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Introduction. In a paper entitled " On differentiating a Matrix"1

H. W. Turnbull deduced some interesting and elegant results by the
use of a matrix operator D, a matrix whose elements were the partial
differential operators with respect to the elements of a square matrix
X. Throughout the present paper the differential operator D. is
used, or rather a matrix operator, which is the product of Q and
another square matrix Y.

By means of this operator in §§ 1 and 2 Bazin's2 matrix and
Reiss's matrix are considered from the standpoint of matrices as
distinct from that of determinants. Reiss's matrix is shown to be a
constant times a compound of Bazin's matrix; and the latent roots
of Reiss's matrix are immediately determined in terms of the latent
roots of Bazin's matrix. From this result a theorem, discovered by
Deruyts, is deduced as well as a more general theorem.

In § 3 a series of matrices intimately connected with Bazin's
matrix is considered; and in § 4 the connection between this paper
and Turnbull's is clearly shown.

§ 1. Bazin's Matrix. Let I b e a matrix whose transposed8

X'=[xJ] (i,j = 1,2, n) (1)

is an n-rowed square matrix, whose elements x£ are n2 independent
variables. We may also write

X'=[x1x2 x"], (2)

1 H. W. Turnbull, "On Differentiating a Matrix," Proc. Edin. Math. Soc., Ser. 2,
Vol. 1, Part 2, pp. 111-128 (1928). This paper will be referred to as Turnbull's paper.

2 On Bazin (1851) see Muir, "Theory of Determinants" II, 206-208, and on R«iss
<1867) see Muir, III, 181, 189, and also on Picquet, see III, 198-199, and on Deruyts,
IV, 15. The work of these authors was purely determinantal.

3 We define the matrix X' instead of the matrix X for convenience ; in particular it
conforms more closely with the notation of Turnbull's paper, which has already been
cited.
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where # denotes the n-rowed matrix of one column, whose element in
the ith row is xj. We denote the determinant of the matrix X by
the notation

| Z | = | J ' | = (*'*»....*»). (3)
If Y is the n-rowed square matrix whose transposed is

r ' = [y/] = [y1 f .. yn] (i, j = l, 2, .. n), (4)
where ]f is a column matrix similar to x>, then Bazin's matrix is the
matrix M = [mj] defined by

m^={x1xi x>-1yixj+1 xn). (5)

In other words the element in the ith row and jth column of Bazin's
matrix is the determinant of the matrix obtained by replacing the jth
column of X' by the ith column of Y'. In particular, if n = 4, 'M is
the matrix

(yl z2 x3 x4) (x^ylx3x4) (a;1 x2 y1 x4) (x1 x* x3 yl)

{xlysx3x4) (xlx2ysx4) (x1 x2 x3 y3)
(y4x2x3x4) (xly4x3x4) (x^xiy4x4) {x^x^x^y4)

If now Q is the matrix1 composed of the partial differential
operators with respect to xj, that is if

*-[£!• <6>
then by actual multiplication

YC1\X\ = M, (7)
for the element in the ith row and jth. column of the matrix
YCl\X\ is

y . ' ± | I | = Wby (5)2.
Similarly

XQ.\X\ = \X\E, (8)
where E is the unit matrix. If X is non-singular,3 from (7) and (8)
we have the result

YX-lA = M, where A = | X | . (9)

1 Turnbull. Loc. tit., page 112.
* Throughout this paper repeated Greek suffixes will denote summation from 1 to n.
3 Throughout this paper we shall take the matrices X and Y to be non-singular.

If A = 0, the matrix X"1 A in (9) must be replaced by the adjugate matrix of X.
* Bazin. Loc. cit., page 148.
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Taking the determinants of both sides of the matrix equation (9), we
have Bazin's theorem4

\M\ = \ Y\\X\"-\

The result (9) is greatly simplified if Y = Xr, where r is an integer,
and becomes

M = AXr~K (11)

Again if N is the matrix obtained from M by interchanging the
roles of the matrices X and Y, the result corresponding to (9) is

XY-1\Y\ = N. (12)

Hence, by multiplying (9) and (12)

MN = \X\\Y\E,

m m -
In other words M/\X\ and N/\Y\ are reciprocal matrices. But, if
A and B are reciprocal matrices, each minor of order m that can be
formed from the matrix A is proportional to the corresponding comple-
mentary minor of the matrix B' (the transposed of B), the ratio being
the determinant of A. If we use (A)m and (B')n.m to denote two
such complementary minors we have

(A)m = (B')7l_m\A\,

and applying this formula to the reciprocal matrices M /1X | and
N11Y | we derive the result

-{N')n_Vi\Y\ \X\-\

or (M)m=(N')n_m\X\™-i\YT+*-\ (14)

This final result is due to Reiss.1

The matrix
Q= Y'(X')-*\X\ (15)

is a matrix similar to the matrix M except that the elements of Q are
obtained as the determinants of matrices formed by replacing the
rows of the matrix X' by the rows of the matrix Y'.

1 M. Reiss. Loc. dt. It is important to notice that the relationship given by (14)
holds between a minor of M and the complementary minor of N'. This fact is not made
clear in the statement of the theorem ,in Turnbull's "Determinants, Matrices, and
Invariants," page 109.
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Theorem 1. The matrices Q and M have the same latent roots.

If A and B are two w-rowed square matrices of which B is non-
singular, the matrices AB and BA are connected by a similarity
transformation AB = B~l(BA) B, and therefore have the same latent
roots. But the latent roots of a matrix are also the same as the
latent roots of its transposed, and accordingly AB has the same
latent roots as B'A', and therefore as A'B'. If A = Y and
B — X~l\ X |, the latent roots of YX~1\ X | are the same as those of
Y' (X'1)' | X |, and this proves our theorem.

Corollary. If the matrices Y and X are permutable, that is if XY = YX,
then the matrix Q is the transposed of the matrix M. For,

M'= (yjr-1|x|)'= \x\(x-^y Y'=\x\ Y'IX-^'^Q.

§ 2. Beiss's Matrix. The square matrix of order ( ), whose

elements in any one row are the determinants of the matrices
obtained by replacing all sets of r columns of X' by a definite set of
r columns of Y' and whose elements in any one column are the
determinants of the matrices obtained by replacing one set of r

/n\
columns of X' by the ( j sets of r columns of Y' in turn, is called

Reiss's Matrix. We shall denote this matrix by Br. For example,
if n = 4 and r = 2, the leading diagonal of R2 is

In particular if r = 1, Reiss's matrix reduces to Bazin's matrix.

can be formed, whose elements are the ( ) ( j determinants of order r

that can be formed from the original matrix. If the elements of this

new matrix occurring in any row are the ( ) determinants, that can

be formed from a definite set of r rows of the original matrix, and if
/n\the elements of any column are the ( ) determinants, that can be

formed from a definite set of r columns of the original matrix, this
new matrix is called the rth compound matrix of the original matrix
or more shortly the rth compound.
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Theorem 2. The rth compound of Bazin's matrix M is Beiss's matrix
Br, multiplied by the r-lth power of the determinant of X1.

If Mr, Xr, Yr denote the rth compounds of M, X, and Y respec-
tively, we wish to prove that

Mr = Ar-1Br. (16)

By actual multiplication, or else by repeating the steps in the deriva-
tion of (9), with X and Y replaced by Xr and Yr respectively and Q,
by a differential matrix whose elements are the partial differential
operators with respect to the elements of Xr', it can be shown that

YrXr-i\X\ = Br. (17)

But by the theorem, that the rth compound of the product of two
matrices is the product of the rth compounds of the two matrices2

YrXr-
1\X\r = Mr. (18)

The formula (16) follows immediately from (17) and (18) and the
theorem is proved.

Corollary. \Br\ = \X \k\Y \>, (19)

(» ~ *) , . = (» = J)
For, by Jacobi's ratio theorem,

\Mr\ = \M\; • (20)
and by (16)

where * = (» ~ *) , . = (» = J).

\Br\ = \Mr\\X\*, p=(l-r)Q). (21)

The result (19), known as Reiss's theorem,1 follows at once from (10),
(20), and (21).

If now Sr denotes the matrix obtained from Br by interchanging
the roles of the matrices X and Y, the result corresponding to (16) is

Nr = \T\r-18r^®r-1Sr, where ®=\Y\ (22)

and where Nr denotes the rth compound of N. But by (13)

Mr&-rNr@-r=E,

or by (16) and (22)

Br^SrQ-1^!!, (23)

1 The elements of the two matrices Rr and Mr must naturally correspond ; i.e. if an
element of Rr is the determinant of the matrix obtained by replacing the columns
kly kr of X' by the columns s1; , sr of Y', then the corresponding element of
Mr is the r-rowed minor of M formed from the rows slt sr and the columns
kx, , kr of M.

2 E. Pascal, "Repertorium der hd'heren Mathematik," I, Analysis, page 139.
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and Rr A"1 and SrQ~l are reciprocal matrices. Accordingly any
m-rowed minor of i?rA

-1 is proportional to the corresponding com-
plementary minor in Sr' 0 ~'. But an m-rowed minor of Rr A "1 is
A~m times the corresponding minor of Rr. Hence any ?n-rowed minor
of Rr is equal to q times the corresponding complementary minor in
Sr', where

q — | RT A"1! Am 0m-^r' '.

But \RrA.-l\ = \Rr\A'^r',
and hence

q = A* 0(,
where by (19)

(n — 1
r

n — l\ (n—\
r

This final result is also due to Reiss,1 but again it is worthy of
notice that this relationship exists between complementary minors of
Rr and Sr', the transposed of Sr.

Theorem 3. / / the latent roots of M are Xu A2, , An, the latent roots

(

of Rr are the ( j products

A}-rW \(h, i-2 , t r = 1, 2, 3, , n).
This theorem is a direct consequence of theorem 2 and Hado's
theorem, namely that the latent roots of the rth compound of a

matrix are the ( J products of the latent roots of the original matrix

taken r at a time.2

Since by theorem 1 the matrices M and Q have the same latent
roots, we have as an immediate result the corollary: The latent roots
of Reiss's matrix Tr, where TT — Al'rQr and Qr is the rth compound of Q,
are the same as those of Rr.

From this corollary we may deduce the theorem due to Deruyts3

that the sum of the f ) determinants obtained by replacing r columns

of the square matrix X' by the corresponding r columns of the matrix

XM. Reiss. Loc. cit. This first theorem is sometimes known as Picquet's theorem.
See Muir, "Theory of Determinants," "Vol. I l l , page 198.

2Muir, "Theory of Determinants," TV, 215-217.
3 Of. Muir, IV, 15.
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Y' in every possible way, is equal to the sum of the I ) determinants

obtained by replacing r rows of the matrix X' by the corresponding
r rows of the matrix Y' in every possible way. For the first sum is
simply the spur or trace of R,., that is the sum of the elements in the
leading diagonal of Rr; and the second sum is the spur of Sr. But
the spur of a matrix is equal to minus the sum of the latent roots of
the matrix; and as Rr and Sr have the same latent roots, their spurs
are equal. Moreover the sum of the m-rowed principal minors of
TT is equal to the sum of the m-rowed principal minors of Rr, for
each sum is equal to plus or minus the elementary symmetric function
of order m of the latent roots of Rr. This leads to a more general
theorem of which Deruyt's is a special case.

Theorem 4. Let Yu Y2, . . . . , Ym represent m distinct sets of r
columns of Y' and X\, X% , Xm the corresponding m sets of r
columns of X' and let a determinant of order m be formed whose element
in the ith row and jih column is the determinant of the matrix obtained by
substituting Y{ for Xj in the matrix X'. Since m distinct sets of r columns

of Y' can be chosen in ( ) ways, where L — (n\ there are ( \ such
\mj \rj \mj

determinants. The sum of these ( J determinants is equal to the corre-

sponding sum of the ( \ determinants obtained by a similar process

applied to the rows, instead of the columns, of the matrices X' and Y'.

§ 3. Further Results. We shall now consider the effect of
operating with the matrices X Q. and Y Q on the spurs of the
matrices Rr. If pr denote the spur of JRr, then

pr = S r (z 1 z 2 . . . .z") , (24)

where Sr denotes the sum of the fn\ determinants obtained by

replacing r of the z* by yl and the remaining n — r of the zi by x\ In
particular p0 = | X | = A, pn = | Y \ = 0. The result of Operating on
pr by the matrix operator X Q, is a matrix, whose element in the ith
row and jth column is

xa
id~Pr = x/—Xr(zizK...z%
dxj oxi

OX

" z"), (25)
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where Sr denotes the sum of all possible determinants with r of the
2t replaced by yh and the remaining n — r — 1 of the z* replaced by xk.

In fact
XQpr = Ar, (26)

where Ar is a matrix, whose element in the ith row and the jth column

consists of the sum of all possible determinants obtained by replacing

the jth column of X' by the ith column of X' and r other columns of

X' by the corresponding r columns of Y'. If i =j= j , these deter-

minants in (25) with z* = xi vanish, so that there are only ( n ~ ")

non-vanishing determinants in the sum (25). If however i = j , that

is for a diagonal element, none of the determinants in (25) vanish

and their number is ( J . For example, if n = 4 and r = 2, the

first two columns of A2 are

(*VyV) + {xYxY) + (zVt/V), (s/Vi/V) + (yVzy)

In particular An.x = N, Al = plE—M, and A0 = &E. Corre-
sponding to the matrix Ar is the matrix Br obtained by inter-
changing the roles of the matrices X and Y in the formation of Ar.

We shall prove later that

Bn.r=prE-Ar, (27)

a result that may be verified by actual consideration of the two
matrices Ar and Bn_r.

Similarly the result of operating on pr with the matrix operator

Y Q. is a matrix T = [tf], where

. . . . Zn),

= Zr(z
lz2 z'-1 yi z>+l zn),

= - S r (z
1 z'1 z*-1 y{ z^ z ' " 1 a*zi+l z"), if i

= - S r + 1 (zJz2 . . . . zi-Wz^ . . . . z?-1 xiz?+l . . . . zn),

= — element in ith row and jth column of Ar+X by (25)
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If however i = j ,

&t — ^ r + 1 Vz z . . . . 2 . . . . Z j — ^ r + 1 Vz z • • • • z X Z ' . . . . Z ) ,

= Pr+i — element in ith row and ith column of Ar+l.

Hence,

7Qpr = pr+1E-Ar+1. (28)

But by (26)

and therefore

YQpr= YX~lAr= M A-Mrby (9).

Accordingly, by (28),

MAr= A (Pr+1 E - Ar+i), r = 0, 1, . . . . , » - 1, (29)

where Ao = p0E — AE and ^4n = 0.
Similarly

NBr= 0 (pn_r_, JB - #r + 1) , r =0 , 1, . . . . . n - 1. (30)

Multiplying equation (30) by M we have

hence, if pn.r.xE — JBr+1 = ^«. r_i , 5 r =-pn.rE — An.r by
(29). But Bn_x= M =p\E — A-L, and by induction (27) is true in
general.

We immediately deduce the following theorem.

Theorem 5. Each matrix Ar (r = 1, 2, .. . . , n — 1) may 6e expressed
as a polynomial of degree r in the matrix M.

In fact, by eliminating Au i^r — 1, from the set of equa-
tions (28),

A r - M r = Ar-xprE - Ar~2pr^M + Ar-3pr_2M
2 - .. + (-l)r-2p1M

r-1

+ {-y-iMr.
Accordingly Ar=fr(M), where /r(-M) is the polynomial on the right
of (31) multiplied by AJ-r .

From this theorem we derive the corollaries.

Corollary I. If r — n, equation (31) becomes the Cayley-Hamilton
equation satisfied by M.

For An = 0 and pr is the spur of Rr and therefore by (16)
Ar~' pr is the spur of Mr, which is the sum of the r-rowed principal
minors of M.

https://doi.org/10.1017/S0013091500007793 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500007793


BAZIN'S MATRIX AND OTHER ALLIED MATRICES 249

•Corollary II. Each matrix Bn_T (r = 1, 2, .... n — 1) is a polynomial
of degree r in the matrix N.

If in equation (31), Ar is replaced by Bn_r, pr by pn_r, A by 0,
and M by J\T, the actual expression for Qr~l Bn_r is obtained.

Corollary III. The matrix M is permutable with each of the matrices
Ar and Br, and Ar is permutable with Ak and B,, for r, s, k= 1, 2 , . . n—1.

Corollary IV. The latent roots of Ar are /r(A;), where A; are the latent
roots of M.1

Corollary V. Any power Mr, r = 1, 2, .. .. n, of the matrix M can be
expressed as a linear function of the matrices E, Au A2, . . . . Ar or as a
linear function of the matrices Bn_u Bn_2, . . . . . Bn_r.

For the r equations (31), r = 1, 2, .. . . , r, can be solved for
M, M2, . . . . , Mr in terms of the matrices Bn_l, . . . . , Bn_r.

If from Ar a new matrix Cr is formed by replacing each element
•of Ar by a similar element in which each column of X' and Y' is
replaced by the corresponding row of X' and Y' respectively, then
formulae similar to (29) and (31) are true in which Ar is replaced by
Cr and M by Q. In particular the following theorem is valid;

Theorem 6. The latent roots of Ar are the same as those of Cr.
This theorem follows immediately from the fact that the latent

roots of Q are the same as those of M (theorem 1).

Corollary I. The sum of the principal minors of order m of AT is equal
to the sum of the principal minors of order m of Or.

This corollary, which is an immediate consequence of the
theorem, is a generalisation of theorem 4 but an explicit statement of
it would be very involved.

Since the spur of M' = st is the sum of the tth. powers of the
latent roots of M, and since the spur of Ar is (n — r) pr, by taking the
spurs of the matrices on both sides of equation (31), we have

A'-1 (n - r)pr = S ( - I)'-1 A^PiSr.i. (32)
i = 0

But, as A1-*Pi = (— 1)' (the ith elementary symmetric function of the
latent roots Xj of M), equation (32) is nothing else than Newton's well
known formula connecting the sum of the powers of the roots of an
equation with the elementary symmetric functions of the roots.

1 This corollary is a special case of the Sylvester-Frobenius Theorem that if A is a
latent root of a matrix A, then/(A.) is a latent root of the matrix polynomial f(A).
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We shall now prove the lemma;

Lemma I. Q. Ar = (r -\- 1) Q.pr.

We shall prove this lemma by induction, assuming that
QAr_l = rQpr., = rBn_r. By (29)
A Bn_r = MAr_i = Ar_l M, or
Bn_rX = Ar_xY by (9).

By operating on both sides of the last equation by Y Q1,
Y (Q Bn_r) X+Y (spur of Bn_r) =YQ (Ar_, Y),

or Y Q. (pr E - Ar) X + rpr Y = rBn_r Y
by assumption. Hence

A (B._r_i - Y£lAr) = -rMAr by (28) and (9),
= -rYQp,.by (28) and (29).

But .Bn-r-i = YQ.pr and accordingly
YClAr = {r+ 1) YClPr.

The truth of our lemma follows when we notice that QA0 = O^»0-
If for brevity we write D.v for the matrix operator Y Q, we are

now in a position to prove the theorem;

Theorem 6. The matrix Bn_a_x = t J ^ 8 Q'+'1 p0.

For by lemma I

= -(r + l)QrPr+1. (33)
By repeated applications of formula (33) we derive

Oj+1Pr= ( - l ) ' ( r + l)(r + 2) . . (r + s)Q,jPr+>, (34)

and if r = 0 in (34), (34) becomes

and this last result proves our theorem.

§ 4. Connection with Turnbull's paper. If we now take Y to be-
the unit matrix, the matrix operator Y Q. = Q. and formula (28)
becomes

O. Pr = Pr+l E — Ar+1

which by (26) is equivalent to

& Pr = Pr+1 E — X Q.pr+1.

1 Turnbull. Loo. cit. Formula (12) § 1 and formula (4) § 2.
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But, with the necessary changes in notation, this is simply formula (1)
of section (8) of Turnbull's paper. Similarly formula (31) corre-
sponds to theorem IV of his paper. The correspondence is, however,
not direct, since by (9) if Y = E, then M = AI" 1 , If this value be
substituted for M in (31), and the resulting equation multiplied by
Xr be subtracted from the Cayley-Hamilton equation satisfied by X,
we get the actual results listed in Theorem IV. This suggests that to
obtain Turnbull's theorem IV as a direct consequence of our results,
we should use the formula similar to (31), which involves N instead
of M. This is actually the case and in fact his theorems I, II, III
and IV have immediate counterparts when the matrix N is used.

Let N be denoted by n/, where nj = (yx .. .. y*-1 xl yi+l . . . . yn),
(formula (5)). If sr denote the sum of the rth powers of the latent
Toots of N, then sr is the spur of Nr and

«' = »::»:;••••»£_,»:;. (35)
= n;j K.

Therefore since (35) is symmetric in the ah the element in the ith row
and the jth column of Q,,jSr is

K

Hence
£V r = »-0iVr-1. (36)

Similarly the element in the ith row and the jth. column of the
matrix Qy N

r is
8

a- r-\

r

= 0 8"*S' 2 (n«s n«3 . . n
ak \ in

ak+2 ni \

and therefore

Q.F=0 2«t. ,F- i . (37)

If Y = E, 0 = 1 and equations (36) and (37) reduce to the formulae
of theorems II and III of Turnbull's paper. In a similar manner it
may be shown that

Q.y N'r = 0 {N'r-X + NN'r-2 + .. +NtN'r-i-1+ ..+ N'-1)

A result which corresponds to Turnbull's theorem I.
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