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Abstract. For a class of volume-preserving partially hyperbolic diffeomorphisms (or
non-uniformly Anosov) f : Td → T

d homotopic to linear Anosov automorphism, we
show that the sum of the positive (negative) Lyapunov exponents of f is bounded
above (respectively below) by the sum of the positive (respectively negative) Lyapunov
exponents of its linearization. We show this for some classes of derived from Anosov
(DA) and non-uniformly hyperbolic systems with dominated splitting, in particular for
examples described by Bonatti and Viana [SRB measures for partially hyperbolic systems
whose central direction is mostly contracting. Israel J. Math. 115(1) (2000), 157–193].
The results in this paper address a flexibility program by Bochi, Katok and Rodriguez
Hertz [Flexibility of Lyapunov exponents. Ergod. Th. & Dynam. Sys. 42(2) (2022),
554–591].
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1. Introduction
The Lyapunov exponents come from the study of differential equations in the thesis
of Lyapunov [14]. They were systematically introduced into ergodic theory by works
of Furstenberg and Kesten [11] and Oseledets [18]. They are directly related to the
expansion rates of the system and also to the positive metric entropy, using for example the
Margulis–Ruelle inequality and the Pesin entropy formula. Ya. Pesin explored the concept
of Lyapunov exponents developing a rich theory of non-uniformly hyperbolic systems,
which are the systems with non-zero Lyapunov exponents.

However, in general, these systems are not robust: they do not form an open set. In the
works [3, 5], the authors show that if a non-uniformly hyperbolic system does not admit
dominated splitting, it can be approximated by systems with zero Lyapunov exponents
in C1 topology. Usually, the presence of dominated decomposition guarantees higher
regularity in C1 topology, see for example [21]. In the non-invertible setting, [1] showed the
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existence of C1 open sets without dominated decomposition such that integrated Lyapunov
exponents vary continuously with the dynamics in the C1 topology.

For a linear Anosov automorphism of the torus A : Td → T
d , the Lyapunov exponents

are constant and indeed they are equal to the logarithm of the norm of eigenvalues of
A. In general, Lyapunov exponents cannot be explicitly calculated. The regularity of
Lyapunov exponents with respect to dynamics and invariant measures is a subtle question.
Let us recall a flexibility conjecture by J. Bochi, A. Katok and F. Rodriguez Hertz. Let
Diff∞m (M) be the set of m-preserving diffeomorphisms (volume preserving) f : M → M

of class C∞.

Conjecture 1.1. [4] Given a connected component C ⊂ Diff∞m (M) and any list of numbers
ξ1 ≥ · · · ≥ ξd with

∑d
i=1 ξi = 0, there exists an ergodic diffeomorphism f ∈ C such that

ξi , i = 1, . . . , d are the Lyapunov exponents with respect to m.

Moreover, in the setting of volume-preserving Anosov diffeomorphisms, they posed the
following problem.

Problem 1. [4] (Strong flexibility) Let A ∈ SL(d, Z) be a hyperbolic linear transformation
inducing conservative Anosov diffeomorphism FA on T

d with Lyapunov exponents:
λ1 ≥ λ2 · · · ≥ λu > 0 > λu+1 ≥ · · · ≥ λd . Given any list of numbers ξ1 ≥ ξ2 ≥ · · · ≥
ξu ≥ ξu+1 ≥ · · · ≥ ξd such that:
(1)

∑d
i=1 ξi = 0;

(2)
∑u

i=1 ξi ≤ ∑u
i=1 λi ,

does there exist a conservative Anosov diffeomorphism f homotopic to FA such that {ξi}
is the list of all Lyapunov exponents with respect to volume measure?

In this work, we study a subset of transformations f : T
d → T

d homotopic to a
linear Anosov automorphism A : T

d → T
d , where f has some hyperbolicity (partial

hyperbolicity or non-uniform hyperbolicity). See §2 for the definitions. In particular, we
show that for a class of partially hyperbolic diffeomorphisms and homotopic to Anosov
linear automorphism, not all lists of numbers can be realized as Lyapunov exponents.
More precisely, in such a class of dynamics, we need the conditions (1) and (2) imposed in
Problem 1.

This type of result also appears in [4, 10, 15–17, 22]. In [16], it has been proved
that for any conservative partially hyperbolic systems in the torus T

3, the stable or
unstable Lyapunov exponent is bounded by the stable or unstable Lyapunov exponent of
its linearization. It is well worth mentioning that Carrasco and Saghin [9] constructed a
C∞ and volume-preserving example on T

3 that shows that the largest Lyapunov exponent
of a diffeomorphism in the homotopy class of an Anosov linear automorphism of T3 may
be larger than the largest Lyapunov exponent of A. However, in their example, f does not
admit a three-bundle partially hyperbolic splitting.

We also mention that our results address (and give a negative answer in some special
cases of derived from Anosov diffeomorhisms) a question in [9]: Does there exist a derived
from Anosov diffeomorphism f such that the sum of the positive Lyapunov exponents of f
is larger than the sum of the positive Lyapunov exponents of its linear part?
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2. Definitions and statements of results
Definition 2.1. Let M be a closed manifold. A diffeomorphism f : M → M is called a
partially hyperbolic diffeomorphism if there is a suitable norm ‖ · ‖ and the tangent bundle
T M admits a Df -invariant decomposition T M = Es ⊕ Ec ⊕ Eu such that for all unitary
vectors vσ ∈ Eσ

x , σ ∈ {s, c, u} and every x ∈ M , we have

‖Dxf vs‖ < ‖Dxf vc‖ < ‖Dxf vu‖;

moreover,

‖Dxf vs‖ < 1 and ‖Dxf vu‖ > 1.

Every diffeomorphism of the torus T
d induces an automorphism of the fundamental

group and there exists a unique linear diffeomorphism f∗ which induces the same
automorphism on π1(T

d). The diffeomorphism f∗ is called linearization of f .
Anosov diffeomorphisms can be considered partially hyperbolic systems with Ec = 0.

However, in this paper, whenever we consider an Anosov diffeomorphism as a partially
hyperbolic system, we mean that there exists a non-trivial (centre bundle) partially
hyperbolic decomposition.

Clearly, a partially hyperbolic diffeomorphism may have various partially hyperbolic
invariant decompositions. We will consider several (non-necessarily disjoint) categories
of partially hyperbolic diffeomorphisms indexed by the dimensions of invariant bundles.

More precisely, we say f ∈ Ph(ds ,du)(M) if f admits a partially hyperbolic decom-
position with dim(Eσ ) = dσ for σ ∈ {s, u}. Clearly, dim(Ec) = dim(M) − ds − du. For
instance, consider the cat map A on T

2 induced by matrix ( 2 1
1 1 ), then A × A is a partially

hyperbolic (in fact, Anosov) diffeomorphism and belongs to Ph(1,1) ∩ Ph(2,1) ∩ Ph(1,2).

Definition 2.2. Let f : Td → T
d be a partially hyperbolic diffeomorphism, and f is called

a derived from Anosov (DA) diffeomorphism if its linearization f∗ : Td → T
d is a linear

Anosov automorphism.

Definition 2.3. We say that the diffeomorphism f : M → M admits a dominated splitting
if there is an invariant (by Df ) continuous decomposition T M = E ⊕ F and constants
0 < ν < 1, C > 0 such that

‖Df n|E(x)‖
‖Df −n|F(f n(n))‖−1 ≤ Cνn for all x ∈ M , n > 0.

Let us recall a simple version of the Oseledets’ theorem.

THEOREM 2.4. [18] Let f : M → M be a C1 diffeomorphism, then there is a full
probability Borelian set R (this is, μ(R) = 1 for all f-invariant probability measure μ)
such that for each x ∈ R, there is a decomposition TxM = E1 ⊕ · · · Ek(x) and constants
λ1, . . . , λk(x) such that

lim
n→∞

1
n
‖Df n

x (v)‖ = λi
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for all v ∈ Ei . The λi(x) is called a Lyapunov exponent. Moreover, for any 1 ≤ j ≤ k(x),

lim
n→∞

1
n

det Df n
x |Fj (x) =

j∑
i=1

diλi ,

where Fj = E1 ⊕ · · · ⊕ Ej and di = dim(Ei).

In this paper, when m refers to a measure, it stands for a fixed Lebesgue measure on T
d .

2.1. Lyapunov exponents of partially hyperbolic diffeomorphisms. In our first main
theorem, we prove that linear Anosov diffeomorphisms maximize (respectively minimize)
the sum of unstable (respectively stable) Lyapunov exponents, in any homotopy path totally
inside partially hyperbolic diffeomorphisms.

The notion of metric entropy appears naturally when dealing with Lyapunov exponents.
For a partially hyperbolic diffeomorphism, it is possible to define entropy of an invariant
measure along unstable foliation and there is variational principle results for such entropy.
A u-maximal entropy measure is a measure which attains the supremum of unstable
entropy among all invariant measures. See §3.2.1 and references for more details.

THEOREM A. Let f : T
d → T

d be a C2 volume-preserving DA diffeomorphism in
Phds ,du with linearization A : Td → T

d such that f and A are homotopic by a path fully
contained in Phds ,du(T

d), then

du∑
i=1

λu
i (f , x) ≤

du∑
i=1

λu
i (A) and

ds∑
i=1

λs
i (f , x) ≥

ds∑
i=1

λs
i (A),

for m-almost every (a.e.) x ∈ T
d and, the first (respectively second) inequality is strict

unless m is a measure of u-maximal entropy (respectively u-maximal for f −1).

This is related to the result of [16]: let f : T3 → T
3 be a C2 conservative derived from

Anosov partially hyperbolic diffeomorphism with linearization A. Then, λu(x) ≤ λu(A)

for almost every x. We recall that the authors used quasi-isometric property of unstable
foliation for the three-dimensional derived from Anosov diffeomorphisms. They do not
assume that f is in the same connected component of A.

THEOREM B. Let f : Td → T
d be a C2 volume-preserving DA diffeomorphism in Phds ,du

with linearization A : Td → T
d belonging to Phds ,du . Suppose that for σ ∈ {s, u}, there

is a (d − dσ )-dimensional subspace Pσ ⊂ R
d , such that � (Eσ

f (x), Pσ ) > α > 0 for all
x ∈ R

d (Eσ
f stands for the lift of the bundles), then

du∑
i=1

λu
i (f , x) ≤

du∑
i=1

λu
i (A) and

ds∑
i=1

λs
i (f , x) ≥

ds∑
i=1

λs
i (A),

for m-a.e. x ∈ T
d .

Observe that the assumption on the existence of Pσ in the above theorem is a
mild condition and is satisfied if the stable and unstable bundles of f do not vary too

https://doi.org/10.1017/etds.2024.59 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.59


Rigidity of Lyapunov exponents 5

much. Indeed, we require that {Eσ
f (x), x ∈ R

d} is not dense in the Grassmannian of
dσ -dimensional subspaces.

2.2. Lyapunov exponents of non-uniformly Anosov systems. In this section, we deal
with dynamics that are not necessarily partially hyperbolic. However, they enjoy some
dominated splitting property: Oseledets’ splitting (stable/unstable) is dominated.

Definition 2.5. A C2-volume-preserving diffeomorphism f is called non-uniformly
Anosov if it admits an f -invariant dominated decomposition T M = E ⊕ F such that
λF

i (x) > 0 (all Lyapunov exponents along F) and λE
i (x) < 0 (all Lyapunov exponents

along E) for μ-a.e x.

In the next theorem, we compare Lyapunov exponents of a non-uniformly Anosov
diffeomorphism with those of linear Anosov automorphism if they are homotopic.
Observe that by definition, the number of negative (positive) Lyapunov exponents of a
non-uniformly Anosov diffeomorphism is constant almost everywhere and coincides with
the dimension of the bundles in the dominated splitting. However, the Lyapunov exponents
may depend on the orbit, as we do not assume ergodicity. In fact, it is interesting to know
whether, in general, all topologically transitive non-uniformly Anosov diffeomorphisms
are ergodic or not. We conjecture that all topologically transitive non-uniformly Anosov
diffeomorphisms are ergodic.

Let A : Td → T
d be a linear Anosov diffeomorphism such that TT

d = Es
A ⊕ Eu

A.
Denote by ds = dim(Es

A) and du = dim(Eu
A). After changing to an equivalent Riemannian

norm, if necessary, there are 0 < λ < 1 < γ such that ‖A|Es ‖ ≤ λ, m(A|Eu) ≥ γ and Es
A

is orthogonal to Eu
A. Indeed, to use fewer constants in the proofs, we assume that Eu

i

and Eu
j , i �= j are orthogonal, where Eu

i terms are generalized eigenspaces of A which
coincide with the Oseledets decomposition. Recall that for a linear transformation T,
m(T ) := ‖T −1‖−1. We refer to γ , λ as rates of hyperbolicity of A. Observe that Lyapunov
exponents of any diffeomorphism are independent of the choice of the equivalent norm.

THEOREM C. Let f : Td → T
d be a C2 conservative non-uniformly Anosov diffeomor-

phism with dominated decomposition T M = E ⊕ F , homotopic to A such that:
(1) dim(E) = ds and dim(F ) = du;
(2) E(x) ∩ Eu

A = {0} and F(x) ∩ Es
A = {0};

(3) ‖Df |E‖ < γ and m(Df |F ) > λ.
Suppose that the distributions E and F are integrable, then

∑du

i=1 λF
i (f , x) ≤ ∑du

i=1 λu
i (A)

and
∑ds

i=1 λE
i (f , x) ≥ ∑ds

i=1 λs
i (A) for Lebesgue-a.e. x ∈ T

d .

Let us comment on the hypotheses: the first and second one ask for some compatibility
of invariant bundles and the third one asks that any possible expansion in the dominated
bundle E is less than the expansion rate of A and similarly any possible contraction in the
dominating bundle F is weaker than the contraction rate of A.

Bonatti and Viana [6] constructed the first examples of robustly transitive diffeomor-
phisms that are not partially hyperbolic, which was later generalized in higher dimensions
by [23]. Those classes of examples satisfy the hypotheses of the above theorem.
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THEOREM 2.6. [6, 8, 23] There is an open set U ⊂ Diff1
m(Td) such that any

C2-diffeomorphism in U satisfies all hypotheses of Theorem C and the bundles E and
F are integrable.

In the above theorem, the integrability of invariant subbundles E and F is proved in [8].

2.3. Regularity of foliations. Any partially hyperbolic diffeomorphism admits invariant
stable and unstable foliations. As the proofs of our main results are based on the regularity
of such foliations, we need to recall some basic definitions and results in this subsection.
Consider F a foliation in M, B a F-foliated box and m the Lebesgue measure in M. Denote
by VolLx the Lebesgue measure of leaf Lx and mLx the disintegration of the Lebesgue
measure m along the leaf Lx . The disintegrated measures are in fact a projective class
of measures. However, whenever we fix a compact foliated box B, then we can use the
Rohlin disintegration theorem for the normalized restriction of m on B to get probability
conditional measures. So in what follows, after fixing a foliated box B by mLx and VolLx ,
we understand probability measures whose support is inside the plaque of Lx which
contains x ∈ B and is inside B.

Definition 2.7. We say that the foliation F is upper leafwise absolutely continuous if for
any foliated box B, mLx 
 VolLx for m-a.e. x ∈ B. Equivalently, if given a set Z ⊂ B such
that VolLx (Z ∩ Lx) = 0 for m-a.e. x ∈ B, then m(Z) = 0.

Definition 2.8. We say that the foliation F is lower leafwise absolutely continuous if
VolLx 
 mLx for m-a.e. x ∈ B. Equivalently, if given a set Z ⊂ B such that m(Z) = 0,
then VolLx (Z ∩ Lx) = 0 for m-a.e. x ∈ B.

Definition 2.9. We say that the foliation F is leafwise absolutely continuous if
VolLx ∼ mLx (this is, mLx 
 VolLx and VolLx 
 mLx ) for m-a.e. x ∈ B.

PROPOSITION 2.10. [7] If f : M → M is a C2 partially hyperbolic diffeomorphism, then
the foliations Ws and Wu are leafwise absolutely continuous.

We also mention the result of Ya. Pesin for non-uniformly hyperbolic systems, see
[2, Theorem 4.3.1], which shows absolute continuity of local Pesin laminations.

3. Proof of results
Theorems A and B are obtained by the following result.

THEOREM 3.1. Let f : Td → T
d be a C2 volume-preserving partially hyperbolic dif-

feomorphism such that there are closed non-degenerate du-forms and ds-forms on Eu

and Es , respectively. Suppose that A, the linearization of f, is partially hyperbolic and
dimEσ

f = dimEσ
A, σ ∈ {s, c, u}, then

du∑
i=1

λu
i (f , x) ≤

du∑
i=1

λu
i (A) and

ds∑
i=1

λs
i (f , x) ≥

ds∑
i=1

λs
i (A)

for m-a.e. x ∈ T
d .
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For the proof of this theorem, we use a result of Saghin [20]. Let f : M → M be a
diffeomorphism and W an f -invariant foliation on M, that is, f (W(x)) = W(f (x)), and
Br(x, f ) be the ball of the leaf W(x) with radius r centred at x. We say that

χW(f , x) = lim sup
n→∞

1
n

log Vol(f n(Br(x, f )))

is the volume growth rate of the foliation at x and

χW(f ) = sup
x∈M

χW(f , x)

is the volume growth rate of W. Here, Vol stands for the VolW which is the induced volume
to the leaves of W. We use this notation throughout the paper except when it may create
confusion.

When f is a partially hyperbolic diffeomorphism, we denote by χu(f ) the volume
growth of unstable foliation Wu.

THEOREM 3.2. [20] Let f : M → M be a C1 partially hyperbolic diffeomorphism such
that there is a closed non-degenerate du-form on the unstable bundle Eu, then χu(f ) =
log sp(f∗,du), where f∗,du is the induced map in the du-cohomology of De Rham.

PROPOSITION 3.3. Let f : Td → T
d be a C1 partially hyperbolic diffeomorphism admit-

ting a closed non-degenerate du-form on the unstable bundle Eu. For fixed x ∈ T
d , r > 0,

the balls Br(x, f ) ⊂ Wu(x, f ) and Br(x, A) ⊂ Wu(x, A) satisfy the following. Given
ε > 0, there is n0 ∈ N such that if n > n0, we have

VolWu(f )(f
n(Br(x, f ))) ≤ (1 + ε)nVolWu(A)(A

n(Br(x, A))).

Proof. By Theorem 3.2, we have that

χu(f , x) ≤ χu(f ) = log sp(f∗,u) = log sp(A∗,u) = χu(A) = χu(A, x),

that is,

lim sup
n→∞

1
n

log VolWu(f )(f
n(Br(x, f ))) ≤ lim

n→∞
1
n

log VolWu(A)(A
n(Br(x, A)));

therefore, given ε > 0, there is n0 such that if n > n0,

1
n

log VolWu(f )(f
n(Br(x, f ))) ≤ 1

n
log VolWu(A)(A

n(Br(x, A))) + 1
n

log(1 + ε)n.

Then,

VolWu(f )(f
n(Br(x, f ))) ≤ (1 + ε)nVolWu(A)(A

n(Br(x, A))).

Proof of Theorem 3.1. We prove the statement for the sum of unstable exponents. One
may repeat the argument for f −1 to obtain the claim for stable exponents.

Suppose by contradiction that there is a positive volume set Z ⊂ R ⊂ T
d , (where R is

the set of points satisfying Oseledets’ theorem as stated in Theorem 2.4) such that for all
x ∈ Z, we have

∑du

i=1 λu
i (f , x) >

∑du

i=1 λu
i (A).
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For q ∈ N \ {0}, we define the set

Zq =
{
x ∈ Z;

du∑
i=1

λu
i (f , x) >

du∑
i=1

λu
i (A) + log

(
1 + 1

q

)}
.

Since
⋃∞

q=1 Zq = Z, there is a q such that m(Zq) > 0. For any x ∈ Zq , we have

lim
n→∞

1
n

log |Jacf n(x)|Eu| >

du∑
i=1

λu
i (A) + log

(
1 + 1

q

)
.

So, there is n0 such that for n ≥ n0, we have

1
n

log |Jacf n(x)|Eu| >

du∑
i=1

λu
i (A) + log

(
1 + 1

q

)

>
1
n

log en
∑du

i=1 λu
i (A) + 1

n
log

(
1 + 1

q

)n

.

So we get

|Jacf n(x)|Eu| >

(
1 + 1

q

)n

en
∑du

i=1 λu
i (A).

By this fact, for each n > 0, we define the set

Zq,n =
{
x ∈ Zq ; |Jacf k(x)|Eu| >

(
1 + 1

q

)k

ek
∑du

i=1 λu
i (A) for all k ≥ n

}
.

So, there is N > 0 with m(Zq,N) > 0.
Now for any x ∈ T

d , let Bx be a foliated box of Wu
f around x. By compactness, we

can take a finite cover {Bxi
}ji=1 of Td . As Wu

f is absolutely continuous [7], there is i and
x ∈ Bxi

such that VoluW (f )(Bxi
∩ Wu

f (x) ∩ Zq,N) > 0.
Consider Br(x) ⊂ Wu

f (x) satisfying VolWu(f )(Br(x) ∩ Zq,N) > 0. By Proposition 3.3,
there is K(ε) ∈ N such that for all k ≥ K(ε),

VolWu(f )(f
k(Br(x))) ≤ (1 + ε)kVolWu(A)(A

k(Br(x)))

≤ (1 + ε)kek
∑

λu
i (A)VolWu(A)(Br(x)). (3.1)

However, for k ≥ N ,

VolWu(f )(f
k(Br(x))) =

∫
Br(x)

|Jacf k|Eu| dVolWu(f )

≥
∫

Br(x)∩Zq,N

|Jacf k|Eu| dVolWu(f )

>

∫
Br(x)∩Zq,N

(
1 + 1

q

)k

ek
∑

i λu
i (A) dVolWu(f )

=
(

1 + 1
q

)k

ek
∑du

i=1 λu
i (A)VolWu(f )(Br(x) ∩ Zq,N). (3.2)
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Taking ε < 1/q, for large enough k, the inequalities in equations (3.1) and (3.2) give a
contradiction.

3.1. Proof of Theorem B. We use Theorem 3.1 and the following proposition to conclude
the proof of Theorem B.

PROPOSITION 3.4. Let W be a foliation in R
d of dimension du. If there is a (d–du)-plane

P in R
d such that � (TxW , P) > α > 0 for all x ∈ R

d , then there is a du-form ω which is
closed and non-degenerate on W.

Proof. Let B be the orthogonal complement of P, there is always a closed and
non-degenerate form in B, in fact, just take the volume form ω = dx1 ∧ dx2 ∧ · · · ∧ dxdu

which is non-degenerate in B and ω is closed. Note that ω is degenerate only in B⊥ = P

and by hypothesis, � (TxW , P) > α > 0. So, ω is closed and non-degenerate in TxW for
all x ∈ R

d .

COROLLARY 3.5. If A : Td → T
d is a linear partially hyperbolic diffeomorphism and

f is a C2 conservative diffeomorphism which is a small C1-perturbation of A, then∑du

i=1 λu
i (f , x) ≤ ∑du

i=1 λu
i (A) and

∑ds

i=1 λs
i (f , x) ≥ ∑ds

i=1 λs
i (A) for Lebesgue-a.e.

x ∈ T
d .

3.2. Proof of Theorem A. From [19, Proposição 3.1.2], we have the following
proposition.

PROPOSITION 3.6. [19] Let f : T
d → T

d be a partially hyperbolic diffeomorphism
homotopic to a linear Anosov diffeomorphism A such that:
(a) each element of the homotopic path is a partially hyperbolic diffeomorphism;
(b) if f1 and f2 are two elements of the homotopic path, then dimEσ (f1) = dimEσ (f2),

σ ∈ {s, c, u},
then there exists a closed non-degenerate du-form on Wu(f ).

By the proposition above, f has a du closed and non-degenerate form on Wu, using the
inverse f −1, we get a ds closed and non-degenerate form on Ws . By Theorem 3.1, we
conclude the first part of Theorem A. In the next subsection, we complete the proof.

3.2.1. Maximizing measures. In this section, we prove the last part of Theorem A. We
write all proofs for the unstable bundle.

First, we recall the definition of topological and metric entropy along an expanding
foliation. In [13], the authors define the notion of topological and metric entropy along
unstable foliation and prove the variational principle.

Let f : M → M be a C1-partially hyperbolic diffeomorphism and μ is an f -invariant
probability measure. For a partition α of M, denote αn−1

0 = ∨n−1
i=0 f −iα and by α(x) the

element of α containing x. Given ε > 0, let P = Pε denote the set of finite measurable
partitions of M whose elements have diameters smaller than or equal to ε. For each α ∈ P ,
we define a partition η such that η(x) = α(x) ∩ Wu

loc(x) for each x ∈ M , where Wu
loc(x)
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denotes the local unstable manifold at x whose size is greater than the diameter ε of α.
Let Pu = Pu

ε denote the set of partitions η obtained in this way. We define the conditional
entropy of α given η with respect to μ by

Hμ(α|η) := −
∫

M

log μη
x(α(x)) dμ(x),

where μ
η
x refer to the disintegration of μ along η.

Definition 3.7. The conditional entropy of f with respect to a measurable partition α given
η ∈ Pu is defined as

hμ(f , α|η) = lim sup
n→∞

1
n
Hμ(αn−1

0 |η).

The conditional entropy of f given η ∈ Pu is defined as

hμ(f |η) = sup
α∈P

hμ(f , α|η),

and the unstable metric entropy of f is defined as

hu
μ(f ) = sup

η∈Pu

hμ(f |η).

Now, we go to define the unstable topological entropy.
We denote by ρu the metric induced by the Riemannian structure on the unstable man-

ifold and let ρu
n(x, y) = max0≤j≤n−1 ρu(f j (x), f j (y)). Let Wu(x, δ) be the open ball

inside Wu(x) centred at x of radius δ with respect to the metric ρu. Let Nu(f , ε, n, x, δ)

be the maximal number of points in Wu(x, δ) with pairwise ρu
n -distances at least ε. We

call such a set an (n, ε)u-separated set of Wu(x, δ).

Definition 3.8. The unstable topological entropy of f on M is defined by

hu
top(f ) = lim

δ→0
sup
x∈M

hu
top(f , Wu(x, δ)),

where

hu
top(f , Wu(x, δ)) = lim

ε→0
lim sup
n→∞

1
n

log Nu(f , ε, n, x, δ).

Let Mf (M) and Me
f (M) denote the set of all f -invariant and ergodic probability

measures on M, respectively.

THEOREM 3.9. [13] Let f : M → M be a C1-partially hyperbolic diffeomorphism. Then,

hu
top(f ) = sup{hu

μ(f ) : μ ∈ Mf (M)}.
Moreover,

hu
top(f ) = sup{hu

ν(f ) : ν ∈ Me
f (M)}.

Furthermore, the authors proved that unstable topological entropy coincides with
unstable volume growth.
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THEOREM 3.10. [13] Unstable topological entropy coincides with unstable volume
growth, i.e. hu

top(f ) = χu(f ).

As in the hypotheses of Theorem A, the diffeomorphisms f and A are homotopic, so
using Theorem 3.2, we have

hu
top(f ) = χu(f ) = log sp(f∗, u) = log sp(A∗, u) = χu(A) = hu

top(A).

Thus,

du∑
i=1

λu
i (f , x) = hu

m(f ) ≤ hu
top(f ) = hu

top(A) =
du∑
i=1

λu
i (A).

Then we conclude that hu
m(f ) = hu

top(f ).

3.3. Proof of Theorem C. We remember that A : T
d → T

d is a linear Anosov
diffeomorphism and 0 < λ < 1 < γ are rates for hyperbolicity, ds = dim(Es

A) and
du = dim(Eu

A). Let Ws
A, Wu

A be the stable and unstable foliation of A and by W̃ s
A, W̃u

A,
we denote their lifts to the universal cover Rd . These foliations are stable and unstable
foliations of Ã which is a lift of A. We use ‘∼’ for objects in the universal cover. The
norm and distance on R

d are the lift of adapted norm and corresponding distance where
the hyperbolicity conditions of A are satisfied, see §2.2 before the announcement of
Theorem C.

Similar to [12, Proposition 2.5 and Corollary 2.6], we show the following proposition.

PROPOSITION 3.11. Let f : T
d → T

d be a diffeomorphism that admits a dominated
splitting T M = E ⊕ F with ‖Df |E‖ ≤ γ̂ < γ and m(Df |F ) ≥ λ̂ > λ, homotopic to A
such that dim(E) = ds and dim(F ) = du. Suppose that the distributions E and F are
integrable, and denote by E and F their respective tangent foliations, then there is R > 0
such that:
• E(x) ⊂ BR(W̃ s

A(x));
• F(x) ⊂ BR(W̃u

A(x)),
where BR(W̃ s

A(x)) ⊂ R
d is the set of points which are at distance R from Ws

A(x). Use a
similar definition for BR(W̃u

A(x)).

COROLLARY 3.12. Fixing x ∈ R
n, if ‖x − y‖ → ∞ and y ∈ E(x), then (x − y)/

‖x − y‖ → Ẽs
A(x) uniformly. More precisely, for ε > 0, there is M > 0 such that if

x ∈ R
d , y ∈ E(x) and ‖x − y‖ > M , then

‖πu
A(x − y)‖ < ε‖πs

A(x − y)‖,

where πs
A is the orthogonal projection on the subspace Es

A along Eu
A, and πu

A is the
projection on the subspace Eu

A along Es
A.

Analogous statements hold for F . The following proposition is a topological remark
(see [12]) and comes from the fact that f and A are homotopic and A is not singular.
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PROPOSITION 3.13. Let f : Td → T
d be a homeomorphism with linearization A, then for

each k ∈ Z and C > 1, there is an M > 0 such that for all x, y ∈ R
d ,

‖x − y‖ > M ⇒ 1
C

<
‖f̃ k(x) − f̃ k(y)‖
‖Ãk(x) − Ãk(y)‖ < C.

More generally, for each k ∈ Z, C > 1 and any linear projection π : Rd → R
d , with

A-invariant image, there is M > 0 such that for x, y ∈ R
d , with ‖x − y‖ > M ,

1
C

<
‖π(f̃ k(x) − f̃ k(y))‖
‖π(Ãk(x) − Ãk(y))‖ < C.

Proof of Proposition 3.11. To prove the first claim (the second one is similar), it is enough
to show that ‖πu

A(x − y)‖ is uniformly bounded for all y ∈ E(x). Let C > 1 close enough
to 1 such that Cγ̂ < γ and 1 < γ/C. Put k = 1 and C chosen as above in Proposition 3.13,
and get appropriate M. By contradiction, suppose that ‖πu

A(x − y)‖ is not bounded. So,
there is y ∈ E(x) with ‖πu

A(x − y)‖ > M and consequently,

‖πu
A(f̃ (x) − f̃ (y))‖ >

1
C

‖πu
A(Ã(x − y))‖ = 1

C
‖(Ã(πu

A(x − y))‖ ≥ γ

C
‖πu

A(x − y)‖ > M ,

which implies that we can use induction and for any n ≥ 1, obtain

‖πu
A(f̃ n(x) − f̃ n(y))‖ >

γ n

Cn
M .

Finally, there is a constant η > 0 such that

‖f̃ n(x) − f̃ n(y)‖ > η
γ n

Cn
M . (3.3)

Now consider a smooth curve α : [a, b] → E(x) with α(a) = x and α(b) = y whose
length is dE (x, y). Then,

‖f̃ n(x) − f̃ n(y)‖ ≤ dE (f̃ n(x), f̃ n(y)) ≤ l(f̃ n(α(t))) =
∫ b

a

∥∥∥∥ d

dt
(f̃ n(α(t))

∥∥∥∥ dt

≤
∫ b

a

‖Df̃ n|Wcs ‖ · ‖(α′(t))‖ dt <

∫ b

a

γ̂ n‖α′(t)‖ dt ,

implies that

‖f̃ n(x) − f̃ n(y)‖ < γ̂ n dE (x, y). (3.4)

Equations (3.3) and (3.4) and γ /C > γ̂ give us a contradiction when n is large
enough.

PROPOSITION 3.14. Let f : M → M be a C2 conservative non-uniformly Anosov dif-
feomorphism with T M = E ⊕ F . If the distribution E is integrable, then the respective
foliation E is upper leafwise absolutely continuous.

Let R be the regular set in Pesin sense such that m(R) = 1 and R = ⋃∞
l=1 Rl is the

union of Pesin’s block where m(Rl ) → 1, Rl ⊂ Rl+1. Moreover, the size of Pesin stable
manifolds of points in Rl is larger than some positive constant rl . In general, rl → 0
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when l → ∞. We use an absolute continuity result due to Pesin [2, Theorem 4.3.1] which
essentially shows the absolute continuity of Pesin’s stable laminations in each block.

Proof of Proposition 3.14. Suppose by contraction that E is not upper leafwise absolutely
continuous. So, there exist a foliated box B and a set Z ⊂ B with VolE (Z ∩ E(x)) = 0
for m-a.e. x ∈ B and m(Z) > 0. There exists l ≥ 1 such that m(Z ∩ Rl ) > 0. Take a
Lebesgue density point z ∈ Z ∩ Rl such that for V a small neighbourhood of z, we have
m(Z ∩ Rl ∩ V ) > 0.

As Pesin stable manifolds are contained in the leaves of E , our assumption VolE (Z ∩
E(x)) = 0 and upper leafwise absolute continuity of stable manifolds imply that Z has zero
measure with respect to conditional measures of m along Pesin stable manifolds in Rl .)
Hence, m(Z ∩ Rl ∩ V ) = 0, which is a contradiction.

Fix x ∈ R
n and denote by Ur ⊂ W̃u

A(x) the ball of radius r with centre x.

PROPOSITION 3.15. Let f : Td → T
d as in Theorem C, then given ε > 0, there is r0 > 0

and a constant C0 > 0 such that

VolF (f̃ nπ−1
x (Ur)) ≤ C0(1 + ε)nduen

∑du
i=1 λu

i (A)Vol
W̃u

A
(Ur)

for all n > 0 and r ≥ r0, where πz is the orthogonal projection from F(z) to W̃u
A(z) (along

Ẽs
A) for any z ∈ R

n.

Proof of Proposition 3.15. We prove the following claims.

CLAIM 1. For z ∈ R
d , the orthogonal projection πz : F(z) → W̃u

A(z) is a uniform
bi-Lipschitz diffeomorphism.

Proof of Claim 1. By item (2) of Theorem C and continuity of E and F, there is α > 0
such that the angle � (E, Eu

A) > α and � (F , Es
A) > α. So W̃ s

A is uniformly transversal to
the foliation F and there is β > 0 such that

‖dπz(x)(v)‖ ≥ β‖v‖ (3.5)

for any x ∈ F(z) and v ∈ TxF(z). This implies that Jacπz(x) �= 0. By the inverse function
theorem, for each x ∈ F(z), there is a ball B(x, δ) ⊂ F(z) such that πz|B(x,δ) is a
diffeomorphism. In fact, from the proof of the inverse function theorem and equation (3.5),
δ can be taken independent of x. Again, by equation (3.5), there is ε > 0, independent
of x such that B(πz(x), ε) ⊂ πz(B(x, δ)). To prove that πz is surjective, we show that
πz(F(z)) is an open and closed subset. As πz is a local homeomorphism, then πz(F(z))

is open. To verify that it is also closed, let yn ∈ πz(F(z)) be a sequence converging to y,
and hence there is n0 large enough such that y ∈ B(ε, yn0) and, therefore, y ∈ πz(F(z)).
So, πz is surjective. Moreover, πz is a covering map and injectivity follows from the
fact that any covering map from a path-connected space to a simply connected space is
a homeomorphism.
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Let us prove that πz is bi-Lipschitz. In fact,

‖πz(x) − πz(y)‖ ≤ ‖x − y‖ ≤ dF (x, y).

Let us show that π−1
z is also Lipschitz. This is immediate from equation (3.5). Indeed, let

[x, y] be the line segment in W̃u
A(z) connecting x to y, so the set π−1

z ([x, y]) = � is a
smooth curve connecting the points π−1

z (x) and π−1
z (y) in F(z). So,

dF (π−1
z (x), π−1

z (y)) ≤ length (�) =
∫

[x,y]
|dπ−1

z (t)| dt ≤ 1
β

‖x − y‖.

CLAIM 2. Given ε > 0, there is r0 > 0 such that f̃ n(π−1
x (Ur)) ⊂ π−1

f̃ n(x)
(Ur ,n) for every

r ≥ r0 and n ≥ 1, where Ur ,n ⊂ W̃u
A(f̃ n(x)) is a du-dimensional ellipsoid with volume

bounded above by (1 + ε)nduVol
W̃u

A
(An(Ur)).

Proof. Let r ≥ r0 := (2R + 2K)/εm(A|Eu), where R comes from Proposition 3.11 and
‖f̃ − Ã‖∞ ≤ K . We prove that

f̃ (π−1
x (Ur)) ⊂ π−1

f̃ (x)
(Ur ,1), (3.6)

where Ur ,1 ⊂ W̃u
A(f̃ (x)) is obtained from Ã(Ur) by first applying a homothety of ratio

(1 + ε) centred at Ã(x) and then translating by f̃ (x) − Ã(x). Observe that Ur ,1 is an
ellipsoid inside the affine du dimensional subspace passing through f̃ (x). Take any y on
the boundary of Ur . Let z := π

f̃ (x)
(f̃ (π−1

x (y))) ∈ W̃u
A(f̃ (x)). On the one hand, we have

‖z − (Ã(y) + f̃ (x) − Ã(x))‖ ≤ ‖f̃ (x) − Ã(x)‖ + ‖z − Ã(y)‖ ≤ K + ‖z − Ã(y)‖.
(3.7)

On the other hand,

‖z − Ã(y)‖ ≤ ‖z − f̃ (π−1
x (y))‖ + ‖f̃ (π−1

x (y)) − Ã(π−1
x (y))‖

+ ‖Ã(π−1
x (y)) − Ã(y)‖

≤ 2R + K . (3.8)

In the above inequalities, we have used Proposition 3.11 two times to get

‖z − f̃ (π−1
x (y)‖ ≤ R,

‖Ã(π−1
x (y)) − Ã(y)‖ ≤ ‖y − π−1

x (y)‖ ≤ R,

(observe that y − π−1
x (y) belongs to the stable subspace of A) and finally

‖f̃ (π−1
x (y))) − Ã(π−1

x (y))‖ ≤ ‖f̃ − Ã‖∞ ≤ K .

Now, putting the inequalities in equations (3.7) and (3.8) together, we get

‖z − (Ã(y) + f̃ (x) − Ã(x))‖ ≤ 2K + 2R.

Observe that Ã(y) + f̃ (x) − Ã(x) is the translation of the Ã(y) and belongs to W̃u
A(f̃ (x)).

Indeed, Ã(y) − Ã(x) is a vector which belongs to the unstable bundle of Ã and we identify
the unstable bundle at f̃ (x) with the corresponding affine subspace of Rn passing through

https://doi.org/10.1017/etds.2024.59 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.59


Rigidity of Lyapunov exponents 15

FIGURE 1. Volume comparison.

f̃ (x). Now, as the distance between (1 + ε)Ã(Ur) and Ã(Ur) is εrm(Ã|Eu) ≥ 2R + 2K

(by the choice of r), we conclude that z belongs to the ellipsoid Ur ,1 := (f̃ (x) − Ã(x)) +
(1 + ε)Ã(Ur) which proves equation (3.6). Moreover, observe that VolW̃u

A
(Ur ,1) =

(1 + ε)duVolW̃u
A
(Ã(Ur)) = (1 + ε)due

∑du
i=1 λu

i (A)VolW̃u
A
(Ur).

Now we apply again f̃ and obtain

f̃ 2(π−1
x (Ur)) ⊂ f̃ (π−1

f̃ (x)
(Ur ,1)).

As the distance between Ã(Ur ,1) and (1 + ε)Ã(Ur ,1) is larger than εrm(Ã|Eu), similarly
as above, we obtain

f̃ (π−1
f̃ (x)

(Ur ,1)) ⊂ π−1
f̃ 2(x)

(Ur ,2),

where Ur ,2 is a translation of (1 + ε)2Ã2(Ur). In fact, inductively, we obtain

f̃ n+1(π−1
x (Ur)) ⊂ f̃ (f̃ n(π−1

x (Ur))) ⊂ f̃ (π−1
f̃ n(x)

(Ur ,n)) ⊂ π−1
f̃ n+1(x)

(Ur ,n+1), (3.9)

where Ur ,n+1 is an ellipsoid with volume less than (1 + ε)(n+1)due(n+1)
∑du

i=1 λu
i (A)Vol

W̃u
A

(Ur). The last inclusion in equation (3.9) follows using the same arguments as above to
prove equation (3.6) substituting the ball Ur by the ellipsoid Ur ,n.

By Claim 1, for all x ∈ M , we have |Jac π−1
x | is uniformly bounded and, consequently,

there is a constant C0 > 0 such that

VolF (f̃ nπ−1
x (Ur)) ≤ VolF (π−1

f̃ n(x)
(Ur ,n) ≤ C0(1 + ε)nduen

∑du
i=1 λu

i (A)Vol
W̃u

A
(Ur).

It concludes the proof of the Proposition 3.15 (see Figure 1).

Proof of Theorem C. Suppose by contradiction that there is a positive volume set Z ⊂ T
d

such that
∑du

i=1 λcu
i (f , x) >

∑du

i=1 λu
i (A) for any x ∈ Z.

Let P : R
d → T

d be the covering map, D ⊂ R
d a fundamental domain and

Z̃ = P −1(Z) ∩ D. We have Vol(Z̃) > 0.
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For each q ∈ N \ {0}, we define the set

Zq =
{
x ∈ Z̃;

du∑
i=1

λcu
i (f̃ , x) >

du∑
i=1

λu
i (A) + log

(
1 + 1

q

)}
.

We have
⋃∞

q=1 Zq = Z̃, and thus there is q such that m(Zq) > 0. For each x ∈ Zq , it
follows that

lim
n→∞

1
n

log |Jacf̃ n(x)|F | >

du∑
i=1

λu
i (A) + log

(
1 + 1

q

)
.

So there is n0 such that for n ≥ n0, we have

1
n

log |Jacf̃ n(x)|F | >

du∑
i=1

λu
i (A) + log

(
1 + 1

q

)

>
1
n

log en
∑du

i=1 λu
i (A) + 1

n
log

(
1 + 1

q

)n

.

This implies that

|Jacf̃ n(x)|F | >

(
1 + 1

q

)n

en
∑du

i=1 λu
i (A).

For every n > 0, we define

Zq,n =
{
x ∈ Zq ; |Jacf̃ k(x)|F | >

(
1 + 1

q

)k

ek
∑du

i=1 λu
i (A) for all k ≥ n

}
.

There is N > 0 with Vol(Zq,N) > 0.
For each x ∈ D, consider Bx ⊂ R

d a foliated box of F . By compactness, there is finite
cover {Bxi

}ji=1 covering D. Since Wcu
f is absolutely continuous and the covering map is

smooth, then F is absolutely continuous, and thus there is some i and p ∈ Bxi
such that

VolF (Bxi
∩ F(p) ∩ Zq,N) > 0.

There is a set π−1
p (Ur) ⊂ F(p), where π−1

p (Ur) is as in Proposition 3.15 containing
p and r is large enough such that VolF (π−1

p (Ur) ∩ Zq,N) > 0. Let α > 0 be such that
VolF (π−1

p (Ur) ∩ Zq,N) = αVolF (π−1
p (Ur)), and by Proposition 3.15, we have

VolF (f̃ n(π−1
p (Ur))) ≤ C(1 + ε)den

∑
λu

i (A)Vol
Ẽu

A
(Ur). (3.10)

However,

VolF (f̃ n(π−1
p (Ur))) =

∫
π−1

p (Ur )

|Jacf̃ n(x)|F | dVolF

≥
∫

π−1
p (Ur )∩Zq,N

|Jacf̃ n(x)|F | dVolF

>

∫
π−1

p (Ur )∩Zq,N

(
1 + 1

q

)n

en
∑

i λu
i (A) dVolF

>

(
1 + 1

q

)n

en
∑

i λu
i (A)VolF (π−1

p (Ur) ∩ Zq,N)
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>

(
1 + 1

q

)n

en
∑

i λu
i (A)αVolF (π−1

p (Ur))

>

(
1 + 1

q

)n

en
∑

i λu
i (A)αVol

Ẽu
A
(Ur). (3.11)

Equations (3.10) and (3.11) give us a contradiction when n is large enough, and thus prove
Theorem C.

Acknowledgements. J.S.C. was supported by CAPES-PROEX and CNPq process
141224/2013-4. A.T. was supported by the FAPESP thematic project 2017/06463-3 and the
CNPq productivity fellowship.

REFERENCES

[1] M. Andersson, P. D. Carrasco and R. Saghin. Non-uniformly hyperbolic endomorphisms. Preprint, 2022,
arXiv:2206.08295.

[2] L. Barreira and Y. B. Pesin. Lyapunov Exponents and Smooth Ergodic Theory (University Lecture Series,
23). American Mathematical Society, Providence, RI, 2002.

[3] J. Bochi. Genericity of zero Lyapunov exponents. Ergod. Th. & Dynam. Sys. 22(6) (2002), 1667–1696.
[4] J. Bochi, A. Katok and F. Rodriguez Hertz. Flexibility of Lyapunov exponents. Ergod. Th. & Dynam. Sys.

42(2) (2022), 554–591.
[5] J. Bochi and M. Viana. The Lyapunov exponents of generic volume-preserving and symplectic maps. Ann.

of Math. (2) 161 (2005), 1423–1485.
[6] C. Bonatti and M. Viana. SRB measures for partially hyperbolic systems whose central direction is mostly

contracting. Israel J. Math. 115(1) (2000), 157–193.
[7] M. Brin and Y. Pesin. Partially hyperbolic dynamical systems. Math. USSR-Izv. 8 (1974), 177–218.
[8] J. Buzzi and T. Fisher. Entropic stability beyond partial hyperbolicity. J. Mod. Dyn. 7(4) (2013), 527–552.
[9] P. Carrasco and R. Saghin. Extended flexibility of lyapunov exponents for anosov diffeomorphisms. Trans.

Amer. Math. Soc. 375 (2022), 3411–3449.
[10] J. S. C. Costa and F. Micena. Pathological center foliation with dimension greater than one. Discrete Contin.

Dyn. Syst. 39(2) (2019), 1049.
[11] H. Furstenberg and H. Kesten. Products of random matrices. Ann. Math. Stat. 31(2) (1960), 457–469.
[12] A. Hammerlindl. Leaf conjugacies on the torus. Ergod. Th. & Dynam. Sys. 33(3) (2013), 896–933.
[13] H. Hu, Y. Hua and W. Wu. Unstable entropies and variational principle for partially hyperbolic diffeomor-

phisms. Adv. Math. 321 (2017), 31–68.
[14] A. M. Lyapunov. The general problem of the stability of motion. Internat. J. Control 55(3) (1992), 531–534.
[15] F. Micena. New derived from Anosov diffeomorphisms with pathological center foliation. J. Dynam.

Differential Equations 29(3) (2017), 1159–1172.
[16] F. Micena and A. Tahzibi. Regularity of foliations and Lyapunov exponents of partially hyperbolic dynamics

on 3-torus. Nonlinearity 26(4) (2013), 1071.
[17] F. Micena and A. Tahzibi. On the unstable directions and Lyapunov exponents of Anosov endomorphisms.

Fund. Math. 235(1) (2016), 37–48.
[18] V. I. Oseledec. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems.

Trans. Moscow Math. Soc. 19(2) (1968), 197–231.
[19] M. Roldan. Hyperbolic sets and entropy at the homological level. Discrete Contin. Dyn. Syst. 36(6) (2016),

3417.
[20] R. Saghin. Volume growth and entropy for C1 partially hyperbolic diffeomorphisms. Discrete Contin. Dyn.

Syst. 34(9) (2014), 3798–3801.
[21] R. Saghin, P. Valenzuela-Henríquez and C. H. Vásquez. Regularity of Lyapunov exponents for diffeomor-

phisms with dominated splitting. Preprint, 2020, arXiv:2002.08459.
[22] R. Saghin and Z. Xia. Geometric expansion, Lyapunov exponents and foliations. Ann. Inst. H. Poincaré

Anal. Non Linéaire 26 (2009), 689–704.
[23] A. Tahzibi. Stably ergodic diffeomorphisms which are not partially hyperbolic. Israel J. Math. 142(1)

(2004), 315–344.

https://doi.org/10.1017/etds.2024.59 Published online by Cambridge University Press

https://arxiv.org/abs/2206.08295
https://arxiv.org/abs/2002.08459
https://doi.org/10.1017/etds.2024.59

	1 Introduction
	2 Definitions and statements of results
	2.1 Lyapunov exponents of partially hyperbolic diffeomorphisms
	2.2 Lyapunov exponents of non-uniformly Anosov systems
	2.3 Regularity of foliations

	3 Proof of results
	3.1 Proof of Theorem B
	3.2 Proof of Theorem A
	3.2.1 Maximizing measures

	3.3 Proof of Theorem C

	Acknowledgements
	References

