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Abstract

By analogy with the trace of an algebraic integer @ with conjugates a; = «@,...,ay, we define the
G-measure G(a) = Zle(la',-l + 1/|a;]) and the absolute G-measure g(a@) = G(a)/d. We establish an ana-
logue of the Schur—Siegel-Smyth trace problem for totally positive algebraic integers. Then we consider
the case where « has all its conjugates in a sector |argz| < 6, 0 < 6 < 90°. We compute the greatest lower
bound c(0) of the absolute G-measure of a, for @ belonging to 11 consecutive subintervals of ]0, 90[. This
phenomenon appears here for the first time, conforming to a conjecture of Rhin and Smyth on the nature
of the function c(6). All computations are done by the method of explicit auxiliary functions.

2020 Mathematics subject classification: primary 11R06; secondary 11C08, 11R80, 11Y40.
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1. Introduction

Let a be a nonzero algebraic integer of degree d > 1 with conjugates a; = ¢, ..., a,.

By analogy with the trace, Tr(a) = 2?21 a;, we define the G-measure of « by

d
G(a) = " (lail + 1/l
i=1

and the absolute G-measure of a by g(a) = G(a)/d. It is obvious that g(a) > 2, with
equality if and only if @ is a root of unity. Indeed, if g(a) = 2, then |a;| =1 for
i=1,...,d. By Kronecker’s theorem, we deduce that « is a root of unity.

The absolute trace of « is tr(a) = Tr(a)/d. The Schur-Siegel-Smyth trace problem
is formulated as follows: fix p < 2 and show that all but finitely many totally positive
algebraic integers a have tr(a) > p. This problem were studied by Schur [13], Siegel
[14] and Smyth [15]. In 2016, we solved it for p < 1.792812 [5]. Recently, in 2021,
Wang et al. solved it for 1.793145 [17]. On the other hand, Serre [1] showed that the
method of explicit auxiliary functions used in all attacks on the problem since [15]
does not give such an inequality for any p larger than 1.8983021.... Therefore, this
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228 V. Flammang 2]

method cannot be used to prove that 2 is the smallest limit point of the set of numbers
{tr(@) : « is a totally positive algebraic integer}.

The aim of this paper is to search for the supremum, say s, of all p > 0 such that
all but finitely many totally positive algebraic numbers satisfy g(a) > p. The following
theorem, using the algebraic numbers 3, defined by Smyth [15], proves that s < 4.

THEOREM 1.1. Let B2 be a totally positive algebraic integer of degree 2", defined by
Bo=1 Br=FBua+Bi -2
Then lim,_, . g(8%) = 4.

Let G = {g(a) : « is a totally positive algebraic integer}. Theorem 1.1 shows that 4
is a limit point of this set. Thus, the analogue of the Schur-Siegel-Smyth trace problem
for the G-measure is: fix p <4 and prove that all but finitely many totally positive
algebraic numbers satisfy g(a) > p. The following theorem solves the problem for p <
3.024561.

THEOREM 1.2. If a is a nonzero totally positive algebraic integer whose minimal
polynomial is different from x — 1, x =2, B=3x+1, xX2—4x+2, x> —5x+5, ¥ -
62 +9x =3, ¥ =72+ 14x =17, x* =9 +27x2 = 31x + 11 and x° — 13x° + 64x* —
151x° + 177x% — 96x + 19, then g(a) > 3.024561. Moreover, the first five points of G

are:
2 =glx—-1),
2.5 =gx-2),
2.954545 = g(x* — 9x® + 27x* = 3lx + 11),
3 =g(x®=3x+1)=g(x* —4x+2)=g(x> - 5x+95)

=g —6x2+9x-3)=g(x> = Tx* + 14x = 7),
3.008771 = g(x% — 13x° + 64x* — 151x> + 177x% — 96x + 19).

From now on, we consider a nonzero algebraic integer @, not a root of unity,
all of whose conjugates lie in a sector Sy = {z € C : |argz| < 6}, 0 < 0 < 90. We first
recall a result of Langevin [10] on the Mahler measure M: there is a function c(6)
on [0, 180°), always greater than 1, such that if all the conjugates of « lie in Sy, then
M(a)'? > ¢(#) where d denotes the degree of «. In 1995, Rhin and Smyth [11] were the
first to make this result effective. More precisely, they succeeded in finding the exact
value of ¢(6) for 6 in nine subintervals of [0, 120°]. They used the method of explicit
auxiliary functions with polynomials found by heuristic search. They conjectured that
c(6) is a ‘staircase’ decreasing function of 6, which is constant except for finitely
many left discontinuities in any closed subinterval of [0, 180°). In 2004, thanks to
Wu’s algorithm [18], Rhin and Wu [12] gave the exact value of c(6) for four new
subintervals of [0, 140°] and extended four existing subintervals. In 2013, the author
and Rhin [9] found for the first time a complete subinterval and a 14th subinterval. A
complete subinterval is an interval on which the function c(6) describing the minimum
on the sector |argz| < @ is constant, with jump discontinuities at each end. These
improvements came from our recursive algorithm, based on Wu’s algorithm but where
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TABLE 1. Intervals where c(6) is known exactly.

i c(0) 0; 0 P;

1 2.5 0 22386177 x-2

2 2489363  22.386177  24.841669 4 -7 + 19x2 - 23x + 11

3 2469953  24.841669  25.472522 0 —0x5 +3dut — 67x% + 73x% — 42x + 11

4 2.418970  25.472522 30 4 — 603 + 1402 — 14x + 6

5 2.309401 30 36.243112 2 -3x+3

6 2281940  36.243112  44.837281 4583 + 12 - 1x +5

7 2263377  44.837281 45309984  x'0 — 10x” + 50x® — 156x7 + 334x® — 509x° + 560x* — 439x + 236x> — 79x + 13
8 2221900  45.309984  65.737119 —4 + 832 - Tx +3

9

—_
(=}

2174972 68.598457  84.537478 =3 +8x* — 106 + 116 = 5x + 3

4
2.191644  65.737119  68.598457 420 + 502 - 3x+3

6
2.159893  84.537478 86.24 T =230 + 72 — 10x* + 13x° — 132 + 6x — 4

—
jary

the polynomials are found by induction. We applied this method to measures such as
the trace [2], the length [3] and the house [4], as well as to unusual measures (see
[6-8]). Here we prove the following result.

THEOREM 1.3. There exist a left discontinuous, strictly positive, staircase function h
on [0,90°) and a positive, continuous, monotonically decreasing function f on [0, 90°)
such that

min(f(6), h(0)) < c(6) < h(o).
Moreover, the exact value of c(0) is known on 11 subintervals of [0, 90°).

The function A(6) is the smallest value of g(«) that could be found for @ having
all its conjugates in |arg z| < 6. The function f(6) is given by f(6) = max<i<11(f;(0)),
where the functions f;(0) are defined by

i) = min 14+ 72 - 3 eylog 062N

12 1)</
Table 1 summarises our results. One can read off the 11 intervals [6;, 6';) where f(6) >
g(0) so that c(0) = h(0) = h(6;) for 6 in these intervals. Also c(6) = c(6;) = g(P;). The
real numbers c;; and the polynomials Qj; are given in Table 3.

What is remarkable here and appears for the first time is that we are able to
find complete and consecutive subintervals from O to 86.24°. This supports the
Rhin—Smyth conjecture that c(d) is a ‘staircase’ decreasing function of 6, which
is constant except for finitely many left discontinuities in any closed subinterval
of [0, 90°).

2. Proof of Theorem 1.1

The sequence of totally positive algebraic integers (52),9 is defined by

By=1 fa=po, +B5 -2
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By induction, we can easily prove that
Tr(B>) = 2" — 1.
On the other hand,

on 2n—l 2n—]
G =D Br+BD =2 Bri+BD=2) (Bry;+2)
i=1 i=1 i=1
=2Tr(B,_, )+ 2" =22 - )+ 2" =272 -,

Therefore, g(ﬁﬁ) =4 — 27" This proves Theorem 1.1.

3. Proof of Theorem 1.2

3.1. The principle of auxiliary functions. The auxiliary function involved in the
study of the G-measure is

1
fX)=x+-- cilog|Qi(x)| forx >0,
P 1;1 j j

where the ¢; are positive real numbers and the polynomials Q; are nonzero polynomials
in Z[x].

Let m denote the minimum of the function f and P the minimal polynomial of @. If
P does not divide any Q;, then

d
D f@) = md,
i=1
that is,

Gl@) = md+ )" ¢jlog

1sj</

d
[ ] @)
i=1

Since P is monic and does not divide any Q;, it follows that Hle Qj(«;) is a nonzero
integer because it is the resultant of P and Q;. Hence, if « is not a root of Q;, then

g(@) = m.

REMARK 3.1. In order to ensure a better convergence in our program with Pascal, we
have reduced the size of the coefficients of the polynomials involved in the auxiliary
function by working on [—1, o). Thus, the auxiliary function becomes

1
f@) =x 14— = I;J ¢;log|Q;(x)| forx > —1, 3.1)

where the polynomials Q; and the real numbers c; are given in Table 2.
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TABLE 2. Coefficients and polynomials involved in Theorem 1.2.

¢j 0;(x)

0.5872584799 x

0.3240774699 x—1

0.04301779133 x—=2

0.02489357462 P-x-1

0.06118017624 2 -2x—1

0.02597132015 2 _3x+1

0.02056091724 332 +1

0.01042864328 3402 +3x+1

0.008913963067 A e A Tl |

0.005057484791 o5 s 20— 1

0.04610960921 453+ 6 - 1

0.003516260097 STt 415080 -9 —2x+ 1

0.01648697997 O — T + 14x* — 53 — 7o + 2 + 1

0.0003993670660 X0 = 7x0 + 15x* — 67 —9x% + 2x + 1

0.004172742794 X0 =700 + 15x* — 8x° — 627 + 3x + 1

0.0001188583080 200 — 1 + 170t = 20% =92 +x+ 1

0.004874387122 X7 = 8x0 + 220 = 22x* — 3 + 11x% —x = |

0.0002150795560 T 9x0 4 27x5 = 28x* =} + 1> —x— 1

0.0008555104000 T —9x0 4+ 27x° —20x* + 13x2 —x - 1

0.001587985433 8~ 1007 + 36x0 — 53x° + 17x* +25x° — 1322 = 3x + 1

0.001364196657 8 — 10x7 +36x° — 540% + 220 + 18x% — 116 = 2x + 1

0.003483780418 8 1007 + 36x° — 55x° +26x* + 1403 — 1247 + 1

0.004752996662 X8 = 1047 + 37x% — 59x° + 29x* + 17x3 — 140 —x + 1

0.0007175262240 X0 = 1157 + 45x% — 79x7 + 34x° + 62x° — 60x* — 817 + 1652 — 1

0.0005260961560 X0 =120 + 54x% — 10827 + 72x° + 50x° — 69x* — 617 + 1682 — 1

0.005738782521 X0 = 1207 + 55x% — 116x7 + 94x° + 30x° — 77x* + 10x° + 17x% = 2x — 1

0.0001911119380 X0 = 1207 +55x% — 117x7 +99x6 +23x° — 76x* + 120 + 17x% — 2x — |

0.002928853691 = 13010 4+ 6707 — 1704 + 202x7 — 43x° — 124x° + 78x* + 21x° — 1822 —x + 1

0.0007971698040 2x! = 24x10 + 113x% — 257x% + 259x7 — 8x0 — 178x° + 82x* + 30x° — 200 — x + 1

0.0004529337020 X2 = 15x" 4+ 91x'0 - 283x% + 459x% — 302x7 — 115x° + 252x° — 55x* — 5153 + 17x% +3x - 1

0.002607019825 X2 = 1521 +91x10 — 2837 + 460x% — 308x7 — 105x° + 252x° — 66x* — 46x7 + 19x% + 2x — 1

0.00005528121 X3 = 15x12 +90x!" — 269x'0 + 383x — 102x% — 362x7 + 322x% + 70x° — 139x* +4x> + 21x% —x - 1

0.001180256932 X3 = 17x!2 + 121" - 465x10 + 1027x7 — 1239x% + 558x7 + 365x0 — 477x° + 66x* + 84x° — 2242
—4x+1

0.001337485201 = 17x8 4+ 12002 — 450x!" + 936x'0 — 954x% + 80x® + 733x7 — 460x° — 142x° + 166x* + 7x°
-2222 +1

0.003168622821 = 17x + 12002 — 451x" + 946x'0 — 991x° + 137x% + 72047 — 517x° — 99x° + 181x* — 11x°
—23x2 +2x + 1

0.0003609579220 = 17x" 4+ 120x"2 — 451x" +946x'0 — 991x° + 13923 + 707x7 — 489x° — 118x° + 174x* — x°
- 232 +x+1

0.001958131607 = 17x + 12002 — 451x" +946x'0 — 9927 + 145x% + 697x7 — 491x° — 101x° + 165x* — 4x°
202 +x+1

0.0003505691830 = 17x 4+ 12002 — 451x" +946x'0 — 9927 + 146x% + 691x7 — 479x° — 109x° + 164x* — 2x3
202 +x+1

0.001990883626 x5 = 19xM + 154x — 691x'2 + 1849x" — 2895x10 + 2177x% + 304x® — 1783x7 + 870x° + 308x°
—304x* +33x% —2x— 1

0.0004854896110 x5 = 19xM + 154x3 — 691x'2 + 1850x"" — 2906x'0 + 2225x% + 200x% — 1674x7 + 841x° + 267x°
= 272x* = 2x3 +290% —x - 1

0.0008248955840 x5 = 19xM + 154x — 691x'2 + 1850x"" — 2906x'0 + 2225x° + 201x® — 1681x7 + 859x° + 248x°
—268x* +3x3 + 2702 —x — 1

0.0007192476320 x10 = 20x" + 172x™ — 828x'3 + 2419x'2 — 4280x"" + 4057x'0 — 692x” — 2501x% + 2099x7 + 21x°
—653x% + 160x* + 73x3 — 25x% - 3x + 1

0.0001696531250 x'7 = 21x'0 + 191x"5 — 980x™ + 3078x"3 — 5915x'2 + 6186x"" — 1333x'0 — 4347x" + 40924 + 15617
—1628x° + 315x° + 286x* — 60x — 26x% + 3x + 1

0.0001190382390 X' = 22x17 4+ 210x'0 — 1136x"5 + 3796x™ — 7906x" + 9420x'? — 3717x"" — 5344x'0 + 7327x°
—1313x% — 2764x7 + 1357x° + 398x° — 318x* — 194 + 30x% — 1

0.0001056112650 X' = 22x17 4+ 212010 — 1171x" + 4059x™* — 9010x"3 + 12222x'2 — 7984x!" — 1986x"0 + 7192x°

—3354x% — 1452x7 + 1485x° + 37x° = 267x* + 1o +25x —x - 1
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TABLE 3. The polynomials Q; and their coefficients ¢; involved in the functions f;, 1 <i < 11.

fi G 0
0.73888608 x—1
0.39043052 x=2
0.04192943 X2 =3x+3
0.02267925 X —4x+5
0.01211818 X =73 + 1952 - 23x + 11
0.00944891 X —9x* +33x3 — 60x% + 53x — 17
i3 ¢ 0;
0.70761747 x—1
0.14194593 2 -3x+3
0.05040292 X2 —4x+5
0.02205576 X =70 + 1952 = 23x + 11
0.01262594 X = 9x* +33x% — 60x% + 53x — 17
0.00061889 X0 —0x% +34x* — 672 + 73x% —42x + 11
f ¢ 9
0.70892626 x—1
0.13697112 X =3x+3
0.05619086 2 —4x+5
0.02480448 X =70 + 1952 = 23x + 11
0.01617321 X0 —0x% +34x* — 67x% + 73x% — 42x + 11
fa ¢ 9
0.76705405 x—1
0.11120526 2 _3x+3
0.05427695 2 _4x+5
0.01410761 4603 + 14x% — 14x + 6
0.03158715 X =78 + 1952 = 23x + 11
/5 ¢ 9
0.69764717 x-1
0.17276632 2 -3x+3
0.04309305 X =50 + 112 = 11x +5
fe ¢ 9
0.00218431 x—1
0.16574248 2_2x+2
0.01192929 433 4507 —3x+ 1
0.10100115 Y43+ 82 -Tx+3
0.00778105 453 + 112 - 11x + 5
0.05789443 0 _ 6x% 4+ 18x* — 29x3 + 2832 — 15x + 4
0.00331505 8 _ 8x7 +32x0 — 76x° + 117x* — 1173 + 75x* = 28x + 5
0.00174856 8 —0x7 + 40x° — 105x° + 178x* — 196x> + 139x% — 58x + 12
0.00052318 2% — 98 +40x7 — 106x° + 184x5 — 212x* + 162x° — 772 + 21x -2
0.00385077 x10 = 11x% + 60x% — 203x7 + 467x°0 — 756x° + 872x* — 708x> + 391x% — 134x + 23

Continued
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TABLE 3. Continued

fr 9] 0
0.00095472 x—1
0.16770496 2_2x+2
0.01122625 433 452 —3x + 1
0.10056818 443 + 82— Tx+3
0.05757477 0 _ 6x% + 18x* — 20x% +28x% — 15x + 4
0.00232352 8 _ 8x7 +32x0 — 76x° + 117x* — 1173 + 75x* = 28x + 5
0.00009956 8 — Ox7 + 40x° — 105x° + 178x* — 196x> + 13922 — 58x + 12
0.00083995 X% — 98 +40x7 — 106x° + 184x5 — 212x* + 162x° — 772 + 21x -2
0.00696407 x10 =100 + 50x% — 15617 + 334x° — 509x° + 560x* — 439x> + 236x% — 79x + 13
0.00644360 x10 — 11x% + 60x% — 203x7 + 467x° — 756x° + 872x* — 708x> + 391x% — 134x + 23
fs ¢ 0
0.00008104 x—1
0.17595994 2 -x+1
0.09680963 X-x+2
0.01972259 -2 v 42 -2+ 1
0.01270024 423 +5x%2 - 3x+3
0.00173352 433 +ox —6x+3
0.00051087 43 + 82 —Tx+3
fo 9] 0
0.00275034 x—1
0.17257924 Z-x+1
0.11909230 2-x+2
0.02008775 X =20 +5x2 - 3x+2
0.01275003 X =20 +5x2 = 3x+3
0.00458509 X -2 +5° 4 +4x -1
0.00544333 A0 =300 +8x* — 103 + 11x2 - 5x + 3
fio ¢ 0;
0.00000904 x—1
0.00001815 2-x+1
0.11538720 2+l
0.04577509 X-xr+2x—1
0.05422539 x4 —2x+3
0.01954309 XX +6x* -4 + 102 —3x+4
0.00063457 0 _3x5 4+ 8x* — 1007 + 11x2 —5x + 3
0.00419345 T 2x0 4+ 7% — 10x* + 13x° — 13x2 + 6x — 4
fin ¢ 0;
0.00072540 x—1
0.00209131 X-x+1
0.13468134 2+
0.04432202 B+ 2x-1
0.07117836 -4 -2x+3
0.00041641 X =200 + 75 — 10x* + 13x% — 13x%2 + 6x — 4
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3.2. Auxiliary functions and generalised integer transfinite diameter. This and
the following sections reproduce the corresponding sections of [5].
Let K be a compact subset of C. The transfinite diameter of K is defined by
«K) = liminf _inf |P|'/",
&) T PEI(IC}[X] Pl x
n—00 P monic
deg(P)=n
where |Plo x = sup,cx [P(z)| for P € C[X]. The integer transfinite diameter of K is
defined by
tz(K) = liminf _inf |P|\/%.
n>1 PeZ|X]
n—=00  deg(P)=n
Finally, if ¢ is a positive function defined on K, the ¢-generalised integer transfinite
diameter of K is defined by

tz(K) = lim inf me sup (|P2)|""¢(z)).

cK
”—"X’ deg(P)=n :

In the auxiliary function (3.1), we replace the coefficients ¢; by rational numbers a;/q
where g is a positive integer such that gc; is an integer for 1 < j < J. Then, for x > -1,

1 t
S =x+1+ i1 log |Q(x)] > m, (3.2)
r
where Q = HJ I Q“f € Z[X] is of degree r = Zle ajdegQjandt = J_l c¢jdeg Q; (this
formulation was mtroduced by Serre). Thus we seek a polynomial Q € Z[X] such that
Sup |Q(x)|t/re—(x+l+]/(x+l)) S e—m'
x>—1
If we suppose that ¢ is fixed, this is equivalent to finding an effective upper bound
for the weighted integer transfinite diameter over the interval [—1, co[ with the weight
@o(x) = e~ CHIHIE+D) hat i,

tz,4([—1,00)) = 11m1nf Plnf sup (JPOOI (x)).

i
3o deg(P)= J x>=

Even though we have replaced the compact set K by the infinite interval [—1, co[, the
weight ¢ ensures that the quantity #7 ,([~1, 00)) is finite.

3.3. Construction of an auxiliary function. The main point is to find a set
of ‘good’ polynomials Q; to give the best possible value for m. Until 2003, the
polynomials were found heuristically. In 2003, Wu [18] developed an algorithm
that allows a systematic search for ‘good’ polynomials. For an auxiliary function as
defined by (3.1), we fix a set Ey of control points, uniformly distributed on the real
interval I = [—1,A] where A is ‘sufficiently large’. Using the LLL algorithm, we find a
polynomial Q small on Ej in terms of the quadratic norm. We test this polynomial in
the auxiliary function and keep only the factors of Q which have a nonzero exponent.
The convergence of this new function gives local minima that we add to the set of
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points Ej to get a new set of control points £;. We use the LLL algorithm again with
the set £ and the process is repeated.

In 2006, we made two improvements to Wu’s algorithm in the use of the LLL
algorithm. The first is, at each step, to take into account not only the new control
points but also the new polynomials of the best auxiliary function. The second is the
introduction of a corrective coefficient . The idea is to get good polynomials Q; by
induction. Thus, we call this algorithm the recursive algorithm. The first step is the
optimisation of the auxiliary function fj =x+ 1+ 1/(x+ 1) —tlogx. We take t = ¢
where c; gives the best function f;. We suppose that we have some polynomials Qj,
>, ..., Oy and a function f as good as possible for this set of polynomials in the form
(3.2). We seek a polynomial R € Z[x] of degree k such that

Sup |Q(X)R(x)|t/(r+k)e7(x+] +1 /(x+ 1)) S efm

xel

where Q = H,,!:l Q;. We want the quantity

(—(x+ 1+1/(x+ 1))(r+k))

sup |[Q(x)R(x)| exp p

xel

to be as small as possible. We apply the LLL algorithm to the linear forms
i+ 1+1/(x + 1))(r+k))
. .

0GR exp

The x; are control points uniformly distributed on the interval / to which we have added
points where f has local minima. Thus we find a polynomial R whose irreducible
factors R; are good candidates to enlarge the set {Q1, ..., Q;}. We only keep the factors
R; that have a nonzero coefficient in the newly optimised auxiliary function f. After
optimisation, some of the previous polynomials Q; may have a zero exponent and so
are removed.

We applied this recursive algorithm for £ = deg R running from 4 to 25. We stop
there because at that point the minimum m only varies in the fifth decimal place.

3.4. Optimization of the ¢;. We have to solve a problem of the following form: find

max min f(x, C

C  xeX f&©)

where f(x, C) is a linear form with respect to C = (cg, ¢y, .. ., ) (co is the coefficient
of x and is equal to 1), X is a compact domain of C and the maximum is taken over
¢j>0for j=0,...,k A classical solution involves taking very many control points
(x;)1<i<nv and solving the standard problem of linear programming:

max min f(x;, C).
c 15,‘st( »C)

The result then depends on the choice of the control points.
The idea of semi-infinite linear programming (introduced into number theory by
Smyth [16]) involves repeating the previous process, adding new control points at each
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step and verifying that this process converges to m, the value of the linear form for an
optimum choice of C. The algorithm is as follows.

(1) Choose an initial value C? for C and calculate my{, = mineex f(x, Y.
(2) Choose a finite set X of control points belonging to X and set

mg < m < mgy = min f(x, Y.
xeXo

(3) Add to X, the points where f(x, C°) has local minima to get a new set X; of control
points.

(4) Solve the usual linear programming problem maxc min,ey, f(x, C). We get a new
value for C denoted by C' and a result from the linear programming problem
equal to m| = min,ex f(x, C 1. Then

~ !
m{)Sm’ISmSm1=1)g(r]1f(x,C)$m0.

(5) Repeat steps 24, giving two sequences (m;) and (m;) which satisfy
my<my <o <mp <m<m; < --- <my < my.

We stop when there is a good enough convergence, for example when m; — m; < 1079,
If p iterations are sufficient then we take m = m),.
4. Proof of Theorem 1.3

We assume that « is an algebraic integer all of whose conjugates a; = «, ..., @y lie
in Sy. The auxiliary functions f;, 1 <i < 11, are of the form

fiy=ld+1/ld= > cjloglQy@)| forallz € S,

Igj</

where the coefficients c; are positive real numbers and the polynomials Q;; are nonzero
in Z[z].

Since the function f; is invariant under complex conjugation, we can limit ourselves
to 0 < argz < 0. Moreover, the function f; is harmonic outside the union of arbitrary
small discs around the roots of the polynomials Q;, so the minimum is taken on the
upper edge of Sy where z = xe’ with x > 0.

The auxiliary function on the half line Ry = {z € C,z = xe",x > 0} is

f@=x+1/x= ) ¢jloglQi()l.
1<)
We proceed as in the Section 3.3. For several values of k, we search for a polynomial
R(z) = Yk, a7 € Z[z] such that

(—(x + 1/x)(r + k))

sup |Q(2)R(z)| exp ;

x>0

is as small as possible. But, here, R(z) is not a real linear form in the unknown
coefficients a;. So, we replace it by its real part and its imaginary part. Then, we apply
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LLL to the two linear forms

—(x, + 1/x,)(r + k))
p ,

10z Re(R(z) - exp

—(x, + 1/x,)(r + k))

0G| Im(Rez) - exp t

where z, = x,¢". The x, are suitable control points in [0, 50], including the points
where f; has its least local minima. Then we proceed as described above.
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