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Abstract

In this paper we consider the problem of finding standing waves — solutions to nonlinear Schrodinger
equations with vanishing potential and sign-changing nonlinearities. This involves searching for solutions
of the problem

—2Au+V@u=0wWu’'u inR". 0.1)

We show that the problem has a solution, and the maximum point of the solution is concentrated on a
minimum point of some function as ¢ — 0.
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1. Introduction

In this paper we are concerned with the nonlinear Schrédinger equation

Loy h? 1
ih— == =AY + V)Y — Q)Y ¢, (1.1)
ot 2m
where m and h are positive constants, ¥ : RT x RY — C, V e C(RY, R). One of
the basic principles of quantum mechanics states that it contains classical mechanics
as its limit as &~ — 0. The presence of the nonlinear term in the equation makes
possible the appearance of solitary waves. It is also interesting in mathematics to
analyze the behavior of solutions of (1.1) as # — 0. There has been much attention
in the literature to the so-called standing waves, namely solutions of (1.1) of the form
V(x, 1) =e CED/hy(x), where E is some real constant and u(x) is real-valued. This
is the simplest form of solitary wave. After conveniently relabeling the parameters,
u(x) satisfies
—&*Au+V@u=0®)|ul’'u inRY, (1.2)
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where ¢ > (0 is a parameter. We assume in this paper that N >3, 1<p<
(N +2)/(N — 2). The potential V vanishes at infinity, and the coefficient Q is sign-
changing, thatis Q = QT — Q—, QF #£0.

In the case where V and Q are positive, the problem has been studied in [2, 7, 9, 10]
and references therein. In particular, it is shown in [9, 10] that positive ground state
solutions of (1.2) are concentrated at a global minimum point of the function

Ax) := V(P+1)/(P—1)—N/2(x)Q—Z/(P—l)(x) as e — 0.

A important ingredient of the proof is the monotonicity of critical values with respect
to the parameters related to the coefficients V and Q. Similar results are obtained
in [2] for the case where both V (x) and Q(x) vanish at infinity.

On the other hand, if Q is sign-changing, various existence results are obtained in,
for example, [1, 4]. The main difficulties are that, firstly, the negative part Q~ of Q
will push the level of the associated energy functional up, making it hard to verify that
the functional has minimax geometry if the variational method is applied; secondly, the
boundedness of the Palai—-Smale sequence is difficult to show due to the presence of
Q™. This is why a ‘thickness’ condition or a nondegeneracy condition on the set where
Q = 0 has been required in previous work. Various techniques are then developed to
deal with the problem.

In this paper we assume that both V and Q vanish at infinity, and Q is also sign-
changing. To be precise, we suppose that:

(H;) V € C(RV), and there exista > 0, A > 0, « > 0 such that
v =a
14 x|

(Hy) Q € C(RY) is sign-changing, the set Q1 := {x e RV | Q(x) > 0} is bounded,
lim|x|— o0 Q(x) <0, and there exist C > 0 and 8 > 0 such that

0<Q0 ()= ¢
< X T
NI

H3) o <p<(N+2)/(N —2), where

N+2 4
e P if0 < B <«,
o=1N-2 «alN-2)
1 otherwise.

We shall show that there exist nonnegative solutions of (1.2), which belong to H LRN)
and are concentrated at a global minimum point of

B(x) := V(p+1)/(17*1)*N/2(x)(Q+)*2/(P*1)(x).

Since the potential decays to zero at infinity, the variational theory in H!'(RM)
cannot be employed. Inspired by [2], we shall work in the weighted Sobolev space
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H,, defined by

H, = {u c 92 (RN

/ (&2|Vul> + V(x)u?) dx < oo}.
RN
H; is a Hilbert space with norm induced by the inner product
(u, v)e = / (€>Vu - Vv + V(x)uv) dx. (1.3)
RN

We also denote by ngfl (RV) the weighted L space with norm

p+1 _ — p+1
||u||p+1,Q_—fRN 0~ ()|ulP*! dx.
We begin with an existence result.

THEOREM 1.1. Suppose that (H;)—(H3) hold with o € (0, 2), B > 0. Then for every
& > 0 problem (1.2) has a nonnegative classical solution u, € H LRM).

Next, we investigate the limiting behavior of solutions u, obtained in Theorem 1.1
as ¢ —> 0. We remark that critical values of the associated functional described in
Theorem 1.1 are not monotone in parameters related to the coefficients V and Q as
critical values in [10], hence the arguments in [9, 10] cannot applied. Nevertheless,
the following result holds.

THEOREM 1.2. Suppose that (H;)-(H3) hold with o« € (0,2), B>0. Then the
solution ug has a unique maximum x, € Q* when & > 0 is sufficiently small. Moreover,
ug is concentrated at a global minimum x* of A(x), that is, x, — x* as ¢ — 0 and

X — Xg

ug(x) = U*(x)(T> + we (x),

where we — 0in C2 (RN) as & — 0, and U* is the unique positive solution of

loc
—AU*(x) + VxHU*(x) = Q") U*P(x) inRN.

In Section 2, the applying mountain-pass theorem, we find a nonnegative solution
of (1.2) in H,, and then we show that it belongs to H L(RN). In Section 3 we discuss
the concentration phenomenon of u., and prove Theorem 1.2.

2. Existence results

In this section, we establish the existence results for problem (1.2), that is, we
prove Theorem 1.1. Solutions of problem (1.2) will be found as critical points of
the associated functional

1

1
le(w) =5 /M(ﬁvm2 + V(@)u?) dx — P /RN oult dx,

in H,. By the following result, which was discussed in [2], we see that I, is well
defined and C! in H,.
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LEMMA 2.1. Suppose that (H;) and (Hp) hold with o € (0, 2] and B > 0. Then
for all ¢>0, the inclusion H, — L” 1 is continuous provided that o < p
< (N +2)/(N —2), and it is compact provided thatc < p < (N +2)/(N — 2).

To look for critical points of I, we use the mountain-pass lemma in [8]. It is
apparent that I, has a mountain-pass geometry in Hy, that is, there exist p, o > 0, such
that I, (u) > o for ||u|| = p, and there exists e € H, such that for t > 1, I (te) < 0. By
the mountain-pass theorem without the (PS). condition, there is a (PS)., sequence
{u,} of I, that is,

I(un) = ce,  Io(up) =0,

where

ce := inf max I.(y(t)) >0
yels 0<t<1

and Ty ={y € C([0, 1], Hy) | ¥ (0) =0, y(1) =e}.

PROPOSITION 2.1. Assume that (H;)—(H3) hold with0 <o <2, B > 0. Then for all
e > 0, problem (1.2) has at least a nonnegative solution in Hy.

PROOF. It is sufficient to show that the (PS)., sequence {u,} possesses a convergent
subsequence. Obviously, for any fixed ¢ > 0, {u,} is uniformly bounded in H. So we
may assume that u, — u, in He, u, — ue in L] (RN)for2 <q <2N/(N —2) and
u, — u, almost everywhere in RNV, By the Brezis—Lieb lemma [3],

o(1) + (I, (up), un) = / (| Vun* + V(x)u?) dx — f Q) ) dx
RN RN
= (I[(ue), ue) + lluy — ug||2 — / 0T () — ue)? ™ dx
Qt

+ / 0~ () (un — ue)y dx.
RN
It follows from (I/(u.), us) = 0 that
ltn — ue)? +/sz 0~ () (up —ue)? dx = /Q OF () (up — ue)?™ dx + o(1).

As Q7 is bounded, [o+ OF(x)(u, — ug)flfrJrl dx — 0 as n — oo. This implies that
Uy, —> ug in Hy. O

In the rest of this section, following the idea of [2], we show that u, obtained in
Proposition 2.1 belongs to H L@RN). Since Q7 is bounded, there exists Ry > 0 such
that Q" C Bg,. In the sequel, we always assume that 0 < o < 2.

LEMMA 2.2. For R > Ry and 2, . C RN \ Bg,

1
/ (2| Vue|* + V(x)u?) dx < 5 / (% Vue|* + V(x)u?) dx,
Qﬂ+1,€

Qe

where Q¢ = RN\ Bg Ry = en?/ 2=,

n.e?
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PROOF. Let x,.¢(r) be a cut-off function, x, (r) =0 forr < R, ¢, xne()=1 for
r > Ryt1.e,and |V xn e (x)| < C/(Ry+1,e — Rn.e). By the definition of Ry, .,

|Rps1e — Ruel = el(n + DY — p?/C=0] > Co(n + 1)/~
_ 2—a)/2 pa/2 a/2
= Ce@ PR = CeRYL
This implies that
2 Rut1.e — Ruel > <CRY < Cinf{V(x): Ry e <|x| < Rupie),
and

&1V e (07 < V().

Expanding (1/(u¢), xn,cue) = 0 and noting that Q™ C Bg,, for all R > Ry,
/ )(n’g(82|Vu€|2 + V(x)ug) dx

= / Xne Q)| [P dx — &2 / Vitg - Vxn elle

Qe Qn,s

2
&
53/ (Ve > + |V xn.el?u?) dx
Qe

1
1 / & Vue|? + V(r)ud) dx,
2 Jg

n,e

which yields the result. 0
LEMMA 2.3. Forall p > 4Ry,

f (&2 Vug|* + V(x)u?) dx
(x>0}

1 _
log 5 8—l(p(2—a)/2 _ R(()Z a)/Z)}’

2 1
=< C””S”g €xXp _5

where C > 0 is a constant.

PROOF. Given p > 4Ry, let 7 — 7 be positive integers such that
Rie <Ro < Ruti1e, Ri-1=p=Rje. 2.1

Choosing Ry large enough, and hence n large, Ry11 . < 2R5 . Therefore, p > 4R >
4Rz e > Riyy2e,n—1>n+2andn —n — 2 > 1. From Lemma 2.2, we deduce that
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/ (2| Vue|* + V(x)u?) dx
{lx|>p}

5/ (2| Vue|* + V(x)u?) dx
{Ix|>R5—1.¢}

1 n—-n—2
< (-) / (& Vue* + V(x)u?) dx
2 1> R 1.6}

1 n—n-—2
< (-) / (% Vue|* + V(x)u?) dx
2 {1x]> Ro}

1 n—n—2
5(5) e |12

By 2.1), 71 — 7 > (1/2)s ™ (p@ /2 — g™/

), and the assertion follows. O
PROOF OF THEOREM 1.1. The proof will be complete once we show that

ue € H'(RV).
Let y € RY be such that |y| > 2. Then

1
/ u? dx = / V(x)ug dx < Cyqly|® / V(x)ug dx.
Bi() Bi() V(x) Bi()

For R = |y|/2, since B1(y) C RN \ Bg,

/ V(x)ug dx < / V(x)u? dx.
Bi(y) RN\ B (0)

By Lemma 2.3, for |y| > 4Ry, we obtain

/ ug dx = Caly|” / V(xu; dx < Cslluel||y|* exp{—Cely|'~ /).
Bi1(y) RN\Bg

Let {yi} CBs\ By, i=1,2,...,m, meN, be such that Bs \ B, C ;- Bi(3i)-
Let yix := 2k vi. We may assume that there exists kg such that 2ko > 4Ry. By
Lemma 2.3 and noticing that RY \ By C [ Jg2 2K(Bs \ Bo),

o0 m
/ Wde <y / k uldx < / u? dx
RN\ B, k=0 Y 2%(B5\B2) i=1 k=0 Qk(ytk)

m ko 1 m

Y[ ey y /

i— 1 k=0 Y Bk i) i=1 k=kg 2k()uk)

m ko—1 m o0
2 2
/ w2 dx + Cslue 2303 Iyl

,:1 —0 Y By ik) i=1 k=k

{ Celyixl' =@/},

'M
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which yields fRN\32 ug dx < +o0, since 0 <« < 2. Thus u, € L>(R") and hence
us, € H'(RY). Finally, standard arguments show that u, € C2(RN) and u, > 0. d

3. Concentration phenomenon

In this section, we discuss the limit behavior of the solution u, of (1.2) obtained in
Theorem 1.1.

LEMMA 3.1. Let x¢ be a global maximum of ug, that is, ug(xe) = max, gy Ue(X).
Then x, € Q.

PROOF. Since x; is a global maximum of u., then Au.(x.) <0. The maximum
principle implies that u,(x;) > 0 and —Aug(x;) + V (xg)ugs(x:) > 0. Supposing, on
the other hand, that x, € RV \ Q*, we obtain

—Autg(xe) 4+ V (xe)ue (xe) = Q(xe)ul T (x0) <0,

a contradiction. O

We define for £ € Q7T the functional Fg on H L(RN) by

1 1
Fe(u) =3 /RN(IVulz TV EW) dx = ——706) /RN P dx. 3.1
Let
f®) =5\I}$f Fe(u), (3.2)
where

Ne = {u € H'R™)\ {0} ' /RN(WuF + V(@Eu?) dx = Q) fRN ]! dx}.

Then u € Ng if and only if u(y) := QYP=D@E)v-Vr=DEwv-12E)y) e N,
where

N:{ueHl(]RN)\{O}‘/ (|Vu|2+u2)dx:/ |u|P+1dx}.
RN RN

Therefore,

_i _(r_ 1 : 1
f(f)—K};st(u)—<2 p+1)Q($)u1€r}\2/RNlulp dx

(N )
(L L) 02D gy y o0/ D-N2 (g i / P gy
(2 p+ 1>Q ©) ®) vlél/\/' RN vl *

Recall that B(x) = V@+D/(p=D=N/2(xy(0T)=2/(P=D(x).
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LEMMA 3.2. There exists Co > 0 such that for all ¢ € Q7 and all ¢ sufficiently small,
e Nee =&V I (ue) < CoBE) + o(1)
as ¢ — 0. In particular, there exists C > 0 such that ¢, < Ce", |u, ||§ <CeN,
PROOF. Let U € H'(R") be the unique positive radial solution of
—~AU+U=U? inR".
Since infyenr fpv [v[PT! dx is achieved by U, we obtain

f&) = (1 - #) Q=Y P=D () y PHD/(P=D=N/2 (£ / |UIPT dx = CoA®).
2 P + 1 RN

It is known that f (&) is a mountain-pass level of Fg, so for all v > O there exists
w € H'(RY) such that

f&) < max Fe(tw) < f(&§) +v.

Let ¢ € C2(RV) be a cut-off function such that 0<¢ <1 and ¢ =1 in a
neighborhood of &, and define w, € H'(RN) by we(x) = p(x)w(x — &/¢). It follows
from H'(RN) c H, that w, € H,, and

eV flwe 7 = &? /RN Ve (ey + &) w?(y) dy +2¢
x [ Vu0IVeGy +OulIber + 6 dy
+ [ Fer+ovumr dy
+ [ Ve +os e+ outmdy
and
[ ol dr= [ 0ty +Olter + DI dy.

Thus we obtain
e NI (twe) = Fe(tw) + o(1)
as ¢ — 0. As a result,
e NI (uy) < inf maxe NI (rv) <maxe NI (rw,)
veH\{0} >0 t>0
max F:(tw) +o(1) < f(§) +v+o(1)
>

= CoB() +v +o(l).

IA
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Since v > 0 is arbitrary,
e Vee = eV I (ue) < CoB(E) +o(1).

In particular, ¢, < &V C infzcq+ B(E) < Ce" and ||u,[|2 < CeV. O

LEMMA 3.3. There exists a constant C > 0 such that ||ug|p~ > C for all ¢ >0
sufficiently small.

PROOF. Apparently,

llue||? = /RN (2| Vue > + V(x)u?) dx = fRN Q(x)ult! dx. (3.3)

Moreover,

/ Q(x)ul*! dxf/ O ()ul™dx < O (x)ul™! dx. (3.4)
RN Qt

Bg,

By (Hy), (Ho),
+ ¢ o ¢ o
g"=<C=< ;(1 + x[HVx) = ;(1 + Ry)V(x),
for |x| < Rg. Therefore,

C C
0T (x)u? dx < ;(1 + RY) V(x)u? dx < ;(1 + RO uell?.  (3.5)

Bg, Bry

By (3.3), (3.4) and (3.5), we obtain

lue |2 = /R . Q) ul*dx < Ot (yult! dx

Bg,

p—1 2
< lluell oo 0" (v)ug dx
B,

C -1
< —(1+ RO uelZ el
This implies that ||ug||€o_o1 >a/(C(1+ Ry)) >0and [ug|l L~ > C. O

PROOF OF THEOREM 1_2 We know from Lemma 3.1 that x, € Q1, so we may
assume that x, — x* € Q1 as ¢ — 0. Let vg(x) := ug(ex + x¢). Then v, satisfies

—Av(x) + V(ex + xp)ve(x) = Q(ex + x)vf, x € RV, (3.6)
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By Lemma 3.2 and assumption (Hy),

C>e Mu 2=V A;N(szwugﬁ + V(x)u?) dx

< N 21,12 a 2\ 4
> ¢ /]RN<8 |Vug|” + 1+|x|au8 x
—/ (|Vv<>|2++ ())
= ey ey 1+|8y+ |0{8y
>C \vJ + dy,
> fR<| O+ 5 £<y)> y

since |ey + x¢| < C(1 4 |y]). Therefore,

fR (Iva(y)I +1+| @ s(y)> dy <C,

where C > 0 is independent of ¢. By this fact, we may verify that {v.}, is uniformly
bounded in HILC (RV) and Clzoca (RN) with respect to &, and we may assume that, up to

a subsequence, ve — U™ in C;‘;g (RM). Passing to the limit in Equation (3.6), we find
that U* > 0 is a classical solution of the problem

—AU*(x) + V) U*(x) = Q(x*)(U*)P(x) in RV, (3.7)

By Lemma 3.3, max, gy Ve(x) = v:(0) = ue(xg) = |lugllze > C > 0. It follows
that max, gy U*(x) = U*(0) > C > 0. If x* € 9Q", then Q(x*) =0, —AU*(x)
4+ V(x*)U*(x) =0, by the maximum principle we have U*(x) = 0, it is impossible.
Thus, x* € Q7. For any sequence R, — +00,

/ (IVve|> + V(ex + xe)v2) dx < e Vu||? < C.
BRn

Since v, — U* in C>* (ERH) for fixed n, the dominated convergence theorem implies
that

/ (IVU*P + V(") (U*?) dx < C.
BRn

Letting R, — 400, we deduce that U* € H!(R"). By the maximum principle,
U* > 0in R", and a result in [5] implies that U™ is a radial function.
We claim that
Fex(U*) < liminf e~V I (up). (3.8)
e—0

Indeed, if

he(x) := 5|Vvs| + EV(” + xg)v;(x) — mQ(sx + xe)vlT,
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then I, (us) = &V [ he(x) dx. Since v — U* in Cio® (RY), for all R > 0,

1 1
lim he(x)dx = - f VU dx + =V (x*) | (U*)? dx
Bgr 2 Bgr 2

e—=0 Br

1
———0@" | WHPTdx.
p+1 Br

Since U* € H'(RV), for any v > 0, we can choose R > 0 large enough such that

1 1 1
lim | he(x)dx > / [—|VU*|2 + —VE*UH? - —Q(x*)(U*)”+l] dx — v
e—>0 /B, RN 2 2 p+1

= Fex(U") — . (3.9)

Let ng be a cut-off function such that ng =0 in Bg_;, ng=1 in ]RN\BR,
0<ng <1, |Vng| <C. Testing (3.6) with nrv,, we obtain

/RN\B (IVvel* + V(x)v?) dx — /RN\B O(ex + x)vP dx + E. =0,
R R

where
E; ::/ [Vve - V(nrve) + V(ex +x5)nRv€2 — Q(ex +x8)nRvé’+1] dx.
Br\Bg-1
Hence,
0< / (IVvel* + V(x)v?) dx :/ Q(ex + x)vP  dx — E,
RN\Bg RN\ Bg
and
/ O(sx —Hcg)varl dx > E;.
RN\ Bg
Thus

1
/ he(x) dx = — / (IVvel® 4+ V(ex + xe)v2(x)) dx
RN\ Bg 2 JrV\Bg

1
p+ 1 JrV\Bg

1 1 1
=z——— ex + x)v/dx — —E
(2 p—i—l)/l‘gN\BR Q( 8) & 2 &

1
——FE,.
p+1

Q(ex + xg)vserl dx
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For R large enough, lim._.q | E¢| < v. Indeed, since v. — U™ in Clzog (RM),

lim (Vvg - V(ngve) + V(ex + xe)ngvl) dx
£=>0 JBr\Bg_
<C / (VU*)? + VU*U* + V(x*)(U*)?) dx,
BR\Bg-1
lim O(ex —l—)cg)r]Rvé’Jrl dx < / 0" (U*PH! dx.

e=>0JBp\Bg_ Br\Bg-1

For R large enough, U* € H'(RY) implies that

c / (VU*)? + VU*U* + V(x*)(U*?) dx <v/2,
Br\Bg-1

/ Q) (U dx < v/2.
Br\Br-1
Thus limg_,¢ | E¢| < v. This yields

lim inf/ he(x) dx > ——. (3.10)
]RN\BR 2

e—>0

From (3.9) and (3.10) we obtain

lim inf/ he(x)dx > Fex(U™) — gv
e—=0 JRrN 2
for any v > 0. Inequality (3.8) then follows.

Now we show that x* is a global minimum of the function f(§)= Co.A(%).
Suppose that it is not a global minimum. There would exist £* € QT such that
f(x*) > f(£%). By (3.8) and Lemma 3.2, for all £ € Q7

F+(U*) < lim iélfs*le(ug) < CoA%).
e—

Since U™ is a solution of (3.7), we infer that
Fus(U") zji\?f For(u) = f(x*) > f(E%) = Co.AGET),

which yields a contradiction.

It remains to show that u, has at most one maximum point if ¢ is sufficiently small.
Suppose, by way of contradiction, that u, has another maximum point z, € Q* which
is different from x,. We may assume that z. — z* € QT. Noticing that e Nze — x¢)
is also a maximum point of v, there are two cases which may occur:

(i) & '(ze — x;) is bounded;
(i) &7 '(z¢ — x,) is unbounded.
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In case (i), we assume, up to a subsequence, that ez —x;) > PeRYN as
e — 0. Since ve (¢ 1 (zz — x¢)) = max v, converges to max U* = U*(0), we conclude
that P = 0. Therefore, for ¢ sufficiently small, e 1(z. — xz) € B, whichis impossible
since by [6, pp. 836-837], 0 is the only critical point of v, in By.

In case (ii), let g (x) := u.(ex + z.). To prove v, — U* in c*

show that v, — U* in C>
solution of

o “(@RY), we may
“(@RN), and UteH I(RV) is the unique positive radial

loc

—AT* () + VEHT*(x) = 0z (TP (x) inRV.

Since |8_1(zg — X¢)| — 00, then for ¢ sufficiently small and for any R > O fixed,
BrN B = = {§, where B = = Br(e (2 — x5)). We may deduce as in the proof of (3.9)
and (3.10) that for any v > 0, there exists R > 0 large enough such that

lim he(x) deFz*(ﬁ*)_V (3.1D)
e—0 JB°
and
lim inf/ he(x)dx > —v. (3.12)
e—>0 RN\ (BRUB?)

It follows from (3.9), (3.11) and (3.12) that

lim inf/ he(x) dx > Fox(U*) 4+ F+(U*) — 3v.
RN

e—0

Lemma 3.2 yields that
Fe(U*) + FZ*(ﬁ*) <lim inf/ he(x) dx = liminf e N I (up) < f(x¥).
e—>0 JRN e—0

Since both x* and z* are global minima of f, then f(x*) = f(z*). By the definition
of f, wealso have f(x*) < Fx(U*), f(z*) < F (U*) This implies that

For(U*) + Fo(U*) < L(f () + £(29) < L(Fe (U + Fr (U)),

a contradiction. |
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