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Abstract
We prove a new lower bound for the almost 20-year-old problem of determining the smallest possible
size of an essential cover of the n-dimensional hypercube {±1}n, that is, the smallest possible size of a
collection of hyperplanes that forms a minimal cover of {±1}n and such that, furthermore, every variable
appears with a non-zero coefficient in at least one of the hyperplane equations. We show that such an
essential cover must consist of at least 10−2 · n2/3/( log n)2/3 hyperplanes, improving previous lower bounds
of Linial–Radhakrishnan, of Yehuda–Yehudayoff, and of Araujo–Balogh–Mattos.
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1. Introduction
There is a long line of research, spanning over three decades, on problems about covering the
vertices of the n-dimensional hypercube {±1}n by hyperplanes (see, e.g. [2, 3, 6, 9, 10, 12]). A
very simple question is how many hyperplanes are needed in order to cover all vertices in {±1}n,
that is, such that every vertex is contained in at least one of these hyperplanes. This question
has an equally simple answer: two hyperplanes are enough, for example, one can take the two
hyperplanes given by the equations x1 = 1 and x1 = −1. However, this hyperplane cover is not
truly n-dimensional, in the sense that the variables x2, . . . , xn do not appear in any of the hyper-
plane equations. It is therefore natural to demand in addition that each variable has a non-zero
coefficient in the equation for at least one of the hyperplanes.

However, this still does not lead to a very interesting problem. In addition to the hyperplanes
with equations x1 = 1 and x1 = −1 that already cover all vertices, one could add an additional
hyperplane with an equation like x1 + x2 + · · · + xn = 0 containing all variables with non-zero
coefficients. But in some sense, this additional hyperplane is not truly part of the hyperplane cover,
as it is not needed for covering all vertices (the other two hyperplanes together already cover all
vertices in {±1}n).

This leads to the following notion of an essential cover of the hypercube {±1}n, introduced by
Linial and Radhakrishnan [10] in 2005 and further studied in [3, 11, 12]. It describes a minimal
set of hyperplanes covering all vertices in {±1}n, which in addition has the property that each
variable appears in the equation of at least one of the hyperplanes. Formally, an essential cover of
the hypercube {±1}n is defined as follows.
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Definition 1.1 (Essential cover). A collection of hyperplanes h1, . . . , hk in R
n is called an essential

cover of the n-dimensional hypercube {±1}n if the following conditions are satisfied:
(E1) For every vertex x ∈ {±1}n, there is some i ∈ [k] such that x ∈ hi.
(E2) For every j ∈ [n], there is some i ∈ [k] such that, writing hi = {x ∈R

n | 〈vi, x〉 = μi}, we have
vij �= 0.

(E3) For every i ∈ [k], there is a vertex x ∈ {±1}n that is covered only by hi and not by any of the
hyperplanes h1, . . . , hi−1, hi+1, . . . , hn.

Condition (E1) means that every vertex in {±1}n is covered by some hyperplane, and con-
dition (E3) means that h1, . . . , hk is a minimal collection of hyperplanes with respect to the
property of covering every vertex. Finally, condition (E2) can be restated as saying that each of
the variables x1, . . . , xn must appear with a non-zero coefficient in at least one of the hyperplane
equations 〈vi, x〉 = μi for i= 1, . . . , n (where vi = (vi1, . . . , vin) ∈R

n and μi ∈R, so 〈vi, x〉 = μi is
a shorter form of writing the linear equation vi1x1 + · · · + vinxn = μi). Note that this condition is
not affected by rescaling the equations 〈vi, x〉 = μi, so it does not depend on the parametrisation
chosen for each of the hyperplanes.

It is now a very natural question to ask how large an essential cover of {±1}n needs to be. Linial
and Radhakrishnan [10] showed in 2005 that any essential cover must contain at least �(

√
n)

hyperplanes. On the other hand, they also gave a construction of an essential cover consisting of
	n/2
 + 1 hyperplanes, which still remains the best known upper bound. Yehuda and Yehudayoff
[12] improved the lower bound to �(n0.52), and more recently Araujo, Balogh, and Mattos [3]
further improved the lower bound to �(n5/9/( log n)4/9) by refining the methods in [12].

In this paper, we further improve the lower bound for the size of an essential cover of the
hypercube.

Theorem 1.2. For n≥ 2, any essential cover of the n-dimensional hypercube {±1}n must consist of
at least 10−2 · n2/3/( log n)2/3 hyperplanes.

The absolute constant 10−2 is not optimised in our proof.
We remark that our lower bound for the size of essential covers also implies new lower bounds

for some problems in proof complexity, see the discussion in [12].
Linial and Radhakrishnan [10], obtained their lower bound of �(

√
n) for the size of essential

covers of {±1}n by showing the following. For any essential cover of {±1}n consisting of k hyper-
planes, each hyperplane equation contains at most 2k variables with non-zero coefficients. We
also use this fact in our proof of Theorem 1.2.

We furthermore observed that this fact leads to an essentially tight lower bound for another
well-known problem concerning hyperplane covers of {±1}n, which can be stated as follows. A
skew cover of the n-dimensional hypercube {±1}n is a collection of hyperplanes h1, . . . , hk cover-
ing all vertices in {±1}n such that each of the hyperplane equations contains all of the variables
x1, . . . , xn with non-zero coefficients (i.e. for i= 1, . . . , n, when writing hi = {x ∈R

n | 〈vi, x〉 =
μi}, the vector vi has full support). The problem is again to determine the smallest possible size of
a skew cover of {±1}n. The best lower bound for this problem that appeared explicitly in the lit-
erature was �(n0.51) due to Yehuda–Yehudayoff [13], but a bound of �(n2/3/( log n)4/3) follows
from a recent result of Klein [9] via the same deduction as in [13]. From the above-mentioned fact
about essential covers proved by Linial and Radhakrishnan [10], one can deduce the following
stronger lower bound for the size of skew covers of {±1}n.
Observation 1.3. For n> 0, any skew cover of the n-dimensional hypercube {±1}n must consist of
at least n/2 hyperplanes.

We include a proof of this observation in Section 2, since this does not seem to have been previ-
ously observed in the literature (after the preprint version of this paper appeared, this observation
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was also independently made in [8]). The bound in Observation 1.3 is tight up to constant factors,
as it is not hard to construct a skew cover of {±1}n consisting of n+ 1 hyperplanes (by taking the
hyperplanes described by the equations x1 + · · · + xn = n− 2t for t = 0, . . . , n).

Notation. For a positive integer n, we use [n] to denote the set {1, . . . , n}. Given sets A, B, C, we
write C =A � B to denote a partition of the set C into two disjoint subsets A and B. For any real
x> 0, we write log x for the natural logarithm of x in base e. For two sets A, B, we use BA to denote
the set of maps A→ B. For x ∈ BA and a subset A′ ⊆A, we denote the restriction of x to A′ by
x|A′ , as usual. Given x ∈ BA, one may think of x as a vector of length |A| indexed by the elements
in A with each coordinate taking values in B, and for a ∈A, we write xa for the value x(a) ∈ B. For
convenience, given a positive integer n, we use Bn to denote B[n] (of course, this is consistent with
the usual definition Bn = B× B× · · · × B).

For a vector v= (v1, . . . , vn) ∈R
n, we use supp (v) to denote the support of v, which is the set

of indices i ∈ [n] where vi �= 0. We recall that the �1-norm of v is defined as ||v||1 =∑n
i=1 |vi|,

the �2-norm of v is defined as ||v||2 = (∑n
i=1 v2i

)1/2, and the �∞-norm of v is defined as ||v||∞ =
maxi∈[n] |vi|. Given two vectors u, v ∈R

n, we write 〈u, v〉 =∑n
i=1 uivi for the standard inner prod-

uct on R
n. For an n×mmatrix V ∈R

n×m and subsets A⊆ [n] and B⊆ [m], we use V[A× B] to
denote the |A| × |B| submatrix of V consisting of the rows in A and the columns in B.

2. Preliminaries
In this section, we discuss useful definitions and lemmas for our argument. We start with the
following two definitions that characterise vectors with many different magnitudes.

Definition 2.1 (Magnitude). For any x ∈R \ {0}, we say that x has magnitude j ∈Z if 10j ≤ |x| <
10j+1.

Definition 2.2. For a positive integer S> 0, we say that a vector v has at least S magnitudes if there
exist S non-zero entries in v with distinct magnitudes.

We remark that the notion of having many magnitudes is a simpler version of the notion of
having “many scales” introduced in [13] and later used in [3, 12].

The motivation behind the above definitions is the following lemma, which states that given
a vector v ∈R

n with at least S magnitudes, for a random vector w ∈ {±1}n, the probability of
the event 〈v,w〉 = α for any given value α ∈R is exponentially small in S. For our purposes, it is
convenient to state the lemma for a biased random vector w ∈ {±1}n. We remark that a similar
lemma also appears in [9].

Lemma 2.3. Let v ∈R
n be a vector with at least S magnitudes. Let p ∈ [1/3, 2/3]n and consider a

random vector w ∈ {±1}n with independent random entries w1, . . . ,wn ∈ {±1}, whose distributions
are given by

wi =
{
1 with probability pi
−1 with probability 1− pi

for all i ∈ [n].

Then for any α ∈R, we have

P [〈v,w〉 = α]≤
(
2
3

)	S/2

.

Proof. Let r = 	S/2
. Among the at least S different magnitudes occurring for the entries of
the vector v, there are at least r even numbers or at least r odd numbers. So, upon rela-
belling the indices, we may assume without loss of generality that the first r entries v1, . . . , vr of
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v= (v1, . . . , vn) ∈R
n have distinct magnitudes with the same parity and are ordered in decreasing

order of magnitudes. Now, for each i ∈ [r − 1], if m is the magnitude of vi, then vi+1 has magni-
tude at most m− 2. This means that |vi| ≥ 10m and |vi+1| < 10m−1, and therefore |vi| ≥ 10|vi+1|
for every i ∈ [r − 1].

This implies that for any α ∈R, there is at most one assignment for w1, . . . ,wr ∈
{±1} satisfying

∑r
i=1 viwi = α. Indeed, if there were two distinct such assignments

(w1, . . . ,wr),
(
w′
1, . . . ,w′

r
) ∈ {±1}r , then we would have∑r

i=1 vi
(
wi −w′

i
)= α − α = 0. So for the

minimum index j ∈ {1, . . . , r} with wj �=w′
j, we would have

2|vj| =
∣∣vj(wj −w′

j
)∣∣=

∣∣∣∣∣∣
r∑

i=j+1
vi
(
wi −w′

i
)∣∣∣∣∣∣≤

r∑
i=j+1

2|vi| ≤
r∑

i=j+1
2|vj|/10j−i <

2
9

· |vj|,

yielding a contradiction. So for any α ∈R, there can be at most one such assignment
(w1, . . . ,wr) ∈ {±1}r.

Let us now condition on arbitrary outcomes ofwr+1, . . . ,wn ∈ {±1}. Conditional on such fixed
outcomes, it suffices to show that, for any α ∈R, we have

∑r
i=1 viwi = α −∑n

j=r+1 vjwj with prob-
ability at most

( 2
3
)r . Recall that there is at most one assignment for w1, . . . ,wr ∈ {±1} satisfying

this equation. Since w1, . . . ,wr are independent random variables with

P[wi = 1]≤ 2
3

and P[wi = −1]≤ 2
3

for every i ∈ [r], we obtain

P

⎡
⎣ r∑

i=1
viwi = α −

n∑
j=r+1

vjwj

∣∣∣∣∣wr+1, . . . ,wn

⎤
⎦≤

(
2
3

)r
=
(
2
3

)	S/2

.

This implies our desired statement. �
The following lemma is due to Linial and Radhakrishnan [10] and gives an upper bound for

the number of non-zero coefficients for the hyperplane equations in an essential cover. It can be
proved via the Combinatorial Nullstellensatz [1].

Lemma 2.4 ( [10]). Let h1, . . . , hk be hyperplanes inRn forming an essential cover of the hypercube
{±1}n. For each i ∈ [k], let hi = {x ∈R

n | 〈vi, x〉 = μi}. Then we have | supp (vi)| ≤ 2k for all i ∈ [k].

We observed that Lemma 2.4 also gives a lower bound for the number of hyperplanes in any
skew cover of the hypercube {±1}n, as stated in Observation 1.3. Recall that the hyperplanes
h1, . . . , hk form a skew cover of the hypercube {±1}n if every vertex in {±1}n is covered by at least
one of the hyperplanes h1, . . . , hk and for each i= 1, . . . , k, when writing hi = {x ∈R

n | 〈vi, x〉 =
μi}, all coordinates of vector vi ∈R

n are non-zero.

Proof of Observation 1.3. Suppose h1, . . . , hk are hyperplanes forming a skew cover of {±1}n.
For i= 1, . . . , k, let us write hi = {x ∈R

n | 〈vi, x〉 = μi}. Then for every i ∈ [k], all coordinates of
the vector vi are non-zero.

Let I ⊆ [k] be a minimal subset with respect to the property that the hyperplanes hi for i ∈ I
cover all vertices in {±1}n (and note that I �= ∅). We claim that these hyperplanes hi for i ∈ I form
an essential cover of {±1}n. Indeed, conditions (E1) and (E3) in Definition 1.1 are satisfied by
the choice of I. Condition (E2) is satisfied because for every index i ∈ I, all coordinates of vi are
non-zero (so for any j ∈ [n], one can take an arbitrary index i ∈ I in condition (E2)).

Now, taking an arbitrary index i ∈ I, Lemma 2.4 implies that n= | supp (vi)| ≤ 2|I| ≤ 2k, so we
must have k≥ n/2. �

https://doi.org/10.1017/S0963548324000257 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000257


Combinatorics, Probability and Computing 5

Our proof of Theorem 1.2 also relies on the following lemma, which Ball [4] extracted from
Bang’s solution of Tarski’s plank problem [5] (see, e.g. [3] for a short self-contained proof of this
lemma).

Lemma 2.5 (Bang’s lemma [4, 5]). Let M be a symmetric � × � matrix such that Mii = 1 for every
i ∈ [�]. Then for any vector μ = (μ1, . . . ,μ�) ∈R

� and any real number θ ≥ 0, there exists ε ∈
{±1}� such that ∣∣(M(θε))i − μi

∣∣≥ θ for all i ∈ [�].

In our proof of Theorem 1.2, we apply the following corollary of Lemma 2.5 to a certain sub-
matrix of the coefficient matrix of an essential cover. This allows us to find a point that is far from
certain hyperplanes in the cover.

Corollary 2.6. Let V ∈R
�×m be an � ×m matrix with row vectors v1, . . . , v� ∈R

m and column
vectors v∗1, . . . , v∗m ∈R

�. Suppose that ||vi||2 = 1 for all i ∈ [�], and let θ ≥ 0 be a real number
satisfying θ ||v∗j||1 ≤ 1/3 for all j ∈ [m]. Then for any vector μ = (μ1, . . . ,μ�) ∈R

�, there exists
y ∈R

m such that ||y||∞ ≤ 1/3 and∣∣〈vi, y〉 − μi
∣∣≥ θ for all i ∈ [�].

Proof. Apply Lemma 2.5 to the symmetric � × � matrix M:=VVT and the vector μ ∈R
�. Note

that we have Mii = 1 for all i ∈ [�] since ||vi||2 = 1 for all i ∈ [�]. Hence there exists a vector ε ∈
{±1}� such that ∣∣(M(θε))i − μi

∣∣≥ θ for all i ∈ [�].

Setting y:= θVTε ∈R
m, for every i ∈ [�], we obtain∣∣〈vi, y〉 − μi

∣∣= ∣∣(Vy)i − μi
∣∣= ∣∣∣(V(θVTε))i − μi

∣∣∣= ∣∣∣(VVT(θε))i − μi

∣∣∣= |(M(θε))i − μi| ≥ θ .

Furthermore, we have

||y||∞ = ||θVTε||∞ = max
j∈[m]

∣∣∣∣∣θ
�∑

i=1
vijεi

∣∣∣∣∣≤ max
j∈[m]

θ

�∑
i=1

|vij| = max
j∈[m]

θ ||v∗j||1 ≤ 1
3
,

as desired. �
Finally, we will use the following well-known concentration inequality.

Lemma 2.7 (Hoeffding’s inequality [7]). Let a1, . . . , a�, b1, . . . , b� ∈R and let z1, . . . , z� be inde-
pendent real random variables such that for all j ∈ [�], we always have aj ≤ zj ≤ bj. Let z =∑�

i=1 zi,
then for every t > 0, we have

P

[∣∣z −E[z]
∣∣≥ t

]
≤ 2 · exp

(
− 2t2∑�

j=1 (bj − aj)2

)
.

3. Outline
We employ a strategy similar to the one in [12]. Given an essential cover of the hypercube {±1}n,
we consider its coefficient matrix, recording the coefficients of the linear equations corresponding
to the hyperplanes in the cover. More formally, if the hyperplanes are given by equations of the
form 〈vi, x〉 = μi for i= 1, . . . , k, then the coefficient matrix of the essential cover is the k× n
matrix with rows v1, . . . , vk.
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Figure 1. The decomposition of the coefficient matrix V of the essential cover.

We first show that for any essential cover consisting of only a small number of hyperplanes,
there is a decomposition of the coefficient matrix of a certain structured form. Using this decom-
position, we then obtain a contradiction by probabilistically finding a vertex in {±1}n that is not
covered by any of the hyperplanes in the cover. Our decomposition of the coefficient matrix is
given by the following proposition.

Proposition 3.1 (Matrix decomposition). For n≥ 2, let h1, . . . , hk be hyperplanes in R
n forming

an essential cover of the hypercube {±1}n. For each i ∈ [k], let hi = {x ∈R
n | 〈vi, x〉 = μi}, and let

V ∈R
k×n be the matrix with rows v1, . . . , vk. If k≤ 10−2 · n2/3/( log n)2/3, then there exists a parti-

tion [k]=K1 �K2 �K3 of the row indices of V and a partition [n]=N1 �N2 of the column indices
of V with N1 �= ∅, such that the following conditions hold:

1. Every entry in the submatrix V[K1 ×N1] is zero.
2. There exists a |K2| × |N1| matrix V ′ that can be obtained from V[K2 ×N1] by rescaling the

rows in some way (by some non-zero real numbers), such that every row in V ′ has �2-norm
equal to 1 and every column in V ′ has �1-norm at most (60 log n)−1/2.

3. In the submatrix V[K3 ×N1], every row has at least 	10 log n
 magnitudes.

Figure 1 illustrates the decomposition in Proposition 3.1. We remark that in Proposition 3.1,
some of the subsets K1,K2,K3 ⊆ [k] may be empty, and similarly, N2 ⊆ [n] may be empty.

Given an essential cover whose coefficient matrix can be decomposed as in Proposition 3.1, we
show that there must exist a vertex in {±1}n that is not covered by any of the hyperplanes (yielding
a contradiction to condition (E1)). This is stated in the following proposition.

Proposition 3.2. For n≥ 2, let h1, . . . , hk be hyperplanes in R
n forming an essential cover of the

hypercube {±1}n. For each i ∈ [k], let hi = {x ∈R
n | 〈vi, x〉 = μi}, and let V ∈R

k×n be the matrix
with rows v1, . . . , vk. Suppose that the matrix V has a decomposition as in Proposition 3.1 and that
k≤ n. Then there exists w ∈ {±1}n such that 〈vi,w〉 �= μi for all i ∈ [k].

In other words, this proposition states that actually the coefficient matrix of an essential cover
cannot have a decomposition as in Proposition 3.1. This means that we cannot have k≤ 10−2 ·
n2/3/( log n)2/3.

The proof of Proposition 3.2 employs a similar strategy to [3, 12]: we find a certain probability
distribution on {±1}n such that with positive probability a random vertex w ∈ {±1}n with this
distribution avoids all the hyperplanes. To do so, we first fix the coordinates of w with indices
in N2 deterministically using the minimality property of an essential cover (property (E3) in
Definition 1.1) to always avoid all the hyperplanes hi with i ∈K1. Then we construct probabil-
ity distributions for the coordinates of w with indices in N1 such that with positive probability w
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avoids all the hyperplanes hi with i ∈K2 ∪K3. The probability distribution is constructed by apply-
ing Corollary 2.6 (a corollary of Bang’s lemma) to thematrixV ′ in condition (2) in Proposition 3.1.
This way, we find a point y ∈ [− 1/3, 1/3]N1 that is “far away” from all hyperplanes hi with i ∈K2.
We then randomly round y to a vertex in {±1}N1 of the hypercube to define coordinates of w with
indices in N1. We can show that for any i ∈K2, the vertex w is unlikely to be contained in the
hyperplane hi because y is “far away” from hi. To bound the probability that w is contained in a
hyperplane hi with i ∈K3, we use that by condition (3) in Proposition 3.1 every row of the subma-
trix V[K3 ×N1] has many magnitudes. So for each i ∈K3, Lemma 2.3 implies an upper bound for
the probability that w is contained in hi.

Despite the similarity in the overall strategy between our argument and the arguments in
[3, 12], we highlight the fact that we have a simpler matrix decomposition in Proposition 3.1
and a much shorter proof for Proposition 3.2, while obtaining a better bound. The proof of
Proposition 1.2 follows directly from combining Propositions 3.1 and 3.2.

Proof of Theorem 1.2. Suppose for contradiction that the hyperplanes h1, . . . , hk form an essen-
tial cover of the hypercube {±1}n of size k< 10−2 · n2/3/( log n)2/3. For each i ∈ [k], let hi = {x ∈
R
n | 〈vi, x〉 = μi}, and let V ∈R

k×n be the matrix with rows v1, . . . , vk. Then, we can decompose
V as in Proposition 3.1. But now by Proposition 3.2, there must be a vertex w ∈ {±1}n that is not
covered by any of the hyperplanes h1, . . . , hk. This contradicts condition (E1) in the definition of
an essential cover in Definition 1.1. �

The rest of the paper is structured as follows. In section 4, we show that for an essential cover
whose coefficient matrix has a decomposition as in Proposition 3.1, there must be a vertex w ∈
{±1}n that is not covered by any of the hyperplanes; that is, we prove Proposition 3.2. Then in
section 5, we prove Proposition 3.1.

4. Finding the uncovered vertex
In this section, we prove Proposition 3.2; that is, we show that given an essential cover of the
hypercube {±1}n whose the coefficient matrixV ∈R

k×n can be decomposed as in Proposition 3.1,
we can find a vertex w ∈ {±1}n that is not covered by any of the hyperplanes. For partitions
[k]=K1 �K2 �K3 and [n]=N1 �N2 as in Proposition 3.1, we construct w ∈ {±1}n by first fix-
ing the entries wj for j ∈N2 to avoid all the hyperplanes hi with i ∈K1 deterministically and then
probabilistically choosing the entrieswj for j ∈N1, avoiding all the hyperplanes hi with i ∈K2 ∪K3
with positive probability.

Proof of Proposition 3.2. Let [k]=K1 �K2 �K3 and [n]=N1 �N2 be partitions satisfying the
conditions in Proposition 3.1. Note that these conditions are not affected by rescaling the hyper-
plane equations 〈vi, x〉 = μi describing the hyperplanes hi for i ∈K2. We may therefore assume
that the matrix V ′ in condition (2) in Proposition 3.1 is simply V ′ =V[K2 ×N1] after rescaling
the equations 〈vi, x〉 = μi for i ∈K2 appropriately (note that this precisely corresponds to rescaling
the rows ofV with indices inK2). Specifically, thismeans that we have ||vi|N1 ||2 = 1 for each i ∈K2,
and furthermore, for each j ∈N1, the j-th column v∗j of V satisfies ||v∗j|K2 ||1 ≤ (60 log n)−1/2.

Next, we claim that K1 �= [k]. Indeed, condition (E2) in Definition 1.1 means that the matrix
V cannot have any column with all entries being zero. On the other hand, by condition (1) in
Proposition 3.1 the submatrix V[K1 ×N1] of V is the zero matrix. Therefore, if we had K1 = [k],
then for every j ∈N1 the j-th column of V would be all-zero. This would be a contradiction, given
that N1 �= ∅. Thus, we indeed have K1 �= [k].

Now, we can fix the entries wj for j ∈N2 of our desired vertex w ∈ {±1}n using the following
lemma.

Lemma 4.1. There exists w̃ ∈ {±1}N2 such that for every w ∈ {±1}n with w|N2 = w̃, we have
〈vi,w〉 �= μi for all i ∈K1.
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Proof. By condition (E3) in Definition 1.1 applied to some element of [k] \K1, there exists
a vertex x ∈ {±1}n such that 〈vi, x〉 �= μi for all i ∈K1. We set w̃:= x|N2 . By condition (1) in
Proposition 3.1, for every i ∈K1, the restriction vi|N1 is the all-zero vector. Therefore, for every
w ∈ {±1}n with w|N2 = w̃, we have

〈vi,w〉 = 〈vi|N2 , w̃〉 = 〈vi|N2 , x|N2〉 = 〈vi, x〉 �= μi

for all i ∈K1, as desired. �
Let w̃ ∈ {±1}N2 be as in Lemma 4.1, and fix wj = w̃j for all j ∈N2. Next, we define a proba-

bility distribution for the entries wj for j ∈N1. To do so, we apply Corollary 2.6 to the matrix,
V[K2 ×N1] with θ = (6 log n)1/2 and μ′ ∈R

K2 defined by μ′
i = μi − 〈vi|N2 , w̃〉 for all j ∈K2. We

have θ ||v∗j|K2 ||1 ≤ (6 log n)1/2 · (60 log n)−1/2 ≤ 1/3 for all j ∈N1, as well as ||vi|N1 ||2 = 1 for all
i ∈K2, so the conditions of Corollary 2.6 are satisfied for the matrix V[K2 ×N1]. So we obtain
y ∈R

N1 such that ||y||∞ ≤ 1/3 and
∣∣〈vi|N1 , y〉 − μ′

i
∣∣≥ θ for all i ∈K2. Then for every j ∈N1, let us

take a random variable wj ∈ {±1} with distribution

wj =
{
1 with probability (1+ yj)/2
−1 with probability (1− yj)/2,

(1)

such that the random variableswj are independent for all j ∈N1. Note that then we haveE[wj]= yj
for each j ∈N1.

Taking the entries of w to be the random variables wj for j ∈N1 together with the fixed values
wj = w̃j for j ∈N2 defined above, we have now defined a random vertex w ∈ {±1}n. Our goal is to
show that with positive probability w ∈ {±1}n satisfies 〈vi,w〉 �= μi for all i ∈ [k]. By the choice of
w̃ in Lemma 4.1 we always have 〈vi,w〉 �= μi for all i ∈K1. Next, we show that for i ∈K2 we are
unlikely to have 〈w, vi〉 = μi.

Claim 4.2. For every i ∈K2, we have

P

[
〈vi,w〉 = μi

]
≤ 1

2n
.

Proof. Fix i ∈K2. By our definition of μ′
i = μi − 〈vi|N2 , w̃〉 = μi − 〈vi|N2 ,w|N2〉, we have 〈vi,w〉 =

μi if and only if 〈vi|N1 ,w|N1〉 = μ′
i. So it suffices to show that

P

[
〈vi|N1 ,w|N1〉 = μ′

i

]
≤ 1

2n
.

Since E[wj]= yj for all j ∈N1, by linearity of expectation, we have E[〈vi|N1 ,w|N1〉]= 〈vi|N1 , y〉.
In addition, recall that we have

∣∣〈vi|N1 , y〉 − μ′
i
∣∣≥ θ , so we obtain

P

[
〈vi|N1 ,w|N1〉 = μ′

i

]
≤ P

[∣∣〈vi|N1 ,w|N1〉 − 〈vi|N1 , y〉
∣∣≥ θ

]
= P

[∣∣〈vi|N1 ,w|N1〉 −E[〈vi|N1 ,w|N1〉]
∣∣≥ θ

]
.

Now, we can apply Hoeffding’s inequality (Lemma 2.7) to the random variables vijwj for j ∈N1,
whose sum is

∑
j∈N1 vijwj = 〈vi|N1 ,w|N1〉. Note that the random variables vijwj are independent

and bounded by −|vij| ≤ vijwj ≤ |vij| for each j ∈N1. Since we have ||vi|N1 ||2 = 1, we obtain

P

[∣∣〈vi|N1 ,w|N1〉 −E[〈vi|N1 ,w|N1〉]
∣∣≥ θ

]
≤ 2 · exp

(
− 2θ2∑

j∈N1 (2vij)
2

)

= 2 · exp
(

− 2θ2

4||vi|N1 ||22

)

= 2 · exp
(

−θ2

2

)
.
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Substituting in our choice of θ = (6 log n)1/2, we can deduce (recalling n≥ 2)

P

[
〈vi|N1 ,w|N1〉 = μ′

i

]
≤ 2 exp (−3 log n)= 2

n3
≤ 1

2n
.

�
On the other hand, by condition (3) in Proposition 3.1, for every i ∈K3, the vector vi|N1 has

at least 	10 log n
 magnitudes. Thus, by Lemma 2.3 applied to p ∈ [1/3, 2/3]N1 given by pj = (1+
yj)/2 for all j ∈N1, we have

P

[
〈vi,w〉 = μi

]
= P

[
〈vi|N1 ,w|N1〉 = μi − 〈vi|N2 , w̃〉

]
≤
(
2
3

)	10 log n/2

≤
(
2
3

)5 log n
≤ 1

n2
≤ 1

2n

for every i ∈K3. Together with Claim 4.2, we can take a union bound over all i ∈K2 ∪K3 and
obtain

P

[
〈vi,w〉 = μi for some i ∈K2 ∪K3

]
≤

∑
i∈K2∪K3

P

[
〈vi,w〉 = μi

]
≤ k · 1

2n
≤ n · 1

2n
= 1

2
,

recalling that k≤ n.
Thus, with probability at least 1/2, our random vertexw ∈ {±1}n satisfies 〈vi,w〉 �= μi for all i ∈

K2 ∪K3. Recalling that we always have 〈vi,w〉 �= μi for all i ∈K1, this means that with probability
at least 1/2, we have 〈vi,w〉 �= μi for all i ∈ [k]. Hence, there exists a vertex in w ∈ {±1}n such that
〈vi,w〉 �= μi for all i ∈ [k]. �

5. Decomposing the matrix
Finally, we prove Proposition 3.1.

Proof of Proposition 3.1.We decompose the matrix V using the following algorithm that starts
with all the column indices in N1. At any iteration of the algorithm, we have a partition [n]=
N1 �N2 of the column indices, and furthermore, the row indices i ∈ [k] are partitioned into three
types: being in K1, active, and inactive (defined later). Throughout the algorithm, we move certain
columns from N1 to N2. When the algorithm terminates, the desired partitions of the row and
column indices of the matrix will be formed by taking the sets K1, N1, and N2 at the end of the
algorithm, as well as taking K2 to be the active row indices and K3 to be the inactive row indices at
the end of the algorithm.

1. Initialise N1 = [n], N2 = ∅ and K1 = ∅.
2. For each i ∈ [k] \K1 such that vi|N1 is the all-zero vector, we move i into K1.
3. For each i ∈ [k] \K1, we say that i is inactive if the vector vi|N1 has at least 	10 log n


magnitudes; otherwise, we say that i is active.
4. For each active i ∈ [k] \K1 and each j ∈N1, we assign a weight wij to the entry vij of V as

follows: if vij = 0, define wij = 0. If vij �= 0, let m be the magnitude of vij, and let Nm(i) be
the number of entries of vi|N1 with magnitudem, and define wij = 10/

√
Nm(i).

5. For every j ∈N1, calculate the total weight
∑

i wij in column j, where the sum is taken
over all active i ∈ [k] \K1. If there exists some j ∈N1 where this total weight is larger than
(60 log n)−1/2, then move this index j fromN1 toN2 and remove all weights in column j (if
there exist multiple such j, choose one arbitrarily), and go to back to Step 2. If there is no
such index j ∈N1, go to Step 6.
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6. Terminate and output the current sets N1,N2,K1, output the current set of active row
indices as K2, and output the current set of inactive row indices as K3.

It is clear that this algorithmmust eventually terminate since in every iteration, a column index
is moved fromN1 toN2 (so the setN1 is getting strictly smaller with every iteration). It is also clear
that the algorithm produces a partition [k]=K1 �K2 �K3 of the row indices of V and a partition
[n]=N1 �N2 of the column indices. Furthermore, it is not hard to see that these partitions satisfy
conditions (1) and (3) in Proposition 3.1. Indeed, condition (1) is satisfied by the rule of moving
row indices into K1 in Step 2 of the algorithm, and condition (3) is satisfied by the definition of
inactive rows in Step 3.

To show condition (2) in Proposition 3.1, consider the |K2| × |N1| matrix V ′ obtained from
V[K2 ×N1] by normalising every row to have �2-norm equal to 1 (note that by the condition in
Step 2, all the rows of V[K2 ×N1] are non-zero). Let us write v′

i = (1/||vi|N1 ||2)vi|N1 for i ∈K2
for the rows of V ′. Now, for every entry vij �= 0 of V[K2 ×N1] with some magnitude m, we have
10m ≤ |vij| < 10m+1, and for each i ∈K2, there are Nm(i) such entries in vi|N1 . Thus, ||vi|N1 ||2 ≥√
Nm(i) · 10m for every magnitude m appearing among the entries of vi|N1 , and we can conclude

that

|v′
ij| =

|vij|
||vi|N1 ||2

<
10m+1

√
Nm(i) · 10m

= 10√
Nm(i)

=wij

for every entry vij �= 0 of V[K2 ×N1] with magnitude m. This shows that |v′
ij| ≤wij for all i ∈K2

and j ∈N1 (note that in the case vij = 0, we trivially have |v′
ij| = 0=wij).

Now, to check condition (2), observe that for every j ∈N1, we have
∑

i∈K2 wij ≤ (60 log n)−1/2

since otherwise the algorithm would not have terminated. Consequently, for every j ∈N1, we have∑
i∈K2 |v′

ij| ≤
∑

i∈K2 wij ≤ (60 log n)−1/2, meaning that the �1-norm of every column in V ′ is at
most (60 log n)−1/2.

It remains to show N1 �= ∅. Recall that at the start, we have N1 = [n], and in every iteration
of the algorithm, we move one index from N1 into N2. So we need to show that the number of
column indices moved into N2 throughout the algorithm is less than n. At every step, we consider
the total weight in the matrix. Whenever we move a column index from N1 into N2, this total
weight decreases by at least (60 log n)−1/2 (by the condition on the column weight in Step 5 of the
algorithm).

However, note after moving a column fromN1 toN2, when reassigning the weights in Step 3 in
the next iteration, some of the weights in the remaining columns with indices in N1 may increase
(indeed, the numbers Nm(i) may decrease by removing a column from N1). Furthermore, new
row indices may become active as the set N1 gets smaller throughout the algorithm (but note that
once a row index becomes active, it cannot become inactive anymore afterwards).

For every row index i ∈ [k] that becomes active at some point during the algorithm, and every
magnitude occurring among the entries of vi|N1 at the moment when the index i first becomes
active, let N∗

m(i) denote the number of entries of vi|N1 with magnitude m when the row index
i first becomes active. At that iteration of the algorithm, each of these N∗

m(i) entries is assigned
weight 10/

√
N∗
m(i). When a column index of some entry of vi|N1 with magnitude m gets moved

into N2 later in the algorithm, the quantity Nm(i) decreases, and so the weights of the remaining
entries of vi|N1 with magnitude m increase. More precisely, when this happens for the t-th time
(for t ∈ {1, . . . ,N∗

m(i)− 1}), the weight of theN∗
m(i)− t remaining entries of vi|N1 with magnitude

m is increased from 10/
√
N∗
m(i)− t + 1 to 10/

√
N∗
m(i)− t. Thus, the total weight that is added to

the entries with magnitude m in row i throughout the algorithm (both when row i first becomes
active and as the weights get re-assigned) is at most
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N∗
m(i) ·

10√
N∗
m(i)

+
N∗
m(i)−1∑
t=1

(
N∗
m(i)− t

) ( 10√
N∗
m(i)− t

− 10√
N∗
m(i)− t + 1

)

= 10
√
N∗
m(i)+ 10

N∗
m(i)−1∑
t=1

t
(

1√
t
− 1√

t + 1

)
= 10

√
N∗
m(i)+ 10

N∗
m(i)−1∑
t=1

t ·
√
t + 1− √

t√
t(t + 1)

≤ 10
√
N∗
m(i)+ 10

N∗
m(i)−1∑
t=1

(√
t + 1− √

t
)

≤ 10
√
N∗
m(i)+ 10

√
N∗
m(i)= 20

√
N∗
m(i)

for any row index i becoming active at some point during the algorithm and any m appearing as
magnitude among the entries of vi|N1 at the moment when the index i first becomes active.

For notational convenience, let S= 	10 log n
 − 1. Recall that when the row index i becomes
active, there are strictly less than 	10 log n
 (i.e., at most S) magnitudes appearing among the
entries of vi|N1 . For these at most S different magnitudes m, the numbers N∗

m(i) defined above
(counting the entries of vi|N1 of magnitudem when the row index i first becomes active) satisfy∑

m
N∗
m(i)= | supp (vi|N1 )| ≤ | supp (vi)| ≤ 2k,

where the last inequality holds by Lemma 2.4. Hence∑
m

20
√
Nm(i)= 20

∑
m

√
Nm(i)≤ 20 · √S ·

√∑
m

N∗
m(i)≤ 20 · √S · √2k≤ 30

√
kS

by the Cauchy–Schwarz inequality, so for every row, the total weight added to the entries through-
out the algorithm is at most 30

√
kS. Thus, the total weight increase for the entire k× n matrix V

throughout the algorithm is at most

k · 30√kS= 30k3/2
√
S≤ 30k3/2 · (10 log n)1/2.

Recall that whenever we move a column index from N1 into N2, the weight in the matrix V
decreases by at least (60 log n)−1/2. Therefore, at most

30k3/2 · (10 log n)1/2
(60 log n)−1/2 ≤ 750k3/2 · log n

column indices can be moved fromN1 intoN2. By our assumption k≤ 10−2 · n2/3/( log n)2/3, this
number of column indices moved from N1 into N2 is at most

750k3/2 · log n≤ 750 · 10−3 · n
log n

· log n< n.

Thus, we have N1 �= ∅ at the end of the algorithm, as desired. �
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