT84, 5.2.6], G(Ṽ ) is a parahoric subgroup
of G(K̃). Therefore, its conjugate hG(Ṽ )h−1 is also a parahoric subgroup P 0

h−1·x. Since G(Ṽ ) is
Γ-invariant, every s ∈ Γ acts on hG(Ṽ )h−1 as follows

s(hG(Ṽ )h−1) = s(h)G(Ṽ )s(h−1)
(6.1.1)
=== hG(Ṽ )h−1.

The Γ-invariance of G(Ṽ ) and hG(Ṽ )h−1 amounts to that x and h · x are two fixed points of
Γ in Ĩ (G). But by [BT84, 5.2.7], the anisotropicity of GK gives the uniqueness of fixed points
in Ĩ (G). Thus, we have G(Ṽ ) = hG(Ṽ )h−1, which means that for every g ∈ G(Ṽ ) its conjugate
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hgh−1 fixes x. This is equivalent to that g fixes h−1 · x and to the inclusion of stabilizers P †
x ⊂

P †
h−1·x. On the other hand, every τ ∈ P †

h−1·x satisfies hτh−1 · x = x, so hτh−1 ∈ P †
x = G(Ṽ ). Since

h normalizes G(Ṽ ), this inclusion implies that τ ∈ G(Ṽ ) and P †
h−1·x ⊂ G(Ṽ ). Combined with

P †
x ⊂ P †

h−1·x, this gives P †
x = P †

h−1·x = G(Ṽ ). Therefore, the stabilizer P †
h−1·x is also a parahoric

subgroup and is equal to P 0
h−1·x. By [BT84, 4.6.29], the equality P 0

x = P 0
h−1·x implies that h−1 · x =

x, so h ∈ P 0
x = G(Ṽ ), which gives the triviality of z. �

7. Torsors over V ((t)) and Nisnevich’s purity conjecture

In [Nis89, 1.3], Nisnevich proposed a conjecture that for a reductive group scheme G over a
regular local ring R with a regular parameter f ∈ mR\m2

R, every Zariski-locally trivial G-torsor
over R[ 1

f ] is trivial:

H1
Zar(R[ 1

f ], G) = {∗}.
Recently, Fedorov proved this conjecture when R is semilocal regular defined over an infinite field
and G is strongly locally isotropic (that is, each factor in the decomposition of Gad into Weil
restrictions of simple groups is Zariski-locally isotropic); he also showed that the isotropicity is
necessary, see [Fed21].

In this section, we prove a variant of Nisnevich’s purity conjecture when R is a formal power
series V [[t]] over a valuation ring V , see Corollary 7.6. For this, we devise a cohomological property
Proposition 7.5 of V ((t)) by taking advantage of techniques of reflexive sheaves.

7.1 Coherentness and reflexive sheaves
A scheme with coherent structure sheaf is locally coherent ; a quasi-compact quasi-separated
locally coherent scheme is coherent. For a valuation ring V with spectrum S, by [GR18, 9.1.27],
every essentially finitely presented affine S-scheme is coherent. For a locally coherent scheme X
and an OX -module F , we define the dual OX -module of F :

F∨ := HomOX
(F , OX).

We say that F is reflexive, if it is coherent and the map F → F∨∨ is an isomorphism. A
coherent sheaf G has a presentation Zariski-locally O⊕m

X → O⊕n
X → G → 0, whose dual is the

exact sequence 0→ G ∨ → O⊕n
X → O⊕m

X exhibiting G ∨ as the kernel of maps between coherent
sheaves, hence by [Sta18, 01BY] G ∨ is coherent, a priori finitely presented. If F is reflexive at a
point x ∈ X, then the dual of a presentation O⊕m′

X,x → O⊕n′
X,x → F∨

x → 0 is a left exact sequence
0→ Fx → O⊕n′

X,x → O⊕m′
X,x .

Lemma 7.2 (Reflexive hull). Let X be an integral locally coherent scheme and let F be a
coherent OX -module, then F∨ and F∨∨ are reflexive OX -modules.

Proof. It suffices to show that F∨ is reflexive. As F is coherent, choose a finite presentation
O⊕m

X → O⊕n
X → F → 0, take its dual and its triple dual, we have the following commutative

diagram with exact rows.

Our goal is to show that the leftmost vertical arrow is an isomorphism. Since the other ver-
tical arrows are isomorphisms, a diagram chase reduces us to showing that u∨∨ is injective.
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Consider the dual of u:
u∨ : O⊕n

X → F∨∨

and its tensor product with the function field K of X, we get the exact sequence

K⊕n → F∨∨ ⊗OX
K → coker(u∨)K → 0.

As F is finitely presented, by [Sta18, 0583], we have F∨∨ ⊗OX
K 
 HomK(F∨ ⊗OX

K, K) and
we view K⊕n as HomK(K⊕n, K). Note that u⊗OX

K : F∨ ⊗OX
K ↪→ K⊕n is injective (since

u is injective), we find that coker(u∨)K = 0, that is, coker(u∨) is a torsion OX -module. This
implies that HomOX

(coker(u∨), OX) = 0, so we take dual of the exact sequence O⊕n
X

u∨
→ F∨∨ →

coker(u∨)→ 0 to get the injectivity of u∨∨. �
Lemma 7.3 [GR18, 11.4.1]. For a valuation ring V with spectrum S, a flat finitely presented
morphism of schemes f : X → S, a coherent OX -sheaf F , a point x ∈ X such that the fiber of f
containing x is regular, and the integer n := dim Of−1(f(x)),x:

(i) if F is f -flat at x, then proj.dimOX,x
Fx ≤ n;

(ii) we have proj.dimOX,x
Fx ≤ n + 1; and

(iii) if F is reflexive at x, then proj.dimOX,x
Fx ≤ max(0, n− 1).

Proof. (i) Since OX is coherent and Fx is finitely presented, there is free resolution of Fx by
finite modules

· · · → P2 → P1 → P0 → Fx → 0.

It suffices to show that L := Im(Pn → Pn−1) is free. Now we have the exact sequence

0→ L→ Pn−1 → · · · → P1 → P0 → Fx → 0.

Let y = f(x). Since Fx and ker(Pi → Pi−1) are f -flat for 1 ≤ i ≤ n− 1, the sequence

0→ L⊗OX,x
Of−1(y),x → · · · → P0 ⊗OX,x

Of−1(y),x → Fx ⊗OX,x
Of−1(y),x → 0

is exact. Let y := f(x). For the maximal ideal mx of Of−1(y),x at x and the residue field
k(x) of x in OX,x, we note that L⊗OX,x

(
Of−1(y),x/mxOf−1(y),x

)
= L⊗OX,x

k(x). For a free
basis (el)l∈I generating L⊗OX,x

k(x), by Nakayama’s lemma, there is a surjective map
u :

⊕
l∈I OX,xel � L. Since f−1(y) is regular, by [Sta18, 00O9], the module L⊗OX,x

Of−1(y),x

is free. Therefore, the map (u⊗ 1)x : ((
⊕

l∈I OX,xel)⊗OS
k(y))x → (L⊗OS

k(y))x is an iso-
morphism. By [GD67, 11.3.7], u is injective. Consequently, the OX,x-module L is free and
proj.dimOX,x

Fx ≤ n.

(ii) We prove the assertion Zariski-locally. There is a surjective map O⊕m
X → F , whose kernel G is

a torsion-free coherent OX -module. Since V is a valuation ring, G is f -flat, so by assertion (i) we
have proj.dimOX

G ≤ n. Therefore, [Sta18, 00O5] implies that proj.dimOX
F = proj.dimOX

G +
1 ≤ n + 1.

(iii) By the analysis in § 7.1, there is an exact sequence 0→ Fx → O⊕k
X,x

φ→ O⊕l
X,x. By assertion

(ii), we have

proj.dimOX,x
Fx

[Sta18, 00O5]
=== max(0, proj.dimOX,x

(coker φ)− 2) ≤ max(0, n− 1). �
Since (V [[t]], t) is a Henselian pair, by [Ces22a, 3.1.3(b)], reductive group schemes over V and

V [[t]] are in a one-to-one correspondence under extension-restriction operations. Hence, in the
following, it suffices to assume that reductive group schemes are defined over V . We bootstrap
from the case when G = GLn.
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Lemma 7.4. For a valuation ring V , every vector bundle over V ((t)) extends to a vector bundle
over V [[t]]. In particular, all GLn-torsors (or, equivalently, all vector bundles) over V ((t)) are
trivial:

H1
ét(V ((t)), GLn) = {∗}.

Proof. The Henselization V {t} of V [t] along tV [t] is a filtered direct limit of étale ring extensions
Ri over V [t] with isomorphisms V [t]/tV [t] ∼−→ Ri/tRi. By [BC22, 2.1.22], a vector bundle E over
V ((t)) descends to a vector bundle E ′ over V {t}[1t ]. By a limit argument [Gir71, VII, 2.1.6], we
have H1

ét(V {t}[1t ], GLn) = lim−→i
H1

ét(Ri[1t ], GLn) so E ′ descends to a vector bundle Ei0 over Ri0 [
1
t ]

for an i0. Due to [GR18, 10.3.24 (ii)], Ei0 extends to a finitely presented quasi-coherent sheaf
Wi0 on Ri0 . Note that Ri0 is coherent (§ 7.1), by [Sta18, 01BZ], Wi0 is coherent. By Lemma 7.2,
Hi0 := W ∨∨

i0
is reflexive. For the morphism f : Spec Ri0 → SpecV , we exploit Lemma 7.3(iii) to

conclude that Hi0 is free. Consequently, Ei0 extends to the vector bundle (Hi0)V [[t]] over V [[t]].
Since Ei0 = Hi0 |V ((t)) is trivial, E is trivial. �

The anisotropic (indeed, the ‘wound’) case of the following Proposition 7.5(c) was established
in [FG21, Corollary 4.2], where the authors considered formal power series over general rings.

Proposition 7.5. For a valuation ring V with fraction field K and a V -reductive group
scheme G:

(a) the following natural map of pointed sets induced by base change is bijective:

H1
ét(V [[t]], G) ∼−→ H1

ét(V ((t)), G)×H1
ét(K((t)),G) H1

ét(K[[t]], G);

(b) the map H1
ét(V ((t)), G)→ H1

ét(K((t)), G) has trivial kernel; and
(c) the map H1

ét(V [[t]], G)→ H1
ét(V ((t)), G) has trivial kernel.

Proof. (a) First, we show the surjectivity. If there are torsor classes α ∈ H1
ét(K[[t]], G) and

β ∈ H1
ét(V ((t)), G) whose images in H1

ét(K((t)), G) coincide, then we find a torsor class γ ∈
H1

ét(V [[t]], G) whose restrictions are α and β. Recall the nonabelian cohomology exact sequence
[Gir71, III, 3.2.2]

(GLn,V [[t]] /G)(R)→ H1
ét(R, G)→ H1

ét(R, GLn)

such that the set of GLn(R)-orbits GLn(R)\(GLn,V [[t]] /G)(R) embeds into H1
ét(R, G), where R can

be V ((t)), K((t)), or K[[t]]. Recall that by Lemma 7.4, we have H1
ét(V ((t)), GLn) = {∗} and note that

H1
ét(K[[t]], GLn) = {∗}, so there are α̃ ∈ (GLn,V [[t]] /G)(K[[t]]) and β̃ ∈ (GLn,V [[t]] /G)(V [[t]]) whose

images are α and β respectively and such that the images of α̃ and β̃ in (GLn,V [[t]] /G)(K((t))) are in
the same GLn(K((t)))-orbit. By the valuative criterion for properness of the affine Graßmannian,

GLn(K((t))) = GLn(K[[t]]) ·GLn(V ((t)))

holds, so up to group translations, we may assume that the images of α̃ and β̃ in
(GLn,V [[t]] /G)(K((t))) are identical. Because G is reductive, by [Alp14, 9.7.7], the quotient
GLn,V [[t]] /G is affine over V [[t]]. Thus, the fiber product V [[t]] ∼−→ V ((t))×K((t)) K[[t]] induces the
bijection of sets

(GLn,V [[t]] /G)(V [[t]]) ∼−→ (GLn,V [[t]] /G)(K[[t]])×(GLn,V [[t]] /G)(K((t))) (GLn,V [[t]] /G)(V ((t))).

Consequently, there is a γ̃ ∈ (GLn,V [[t]] /G)(V [[t]]) corresponding to (α̃, β̃). In particular, the image
γ ∈ H1

ét(V [[t]], G) of γ̃ is a desired torsor class that induces α and β, hence the surjectivity of
part (a).
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It remains to show the injectivity. By [GR18, 5.8.14], we have bijections H1
ét(V [[t]], G) 


H1
ét(V, G) and H1

ét(K[[t]], G) 
 H1
ét(K, G). Then the Grothendieck–Serre for valuation rings

Theorem 1.3 implies that H1
ét(V [[t]], G)→ H1

ét(K[[t]], G) has trivial kernel. Therefore, the map
of part (a) is indeed injective, hence bijective.

(b) For a GV ((t))-torsor X trivializes over K((t)), we take a trivial GK[[t]]-torsor X ′ over K[[t]]
with an isomorphism ι : X|K((t))

∼−→ X ′|K((t)). By part (a), there is a GV [[t]]-torsor X restricts to
X such that XK[[t]] is trivial. By the main result (Theorem 1.3) and [GR18, 5.8.14], the map
H1

ét(V [[t]], G) ↪→ H1
ét(K[[t]], G) is injective. Hence, the torsor X that restricts to X is trivial.

(c) By the Grothendieck–Serre over valuation rings (Theorem 1.3) and [GR18, 5.8.14], the map

H1
ét(V [[t]], G)→ H1

ét(K[[t]], G)

is injective. Since K[[t]] is a discrete valuation ring, the map H1
ét(K[[t]], G)→ H1

ét(K((t)), G)
is injective. The injective map H1

ét(V [[t]], G)→ H1
ét(K((t)), G) factors through H1

ét(V [[t]], G)→
H1

ét(V ((t)), G), hence the latter is injective. �

Now we prove a variant of the Nisnevich’s purity conjecture for formal power series over
valuation rings.

Corollary 7.6. For a reductive group scheme G over a valuation ring V , every Zariski-locally
trivial G-torsor over V ((t)) is trivial, that is, we have

H1
Zar(V ((t)), G) = {∗}.

Proof. A Zariski G-torsor over V ((t)) is an étale G-torsor over V ((t)) trivializing over K((t)). Hence,
the assertion follows from Proposition 7.5(b). �

Acknowledgements

I especially thank my advisor K. Česnavičius for his kindness, helpful advice, and extensive
comments for revising. I thank J.-L. Colliot-Thélène for his several insightful comments on gen-
eralizing the case of tori to groups of multiplicative type. I thank O. Gabber and P. Gille for helpful
conversations about properties of anisotropic groups. I thank J.-L. Colliot-Thélène, U. First,
P. Gille, D. Harari, D. Harbater, F. Liu, M. Morrow, I. Panin, and O. Wittenberg for their care-
ful reading and useful comments on this article. I thank F. Xu, Y. Cao, and X. Wang for useful
information. I also thank K. Ito, H. Kato, A. Kundu, Y. Tian, Y. Zhao, and J. Zou for helpful
discussions and remarks. I thank referees for helpful comments and catching imprecisions in pre-
vious drafts for me to improve. I thank the Université Paris-Saclay and the Euler International
Mathematical Institute for providing excellent conditions for research. The writing of this article
was supported by the EDMH doctoral program. This work was done with the support of grant
No. 075-15-2022-289 for creation and development of Euler International Mathematical Institute.

Conflicts of interest

None.

Appendix A. Valuation rings and valued fields

The purpose of this appendix is to list the common properties of valuation rings and valued fields,
especially those used in this article, and to be as concise and brief as possible. We therefore try
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to cite the literature just for endorsement, even though some of the arguments can be carried out
directly.

A.1 Valuation rings
For a field K, a subring V ⊂ K such that every x ∈ K satisfies that x ∈ V or x−1 ∈ V or both
is a valuation ring of K [Sta18, 052K, 00IB]. For the groups of units K× and V ×, the quotient
Γ := K×/V × is an abelian group with respect to the multiplications in K×. The quotient map
ν : K× → Γ induces a map V \{0} ⊂ K× → Γ, also denoted by ν. This map ν is the valuation
associated to V . Even though the rank of Γ (and of V ) is the ‘order type’ of the collection
of convex subgroups [EP05, pp. 26 and 29], in practice, one may identify the rank of V as its
Krull dimension when it is finite [EP05, Lemma 2.3.1]. The abelian group Γ has an order ≥:
for γ, γ′ ∈ Γ, we declare that γ ≥ γ′ if and only if γ − γ′ is in the image of ν : V \{0} → Γ. By
[Sta18, 00ID], (Γ,≥) is a totally ordered abelian group, called the value group of V . If Γ 
 Z,
then ν is a discrete valuation. Conversely, given a totally ordered abelian group (Γ,≥, +), if
there is a surjection ν : K× � Γ such that for all x, y ∈ K, we have ν(xy) = ν(x) + ν(y) and
ν(x + y) ≥ min{ν(x), ν(y)}, then ν extends to a map K � Γ ∪ {∞} by declaring that ν(x) =∞
if and only if x = 0, where ∞ is a symbol whose sum with any element is still ∞; such ν is also
a valuation on K (see [EP05, p. 28]). If a field K is equipped with a valuation ν, then the pair
(K, ν) is called a valued field. Every valuation ν on K gives rise to a valuation ring V (ν) ⊂ K as
follows:

V (ν) := {x ∈ K | ν(x) ≥ 0},

and every valuation ring of K comes from a valuation [EP05, Proposition 2.1.2]. There may exist
different valuations ν and ν ′ on a field K, yielding different valuation rings of K. Two valuations
ν and ν ′ on K are equivalent, if they define the same valuation rings V (ν) = V (ν′). By [EP05,
Proposition 2.1.3], ν and ν ′ are equivalent if and only if there is an isomorphism of ordered groups
ι : Γν

∼−→ Γν′ such that ι ◦ ν = ν ′.

Proposition A.2. Let V be a valuation ring of a field K with value group Γ and p ⊂ V a prime
ideal:

(i) V is a normal local domain and every finitely generated ideal of V is principal;
(ii) for the localization Vp of V at p, we have p = pVp;
(iii) Vp is a valuation ring for K and V/p is a valuation ring for the residue field κ(p) = Vp/p;
(iv) we have an isomorphism V

∼−→ V/p×Vp/p Vp and, thus, Spec V = Spec V/p �Spec(Vp/p)

Spec Vp;
(v) for the value groups ΓVp and ΓV/p of Vp and of V/p, respectively, we have isomorphisms

ΓV/p 
 (Vp)×/V × and ΓV /ΓV/p 
 ΓVp ,

corresponding to the short exact sequence 1→ (Vp)×/V × → K×/V × → K×/(Vp)× → 1;
(vi) the Henselization and the strict Henselization of V are valuation rings with value groups Γ;
(vii) if V is Henselian, then Vp and V/p are Henselian valuation rings.

Proof. For part (i), see [FK18, Chapter 0, 6.2.2]. To show part (ii), we write every element
in pVp as a/b, where a ∈ pV and b ∈ V \p. If a/b ∈ V , then a/b ∈ p. Since V is a valuation
ring, it remains the case when b/a ∈ V . Then b ∈ pV , which leads to a contradiction. For
part (iii), see [FK18, Chapter 0, Proposition 6.4.1]. For part (iv), we note that V = {x ∈
Vp|(x mod pVp) ∈ V/p} (see [FK18, Chapter 0, Proposition 6.4.1]). The spectral aspect fol-
lows from [Sta18, 0B7J]. For part (v), we first deduce from the fiber product V 
 V/p×Vp/p Vp
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that ΓV/p = κ(p)×/(V/p)× 
 (Vp)×/V × then substitute this into the short exact sequence
1→ Frac(V/p)×/(V/p)× → K×/V × → K×/(Vp)× → 1. For part (vi), see [Sta18, 0ASK]. For
part (vii), note that Vp and V/p are valuation rings due to part (iii). By [Sta18, 05WQ],
V/p is Henselian. For Vp, we use Gabber’s criterion [Sta18, 09XI] to check that every monic
polynomial

f(T ) = TN (T − 1) + aNTN + · · ·+ a1T + a0, where ai ∈ pVp for i = 0, . . . , N and N ≥ 1

has a root in 1 + pVp. Note that this criterion only involves pVp. Here, by part (ii), pVp is equal
to p. By [Sta18, 0DYD], the Henselianity of V implies that (V, p) is a Henselian pair, thereby we
conclude. �

A.3 Valuation topologies
Given a field K with a valuation ν : K � Γ ∪ {∞}, for each γ ∈ Γ and each x ∈ K, we define the
open ball Uγ(x) ⊂ K with center x and radius γ, as the subset

Uγ(x) := {y ∈ K | ν(y − x) > γ}.
All open balls (Uγ(x))γ∈Γ form an open neighborhood base of x and generates a topology on
K, the valuation topology determined by ν. Under this topology, the valued field (K, ν) has
a unique (up to isomorphisms) field extension (K̂, ν̂) that is complete in which K is dense
[EP05, Theorem 2.4.3], that is, the completion of (K, ν) with respect to the valuation topology.
Similarly, the valuation ring V̂ of (K̂, ν̂) is the valuative completion of V . The inequality
ν(x + y) ≥ min{ν(x), ν(y)} leads to various topological properties, some of which are
counterintuitive. In the following, we let Bγ(x) := {z ∈ K | ν(z − x) ≥ γ} and Sγ(x) :=
{z ∈ K | ν(z − x) = γ} be the closed ball and the sphere with center x and radius γ respectively.

Proposition A.4. For a valued field (K, ν) with the valuation topology and elements x ∈ K
and γ ∈ Γ:

(i) for y, z ∈ K, the smallest and second smallest among ν(x− y), ν(y − z), and ν(z − x) are
equal;

(ii) every point of the closed ball Bγ(x) is a center: for all y ∈ Bγ(x), we have Bγ(y) = Bγ(x);
(iii) every closed ball is open and every open ball is closed;
(iv) any pair of balls in K are either disjoint or nested;
(v) the sphere Sγ(x) is both closed and open, hence it is not the boundary ∂Bγ(x) of Bγ(x).

In particular, the valuation topology on (K, ν) is Hausdorff and the valuation ring V (ν) ⊂ K is
clopen.

Proof. If assertion (i) holds, then for any a �= b in K and δ := ν(a− b), we have U2δ(a) ∩
U2δ(b) �= ∅, hence K is Hausdorff. The assertion (i) follows from the inequality ν(c + d) ≥
min{ν(c), ν(d)} for all c, d ∈ K, and the other assertions follow from assertion (i), see the
arguments in [EP05, p. 45 and Remark 2.3.3] and [P-GS10, p. 3]. �

A.5 Absolute values
Let K be a field. An absolute value on K is a function | · | : K → R≥0 such that: (1) |x| = 0 if
and only if x = 0; (2) |xy| = |x| · |y|; and (3) |x + y| ≤ |x|+ |y| (triangle inequality). We say that
| · | is archimedean, if |N| ⊂ R≥0 is unbounded; | · | is nonarchimedean, if |N| ⊂ R≥0 is bounded.
These notions originate from the ‘Archimedean property’: for arbitrary positive real numbers x
and y, there is n ∈ N such that xn > y. In fact, an absolute value | · | is nonarchimedean if and
only if it satisfies the strong triangle inequality |x + y| ≤ max{|x| , |y|}: one takes M such that
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|N| < M and notes that

|x + y|n ≤
∑n

k=0

∣∣(n
k

)∣∣ · |x|k |y|n−k ≤ (n + 1)M ·max{|x| , |y|}n,

whose nth root when n→ +∞ yields |x + y| ≤ max{|x| , |y|}. In particular, by checking the
axioms of valuations (Appendix A.1), an absolute value | · | : K → R≥0 is nonarchimedean if and
only if there is a valuation ν : K → Γ ∪ {∞} of rank one (a value group is of rank one if and only
if it is embeddable into R as a totally ordered abelian subgroup, so Γ ⊂ R) such that e−ν(·) = | · |.

A.6 Huber rings and Tate rings
Let R be a topological ring. We say that:

– R is adic, if it has an ideal I ⊂ R such that {In}+∞
n=1 form a basis of open neighborhoods of

0 ∈ R;
– R is Huber, if it has an open subring R0 with a finitely generated ideal I ⊂ R0 making R0 adic;
– R is Tate, if it is Huber and has a topologically nilpotent unit � ∈ R\{0}, that is,

limn→+∞ �n = 0.

Now, we present a relation (cf. [Hub96, I, Definition 1.1.4]) between valuation topologies and
the notions above.

Proposition A.7. Let (K, ν) be a valued field with valuation ring V . The following are
equivalent:

(i) V has a prime ideal of height one;
(ii) the valuation topology on K is induced by a valuation of rank one;
(iii) K is a Tate ring under its valuation topology;
(iv) K has a topologically nilpotent unit for the valuation topology.

In particular, there exist nonzero topologically nilpotent elements � ∈ V , and every such �
satisfies that

√
(�) is the prime ideal of height one in V .

Proof. Before proving the equivalences, first note that the set of all ideals of V ordered by
inclusion is totally ordered. For two ideals I, J ⊂ V , if there is an element j ∈ J such that j �∈ I,
then ji−1 �∈ V for all i ∈ I\{0}. By the definition of valuation rings, ij−1 ∈ V for all i ∈ I. This
implies that I ⊂ (j) ⊂ J .

(i)⇒(iv). For the prime p ⊂ V of height one, we claim that any � ∈ p\{0} is topologically
nilpotent. For any γ ∈ Γ, it suffices to find an n ∈ Z+ such that �n ∈ Uγ = {x ∈ K | ν(x) > γ}.
Since ν : K � Γ is surjective, we show that for any a/b ∈ K where a, b ∈ V \{0}, there is n ∈ Z+

such that ν(�n) > ν(a)− ν(b), in particular, such that ν(�n) > ν(a) suffices. If ν(a) ≥ ν(�n)
holds for all n, then a/�n ∈ V holds for all n, that is, a ∈

⋂
n(�n). But

⋂
n(�n) = 0 (see [FK18,

Chapter 0, Proposition 6.7.2]), so a = 0, a contradiction.

(i)⇒(iii). As above, there is a topologically nilpotent unit � ∈ V of K. Take V as an open subring
of K, it suffices to show that {(�n)}+∞

n=1 form a basis of open neighborhoods of 0 ∈ V . We have
known that every Uγ contains some (�n). Conversely, for a fixed n ∈ Z+, there is γ ∈ Γ such
that Uγ ⊂ (�n). To see this, we need to find γ ∈ Γ such that the condition ν(x) > γ implies that
ν(x) > ν(�n). It suffices to let γ > ν(�n) = nν(�), say, γ = (n + 1)ν(�).

(iii)⇒(iv). By the definition of Tate rings, this is obvious.
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(i)⇒(ii). The argument for (i)⇒(iii) implies that {(�n)}n form a basis of open neighborhoods
of 0 ∈ V . As � lies in the height-one prime ideal, the valuation topology on K is induced by its
rank-one valuation.

(ii)⇒(i). The rank-one valuation corresponds to the height-one prime ideal of V , since all
nonequivalent valuations of K are in one-to-one correspondence with the prime ideals of V (see
[FK18, Chapter 0, Proposition 6.2.9]).

(iv)⇒(i). For a topologically nilpotent unit � ∈ K, we prove that p :=
√

(�) is the prime ideal of
height one. If a, b ∈ V such that ab ∈ p and b �∈ p, then there are an integer n > 0 and c ∈ V such
that anbn = �c, and �/bm ∈ V holds for every integer m > 0. It follows that a2n = �(�/b2n)c2 ∈
(�), so a ∈ p and we see that p is a prime. To see that p is of height one, note that the set of
ideals of V is totally ordered under inclusion and �n tends to zero, every nonzero prime ideal
q between (0) and p satisfies (�N ) ⊂ q ⊂ p for some N . Taking radicals of these inclusions, we
find that q = p, thus p is of height one. �

A.8 Nonarchimedean fields
A nonarchimedean field is a topological field K whose topology is induced by a nontrivial val-
uation of rank one on K.3 By the result at the end of Appendix A.5, a topological field K
is nonarchimedean if and only if its topology is induced by a nonarchimedean absolute value
on K. If an absolute value on K is not nonarchimedean, then it is archimedean. We note that
the existence of absolute values on the topological field K is a prerequisite for our discussion of
Archimedean properties.

A.9 a-adic topologies
For a valuation ring V and an element a ∈ mV \{0}, the a-adic topologies on V and on V [ 1a ] are
determined by the respective fundamental systems of open neighborhoods of 0:

{anV }n≥0 and {Im(anV → V [ 1a ])}n≥0.

Note that the a-adic topology on V [ 1a ] is not defined by ideals, since such topology is only V -linear

(see [GR18, Definition 8.3.8(iii)]). Then, the a-adic completions V â and V [ 1a ]â are the following
inverse limits:

V â := lim←−n>0
V/an and V [ 1a ]â := lim←−n>0

(V [ 1a ]/Im(anV → V [ 1a ])).

Proposition A.10. For a valuation ring V and a nonzero element a ∈ mV :

(i)
√

(a) is the minimal one among all the prime ideals containing (a), while
⋂

n>0(a
n) is the

maximal one among all the prime ideals contained in (a);
(ii) the a-adic completion V → V â factors through the a-adically separated quotient

V/
⋂

n>0(a
n);

(iii) the rings V [ 1a ] and V â are valuation rings, and we have V [ 1a ]â = V â [ 1a ];
(iv) if V has finite rank n ≥ 1 and (a) is between the primes of heights r − 1 and r for 1 ≤ r ≤ n,

then rank(V â ) = n− r + 1 and rank(V [ 1a ]) = r − 1;
(v) we have V â [ 1a ] = Frac V â , which is also the a-adic completion of the residue field of V [ 1a ];
(vi) the valuative completion V̂ , the a-adic completion V â , and V share the same residue field;

3 Some authors additionally require the completeness of K, for instance, Scholze [Sch12, Definition 2.1].
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(vii) we have an isomorphism to a fiber product of rings V
∼−→ V [ 1a ]×

K̂a V â , where Kâ is the
a-adic completion of K = Frac V .

Proof. For part (i), see [FK18, Chapter 0, Proposition 6.2.3 and 6.7.1]. For part (ii), see the end
of [FK18, Chapter 0, Corollary 9.1.5]. For part (iii), by [FK18, Chapter 0, Corollary 9.1.5],
V â is a valuation ring. Let α/β ∈ K := Frac V be an element which is not in V [ 1a ].
Hence, an(α/β) �∈ V for every n > 0, which means that β/α ∈ (an) for every n > 0. Thus, β/α

lies in
⋂

n>0(a
n), the maximal ideal of V [ 1a ] by part (i). The relation V â [ 1a ] = V [ 1a ]â is due to

[BC22, Example 2.1.10 (2)] and the fact that V is a-torsion-free. For part (iv), by part (i), the
rank of V [ 1a ] is r − 1; also, q :=

⋂
n>0(a

n) is the prime ideal of height r − 1. Note that V â is
the a-adic completion of the a-adically separated quotient V/q, whose rank is n− r + 1. By
[FK18, Chapter 0, Theorem 9.1.1 (5)], we conclude that V â is also of rank n− r + 1. For part
(v), by [FK18, Chapter 0, Proposition 6.7.2], V â [ 1a ] is the fraction field of V â . By part (i), the

residue field κ of V [ 1a ] is V [ 1a ]/
⋂

n>0 anV , hence the a-adic completion of κ is V [ 1a ]â , which is
V â [ 1a ] by part (iii). For part (vi), see [EP05, Proposition 2.4.4], part (ii), and [FK18, Chapter 0,
Theorem 9.1.1 (2)]. For part (vii), we apply [Sta18, 0BNR] to the a-adic completion V → V â : note
that V/anV 
 V â /an V â for every positive integer n (see [FK18, Chapter 0, 7.2.8]), also, V [a∞] =
ker(V → V [ 1a ]) = 0 and V â [a∞] = ker(V â → V â [ 1a ]) = 0; the exactness of 0→ V → V [ 1a ]⊕
V â → V â [ 1a ]→ 0 implies the desired isomorphism V

∼−→ V [ 1a ]×
K̂a V â . �

A.11 Comparison of topologies
We have compared different valuation topologies to some extent (Proposition A.7). Now, consider
three kinds of topologies on a valuation ring V : the a-adic topology, the valuation topology,
and the mV -adic topology, where mV ⊂ V is the maximal ideal. First, the mV -adic topology is
usually non-Hausdorff and does not coincide with any a-adic topology: for the rank-one valuative
completion Cp of the algebraic closure Qp of Qp, the maximal ideal m of the valuation ring OCp

of Cp satisfies m = m2. Thus, for every nonzero a ∈ m and every n > 0, we have (a) �⊃ mn = m.
Second, for a, b ∈ mV \{0}, the comparison of a-adic and b-adic topologies is [FK18, Chapter 0,
Proposition 7.2.1]:

the a-adic and b-adic topologies coincide ⇔
√

(a) =
√

(b),

and in such case, the a-adic completion is equal to the b-adic completion; also, the Henseliza-
tions of pairs (V, a) and (V, b) coincide [Sta18, 0F0L]. Third, to compare a-adic topologies and
valuation topologies, by Proposition A.7, V has a prime ideal of height one p if and only if there
is a topologically nilpotent � ∈ V \{0} such that the valuation topology on V is �-adic and√

(�) = p. In conclusion,

the valuation topology is nonarchimedean ⇔ it is a-adic for an a ∈ mV

such that
√

(a) is height-one.

Of course, valuation topologies and a-adic topologies do not coincide in general since each kind
of both has aforementioned internal differences. Lastly, a valuation ring V equipped with an
a-adic topology for some a ∈ mV \{0} may not have any prime ideal of height one, so its valuation
topology can not be a-adic.
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Corollary A.12. For a valuation ring V , an element a ∈ mV \{0}, and the a-adic completion
V â of V , the fraction field Kâ := Frac V â is a nonarchimedean field with respect to the a-adic
topology.

Proof. Let Γ be the value group of Kâ . If there is a γ ∈ Γ such that ν(an) ≤ γ for all n ∈ Z+,
then there is a b ∈ V â such that ν(b) = γ and b ∈

⋂
n(an). Since V â is a-adically separated,

we have
⋂

n(an) = 0 so b = 0, that is, γ =∞ �∈ Γ. Thus, every Uγ contains some an, that is,
a is topologically nilpotent for the valuation topology, hence Kâ is a Tate ring with its open
subring V â . By Proposition A.7,

√
(a) is of height one in V â , the valuation topology on Kâ is

a-adic hence nonarchimedean by Appendix A.11. �

We end this appendix with a comparison of Henselianity and completeness of valuation rings.

Proposition A.13. For a valuation ring V equipped with an a-adic topology for an element
a ∈ mV \{0}. If V is a-adically complete, then the pair (V, a) is Henselian. If V has finite rank n

and a is not in the unique prime p ⊂ V that is of height n− 1, then the a-adic completion V â is
a Henselian local ring.

Proof. If V is a-adically complete, then the Henselianity of (V, a) follows from [FK18, Chapter 0,
Proposition 7.3.5 (1)]. Now we show the second part. By Proposition A.10(iv), V â is of rank one.
Since (V â , aV â ) is a Henselian pair and Proposition A.10(i) implies that

√
(a) = mV , by [Sta18,

0F0L], the local ring V â is Henselian. �
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