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Abstract
Throughout the course of a flight mission, a range of aerodynamic conditions, including design-point conditions and
off-design conditions, are encountered. As the bypass ratio increases and the fan-pressure ratio decreases to reduce
the engine’s specific fuel consumption, the engine diameters increase, which results in an increase in the nacelle
weight and overall drag. To reduce its weight and drag, a shorter nacelle with a length-to-diameter ratio L/D = 0.35
is investigated. In this study, an adaptive cokriging-based multi-objective optimisation method is applied to the
design of a short aero-engine nacelle. Two nacelle performance metrics were employed as the objective functions
for the optimisation routine. The cruise drag coefficient is evaluated under cruise conditions, whereas the intake
pressure recovery is evaluated under takeoff conditions. The cokriging metamodel are refined using an effective
infilling strategy, where high-fidelity samples are infilled via the modified Pareto fitness, and low-fidelity samples
are infilled via the Pareto front. By combining parameterised geometry generation, automated mesh generation,
numerical simulations, surrogate model construction, Pareto front exploration based on the non-dominated sorting
genetic algorithm-II and sample infilling, an integrated multi-objective optimisation framework for short aero-
engine nacelles is developed. Two-objective and three-objective test functions are used to validate the effectiveness
of the proposed framework. After the optimisation process, a set of non-dominated nacelle designs is obtained
with better aerodynamic performance than the original design, demonstrating the effectiveness of the optimisation
framework. Compared with the kriging-based optimisation framework, the cokriging-based optimisation framework
outperforms the single-fidelity method with a higher hypervolume value at the same number of iteration loops.

Nomenclature
a number of nodes in the boundary layer normal to the wall
A Bernstein polynomial weighting coefficients
Ahi highlight area, m2

b average spacing on the fancowl surface in the axial direction
BP Bernstein polynomial
c number of nodes in the circumferential direction
c a column vector of the covariance of X
C class function
C covariance matrix
C̃ covariance matrix of augmented dataset
CD−cruise ratio of the drag force at the fancowl to the force produced by the dynamic pressure multiplied by the

area at highlight
Cfx skin-friction coefficient along the wing sections
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d number of nodes in the radial direction
d difference in trends between the low-fidelity and high-fidelity data
distance distance criterion
Dnac drag force at the fancowl
e number of nodes from the nacelle to the farfield
fi location of the intake throat (fraction of intake length)
fmax location of the maximum radius (fraction of nacelle length)
f i

sk normalised k-th objective function at the i-th sampling point
Gi Pareto fitness at the i-th sampling point
IPRtakeoff ratio of the total pressure at the fanface to the total pressure of the freestream at takeoff condition
k number of design variables
K binomial coefficient
lnac nacelle length, m
M∞ freestream Mach number
MGi modified Pareto fitness at the i-th sampling point
MLE maximum likelihood estimation
N1, N2 class function leading-edge and trailing-edge parametres
nhi number of high-fidelity samples
nlo number of low-fidelity samples
pj correlation parametre
Pst freestream static pressure, Pa
Pt inlet total pressure, Pa
P0 freestream total pressure, Pa
P̄0,fanface mean total pressure at the fanface, Pa
ρ scaling factor
ri intake throat radius, m
rif initial forebody radius of curvature, m
rfan radius of fan, m
rhi radius of highlight, m
rmax maximum radius of the fancowl, m
rte radius of trailing-edge, m
S shape function
Tst Freestream static temperature, K
Tt inlet total temperature, K
V∞ freestream air speed, m/s
x(i)j j-th design variable of i-th sample
x predicted sample location
X samples locations
Xhi high-fidelity sample locations
Xlo low-fidelity sample locations
X̃ argumented dataset by argumenting the observed data with the predicted data
Xk sample set of the k-th cluster
χ

(k)
infill selected high-fidelity infill samples

y+
1 first cell y-plus

ŷhi(x) maximum likelihood estimates for the predicted data
ỹ values at X̃
Y values at sample locations
Ylo(Xlo) values at low-fidelity sample locations
Yhi(Xhi) values at high-fidelity sample locations
Zd(.) difference between Zlo(.) and Zhi(.)
Zhi(.) gaussian process of high-fiedlity simulations
Zlo(.) gaussian process of low-fiedlity simulations
CRM common research model
ACARE Advisory Council for Aviation Research and Innovation in Europe
NLF natural laminar flow
CFD computational fluid dynamics
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LHS Latin hypercube sampling
CST class/shape transformation
iCST intuitive class/shape transformation
IGD inverted generational distance
HV hypervolume
IPR intake pressure recovery

Greek Symbol
ρ∞ freestream air density, kg/m3

η non-dimensional span station(0 = root, 1 = tip)
ζ non-dimensional aerofoil abscissa, y/c
ψ non-dimensional aerofoil ordinate, x/c
θj correlation coefficient of j-th design variable
θlo correlation parametre
θd correlation parametre
θ̂ d maximum likelihood estimates for θd

σd standard deviation of Zd(.)
σlo standard deviation of Zlo(.)
σ̂d maximum likelihood estimates for σd

σ̂lo maximum likelihood estimates for σlo

ψd correlation in Zd(.)
ψlo correlation in Zlo(.)
	d matrix of correlations of the form ψd

	lo matrix of correlations of the form ψlo


 circumferential angle
βnac boat-tail angle
μ̂ maximum likelihood estimates for mean of ỹ
μ̂d maximum likelihood estimates for the mean of d

1.0 Introduction
Engine nacelle is a key component of an aircraft and typically consists of an inlet cowl, a fancowl,
a thrust reverser, a core cowl and a primary exhaust nozzle. It plays an important role in the flight
mission to provide smooth aerodynamic fairing for internal core components while ensuring a smooth
airflow into the engine [1]. The aerodynamic shape optimisation of an engine nacelle is complicated. The
configuration is non-axisymmetrically controlled using relatively large design variables. In addition, an
entire flight mission includes different operating conditions, such as takeoff, crosswind and cruise. If
all these conditions are to be addressed, multi-objective optimisation must be used, which inevitably
increases the complexity of the optimisation process.

The design requirements for engine nacelles continue to change. The Advisory Council for Aviation
Research and Innovation in Europe (ACARE) proposed the goal of flight path 2050 to reduce CO2

and NOx emissions by 75% and 90% per passenger kilometer, respectively, compared to a typical new
aircraft in 2000 [2]. As for civil aero-engines, to achieve these goals, the bypass ratio is increasing
[3] by lowering the fan-pressure ratio [4]. Consequently, the fan diameter must be increased to allow
more mass flow through the fan to generate a similar level of thrust. As the nacelle size increases, so
does the associated drag and weight [5]. Therefore, advanced nacelle designs with shorter inlets and
exhaust nozzles are required to ensure that the achieved performance benefits are not outweighed by the
increased installation drag and propulsion-system weight [6–8].

Over the past 20 years, surrogate-based aerodynamic shape optimisation of engine nacelles has been
conducted for various objectives. Song and Keane [9] built a surrogate model using kriging to find bet-
ter designs with higher pressure recovery and larger scarf angles for a three-dimensional (3D) subsonic
civil engine nacelle. Fang et al. [10] developed a platform for optimising a 3D powered-on nacelle of
a transonic civil aircraft to minimise drag and increase internal volume. Nacelle optimisation has been
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obtained through hybrid methods that combine the non-dominated sorting genetic algorithm-II (NSGA-
II) and kriging models. Zhong and Li [11] developed a 3D shape design and optimisation method
for natural laminar flow (NLF) nacelles to minimise frictional drag. The procedure starts with two-
dimensional (2D) optimisation of the profile to narrow down the design space for 3D optimisation. This
is followed by building a kriging surrogate model and adopting an adaptive simulated annealing algo-
rithm to find the best design. Yao et al. [12] established an adaptive-surrogate-based robust optimisation
strategy for NLF nacelles to increase the favourable pressure gradient region and volume ratio of the
nacelle by increasing its lip radius and reducing its maximum diameter.

To better investigate the performance of the engine nacelle during the cruise condition, except for the
cruise drag, typically the spillage drag (CD-spill) and the drag rise Mach number (MDR) are considered
[13–18]. Robinson et al. [13] demonstrated a multi-objective optimisation method using an evolutionary
genetic algorithm and applied it to aerodynamic shape optimisation in a 2D axisymmetric nacelle to
study its performance under different conditions. Kriging was used as the RSM interpolation tool, and
NSGA-II was adopted to explore the 3D Pareto surfaces. Tejero et al. [18] presented an adapted method
whose main principle is that, as the genetic algorithm progresses through generations, the optimisation
focuses on narrower parts of the design space where the optimal designs are likely to be located to
improve the prediction accuracy. Surrogate models have been constructed using the kriging interpolation
methods, and NSGA-II has been used to explore the Pareto surfaces. In addition to the three objectives
mentioned above, Schreiner et al. [19] considered two off-design windmilling conditions to extend the
approach to account for off-design conditions. These are the cruise engine-out conditions (CD-windmill)
and diversion conditions (CD-diversion).

To date, few studies have focused on the optimisation of short nacelles. Cipriani [20] constructed an
optimisation framework based on kriging as a surrogate model and investigated the effects of the geo-
metrical parametres of the short-intake bottom line on the aerodynamic behaviour at the fanface under
takeoff conditions. Sanchez Moreno et al. [21] proposed a method for compact and aerodynamically
robust nacelle optimisation using a single-fidelity surrogate modeling approach based on Euler compu-
tations, whereas kriging interpolation and artificial neural networks are used for low-order models.

As discussed above, surrogate models are built only on high-fidelity data. Recently, there has been
a trend to blend low-fidelity data with high-fidelity data to further improve prediction accuracy [22].
Cokriging [23] was proposed by Kennedy and O’Hagan by blending the information from high-fidelity
data and low-fidelity data. This has been widely used in aerodynamic optimisation problems. Toal and
Keane [24] showed that cokriging is as effective as that produced using a traditional multipoint process
when optimising a transonic aerofoil but with a reduction in the total number of computational fluid
dynamics (CFD) simulations. Priyanka et al. [25] carried out aerodynamic shape optimisation of an
aerofoil using cokriging and obtained 18.08% and 38.70% improvements for maximising Cl and C3/2

l /Cd,
respectively, compared with the baseline NACA0012 aerofoil. Tejero et al. [26] optimised an installed
aero-engine short nacelle using cokriging and obtained a new configuration with an increment of 0.65%
in the net vehicle force. However, there is no open literature on multi-objective optimisation of short
nacelles based on a multi-fidelity surrogate model.

In this study, a short nacelle with a length-to-diameter ratio L/D = 0.35 was selected as the design
object. A cokriging model was adopted as the surrogate model. Takeoff and cruise conditions were
considered in the optimisation process to determine the optimal design. The remainder of this paper
is organised as follows. In Section 2.0, the individual modules within the optimisation framework
are described in detail and the proposed optimisation framework is validated using two test func-
tions. Section 3.0 presents the results and discussion of the aerodynamic shape optimisation of a
non-axisymmetric nacelle. Finally, Section 4.0 presents the conclusions.

2.0 Methodology
An integrated adaptive cokriging-based multi-objective optimisation framework was applied in this
study, denoted as MO-ACK [27]. A flowchart of the MO-ACK is shown in Fig. 1. The framework
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Figure 1. Flowchart of the MO-ACK optimisation framework.

comprised several fundamental modules, including sampling methods, parametric geometry defini-
tion, automatic mesh generation, performance computation of nacelle designs, surrogate models,
optimisation algorithms and infilling methods.

The optimisation routine was initialised using nested Latin hypercube sampling (LHS) to create the
initial samples. Such designs are useful for conducting multiple simulation experiments with varying
levels of accuracy [28]. Subsequently, initial samples of different levels of accuracy were evaluated in
parallel by means of CFD to obtain the data of interest, which was used as the input transferred to the
surrogate model. Generally, there are more samples with low-level accuracy than those with high-level
accuracy, because the calculation time of a single sample with low-level accuracy is shorter than that
with high-level accuracy. Consequently, the computational time spent on high-level accuracy samples is
at the same level. The cokriging model was then used as a surrogate model to predict objective values.
It can effectively blend two sets of data to achieve a higher prediction accuracy. The NSGA-II [29]
was driven by the trained surrogate model during the optimisation step to explore the Pareto front. After
each optimisation step, the sample dataset was updated by infilling the new samples until the termination
condition was achieved. The details of these modules are described below.
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2.1 Geometry definition
Kulfan [30, 31] proposed a unique and powerful geometry representation method called class/shape
transformation (CST). The analytical CST geometry representation methodology provides a unified and
systematic approach to present a wide variety of 2D and 3D geometries, encompassing a significantly
large design space with relatively few parametres. Zhu and Qin [32] extended the CST method and
proposed a new aerofoil parameterisation method called intuitive class/shape transformation (iCST),
which combines the flexibility and accuracy of the CST method with the intuitiveness of the PARSEC
method. Christie et al. [33] developed a system that analytically calculates the transformation matrix
for a set of geometric constraints based on the iCST method and successfully applied it to construct
a 3D axisymmetric nacelle. The iCST method has been successfully applied to parameterise various
aerodynamic shape optimisation problems [34].

In this study, the iCST method was applied to parameterise the surface of the fan cowl and intake. This
method consists of shape and class functions. The class function is used to define the general classes of
geometry, whereas the shape function is used to define specific shapes within the geometry class. The
general mathematical expression of CST is of the following form:

ζ (ψ)= CN1
N2
(ψ) S(ψ)+ψ�ζTE; ζ = z

c
; ψ = x

c
(1)

where CN1
N2

is the class function, S(ψ) is the shape function, and ψ�ζTE controls the trailing-edge
thickness. The mathematical expression of the class function is of the following form:

CN1
N2
(ψ)=ψN1 (1 −ψ)N2 (2)

where N1 and N2 are tuned to obtain different shapes, as shown in Fig. 2. For a round-nose aerofoil,
usually N1 = 0.5 and N2 = 1.0.

The shape function was constructed using a Bernstein polynomial with different weight coefficients.
The mathematical expression of the Bernstein polynomials is

BP(ψ)=
N∑

i=0

[
Ki,N ·(ψ i · (1 −ψ)N−i

)]
; Ki,N = N!

i!(N − i)! (3)

In addition, the shape function used in this study can be expressed as

S(ψ)=
N∑

i=0

[
Ai · Ki,N ·(ψ i · (1 −ψ)N−i

)]
(4)

In this work, the open source common research model (CRM) was used and was modified based
on the fan diameter to meet the short nacelle L/D = 0.35 requirement. The target geometry can be
obtained using appropriate weight coefficients. For an axisymmetric nacelle geometry, the aero-lines
of the fancowl and intake were first created using the iCST method and then revolved to construct the
surface. The aero-lines of the fancowl and intake were defined by several variables, as shown in Fig. 3.
To simplify the optimisation process and comply with the specific design requirements, six design vari-
ables (rif , rmax, fmax, βnac, ri, and fi) were chosen to parameterise a single aero-line, whereas the remaining
parametres were set as constants during the optimisation process. As shown in Fig. 3, rif denotes the
initial forebody radius of curvature, rmax denotes the maximum radius of the fancowl, fmax denotes the
location of the maximum radius, expressed as a fraction, βnac represents the boat-tail angle, ri denotes
the intake throat radius, and fi denotes the location of the intake throat, which is expressed as a fraction.
The size of the fan and the specific engine limit some of the parametres to being constant. Specifically,
when designing an engine nacelle, the rfan,, rhi, rte, lnac and lint should match the size of the engine because
the aerodynamic shape optimisation of the nacelle is usually performed after the design of the engine.
The non-asymmetry of the nacelle was achieved based on three different aero-lines at 
= 0◦,
= 90◦,
and 
= 180◦, as shown in Fig. 4, with 
= 0◦ being the top aero-line of the nacelle. It is worth men-
tioning that the aero-lines at 
= 90◦ and
= 270◦ were the same, owing to the left-right symmetry.
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(a)

(b)

(c)

Figure 2. Illustration of the effects of N1 and N2 on the class function.

Figure 3. Design variables of aero-lines.
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Figure 4. Schematic of the boundary conditions.

2.2 Computational method
In this study, the numerical simulations were performed using an in-house CFD solver. The finite-
volume method was applied to discretise the governing equations. The implicit Gauss–Seidel method
was employed for the time discretisation. Scalar dissipation coupled with the central difference was used
to discretise the spatial derivative. The shear stress transport (SST) k-w turbulence model was adopted to
close the Reynolds-averaged Navier–Stokes (RANS) equation. Ideal compressible air was assumed for
all the simulations. The freestream condition was specified using a pressure farfield boundary condition
by setting the static pressure Pst, static temperature Tst, and Mach number M∞. The takeoff and cruise
flight conditions were considered in this study. The exit-pressure boundary condition was applied at the
duct ends, extended by 1.8 fan radii downstream of the fan location. It’s understood that fan has a sig-
nificant effect on the flow around with the inlet, especially under the high angle-of-attack. Usually, the
presence of fan will improve the performance of nacelle inlet under the large angle. Hence, the current
optimisation framework of short nacelle will provide a conservative design. In the future, a fan model
will be implemented to improve the optimisation framework for short nacelle. The inlet conditions for
the bypass ducts were determined by using Pt and Tt.

To verify the accuracy and validity of the in-house solver, two cases were used as test cases: one
was the ONERA M6 wing [35] and the other was the NACA-1-Series inlets [36]. A description of the
ONERA-M6 case is presented in Table 1. The surface pressure coefficients calculated using the in-house
solver are shown in Fig. 5 and were compared with the data calculated using the FUN3D solver [37–39]
and the experimental data. Here, η refers to the span station (0 = root; 1 = tip), and the x-location was
non-dimensionalised by the local chord. The skin friction coefficient calculated using the in-house solver
is shown in Fig. 6 for comparison with the data calculated using the FUN3D solver. Evidently, in both
figures, the results calculated using the in-house solver show good agreement with the FUN3D results.
Moreover, in Fig. 5, the in-house solver performs even better than the FUN3D solver when η= 0.44 and
η= 0.65, and the in-house pressure coefficient distribution is smoother when x/c = 0.56 and x/c = 0.48
than the FUN3D pressure coefficient distribution.

An axisymmetric NACA 1-85-43.9, with a contraction ratio of 1.250, was adopted as the second test
case. Examples of the computed wall-pressure coefficient Cp distribution along the chord normalised
abscissa x/c are shown in Fig. 7 for four Mach numbers and mass flow capture ratios (MFCRs) [40].
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Table 1. ONERA M6 case description

Parametres Values
Reynolds number based on root chord 14.6 × 106

Freestream Mach number 0.84
Freestream temperature 540R
Angle-of-attack 3.06

(a) (b)

(c) (d)

Figure 5. Comparisons of surface-pressure coefficients along the wing sections.

Evidently, in all four different boundary conditions, the results calculated using the in-house solver show
good agreement with the experimental results. The above results show that the in-house solver is suitable
for the subsequent optimisation procedures.

To mesh the 3D non-axisymmetric nacelle, ANSYS ICEM was used to create a structured mesh for
the computational domain. The first cell height was set to achieve y+

1 ≈ 1 with a stretching ratio of 1.2.
The mesh details are shown in Fig. 8. As shown in Fig. 9, there are five main parametres for controlling
grid variation. The first parametre a indicates the number of nodes in the boundary layer normal to the
wall. The second parametre, b, indicates the average spacing on the fancowl surface in the axial direction,
which also influences the inner surface grid distribution owing to the structured block. The number of
nodes in the circumferential and radial directions was determined using the third parametre c and fourth
parametre d, respectively. The number of nodes from the nacelle to the farfield was determined using
the fifth parametre, e. The other parametres remained unchanged. Table 2 summarises these parametres.
Tables 3 and 4 summarises the boundary conditions used in this study. A mesh-independence study was
performed for three different mesh sizes (3.9 M, 8.67 M, and 15.8 M), as shown in Fig. 10. It can be
observed that the drag coefficient at cruise condition and pressure recovery at takeoff condition reached
the grid convergence at a mesh size of 8.67 M. Therefore, this mesh size was adopted for the following
high-fidelity CFD simulation, whereas the mesh size of 3.9 M was adopted for the low-fidelity CFD
simulation.
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(a) (b)

(c) (d)

Figure 6. Comparisons of skin-friction coefficients along the wing sections with results from FUN3D.

(a) (b)

(c) (d)

Figure 7. Comparisons of wall-pressure coefficients on the inlet forebody exterior and lip over a range
of mass-flow ratios.
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Figure 8. Mesh details of the nacelle surface and symmetry plane.

Figure 9. Illustration of grid independence varying parametres.

2.3 Multi-fidelity analysis
In engineering optimisation problems, high-fidelity samples are often difficult to obtain, whereas low-
fidelity samples are easier to obtain. With the help of low-fidelity samples, the prediction accuracy of the
surrogate model was improved. To make good use of the low-fidelity samples, multi-fidelity analysis was
performed, and a multi-fidelity surrogate model was constructed. In this study, cokriging was adopted
as the metamodel in the optimisation process. The mathematical formula for cokriging is detailed
below.
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Table 2. Parametres in grid independence

Grid Number (106) a b c d e
3.9 50 0.06 14 20 35
8.67 50 0.035 21 30 39
15.8 50 0.025 28 40 43

Table 3. Cruise boundary conditions

Parametres Values
Mach number 0.85
Altitude 35000ft
Angle-of-attack 0
Freestream temperature 219K
Outlet static pressure 29kPa

Table 4. Takeoff boundary conditions

Parametres Values
Mach number 0.25
Altitude Sea level
Angle-of-attack 18◦

Freestream temperature 293K
Outlet static pressure 87.7kPa

Figure 10. Grid-independence study results showing the cruse and takeoff condition.

The samples used in cokriging are expressed using Equation (5), which consists of low- and high-
fidelity samples.

X =
(

Xlo

Xhi

)
=(x(1)lo · · · x(nlo)

lo x(1)hi · · · x(nhi)

hi

)T (5)

where Xlo denotes the low-fidelity sample locations, Xhi denotes the high-fidelity sample locations, and
the high-fidelity sample locations coincided with a subset of the low-fidelity sample locations Xhi ⊂
Xlo. In addition, nlo represents the number of low-fidelity samples and nhi represents the number of
high-fidelity samples. The value at X was treated as if it were a realisation of a stochastic process.
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Y =
(

Ylo(Xlo)

Yhi(Xhi)

)
=(Ylo

(
X(1)

lo

) · · · Ylo

(
X(nlo)

lo

)
Yhi

(
X(1)

hi

) · · · Yhi

(
X(nhi)

hi

))T (6)

The local features of the low-fidelity and high-fidelity simulations were represented as the Gaussian
process Zlo(.). and Zhi(.). Based on the auto-regressive model, the high-fidelity simulation was approxi-
mated as a low-fidelity simulation multiplied by a scaling factor ρ plus a Gaussian process Zd(.), which
represented the difference between ρZlo(.) and Zhi(.). The approximation is expressed as

Zhi(x)= ρZlo(x)+ Zd(x) (7)
The covariance matrix is constructed as

C =
(
σ 2

lo� lo(Xlo, Xlo) ρσ 2
lo� lo(Xlo, Xhi)

ρσ 2
lo� lo(Xh, Xlo) ρσ 2

lo� lo(Xhi, Xhi)+ σ 2
d �d(Xhi, Xhi)

)
(8)

where � lo(Xlo, Xhi) denotes a matrix of correlations of the form ψlo between data Xlo and Xhi. Similarly,
� lo(Xlo, Xlo) denotes a matrix of correlations of the form ψlo between data Xlo and �hi(Xhi, Xhi) denotes
a matrix of correlations of the form ψlo between data Xhi. Furthermore, �d(Xhi, Xhi) denotes a matrix
of correlations of the form ψd between data Xhi. Here, the squared exponential kernel was selected
to describe the correlation between random variables, where pj was fixed at p(1,2,...,k) = 2. The specific
expression is as follows:

cor
[
Y
(
x(i)
)

, Y
(
x(l)
)]= exp

(
−

k∑
j=1

θj

∣∣x(i)j − x(l)j
∣∣pj

)
(9)

where k is the number of design variables, θj represents the correlation coefficient of j-th design variable,
and x(i)j is the j-th design variable of i-th sample.

The basis of cokriging is that our prediction of a new expensive sample is assumed to be consistent
with the observed data and the maximum-likelihood-estimations for the model parametres. Therefore,
we augmented the observed data with a predicted value and maximised the likelihood of this augmented
data by varying our prediction while keeping the model parametres fixed. The augmented dataset is
defined as follows:

X̃ =
⎛⎜⎝Xlo

Xhi

X

⎞⎟⎠=(x(1)lo · · · x(nlo)

lo x(1)hi · · · x(nhi)

hi x
)T

(10)

In addition, the values at locations with a predicted value are defined as

ỹ =(yT
loyT

hiŷhi(x)

)T (11)

The new covariance matrix C̃ can be expressed as

C̃ =
⎛⎜⎝ σ̂ 2

lo� lo(Xlo, Xlo) ρσ̂ 2
lo� lo(Xlo, Xhi) ρσ̂ 2

lo� lo(Xlo, x)

ρσ̂ 2
lo� lo(Xhh, Xlo) ρ2

loσ̂
2
lo� lo(Xhi, Xhi)+ σ̂ 2

d �d(Xhi, Xhi)
(
ρ2σ̂ 2

lo + σ̂ 2
d

)
�d(Xhi, x)

ρσ̂ 2
lo� lo(Xlo, x)T

(
ρ2σ̂ 2

lo + σ̂ 2
d

)
�d(Xhi, x)T

ρ2σ̂ 2
lo + σ̂ 2

d

⎞⎟⎠ (12)

Based on the Gaussian process theory, we obtain
ŷhi(x)= μ̂+ cTc−1

(
y − 1μ̂

)
(13)

where

c =
(

ρσ̂ 2
lo� lo(Xlo, x)(

ρ2σ̂ 2
lo + σ̂ 2

d

)
�d(Xhi, x)

)
(14)

μ̂= 1TC−1y

1TC−11
(15)
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Here 1 is an n × 1 column vectors of ones. To obtain μlo, σ̂ 2
lo, and θlo for the low-fidelity Gaussian

process Zlo(x), we can maximise the ln-likelihood as

−n

2
ln
(
σ 2

lo

)− 1

2
ln� lo(Xlo, Xlo)− (ylo − 1μlo)

T� lo(Xlo, Xlo)
−1
(ylo − 1μlo)

2σ 2
lo

(16)

The MLEs of

μ̂lo = 1T� lo(Xlo, Xlo)
−1ylo

1T� lo(Xlo, Xlo)
−11

(17)

σ̂ 2
lo = (ylo − 1μ̂lo)

T� lo(Xlo, Xlo)
−1
(ylo − 1μ̂lo)

nlo

(18)

and θ̂ lo could be obtained by maximising the following equation after substituting Equations (17) and
(18) in Equation (16):

−nlo

2
ln
(
σ̂ 2

lo

)− 1

2
ln|� lo(Xlo, Xlo)| (19)

To estimate μd, σ 2
d , θ d, and ρ, we defined the following:

d = yhi − ρylo(Xhi) (20)

Similarly, μd and σ 2
d were obtained by maximising the ln-likelihood of the expensive sample as

−n

2
ln
(
σ 2

d

)− 1

2
ln� lo(Xlo, Xlo)− (d − 1μd)

T
�d(Xhi, Xhi)

−1
(d − 1μd)

2σ 2
d

(21)

Equation (21) yields the MLEs of the following as:

μ̂d = 1T�d(Xhi, Xhi)
−1d

1T�d(Xhi, Xhi)
−11

(22)

σ̂ 2
d = (d − 1μ̂d)

T
�d(Xhi, Xhi)

−1
(d − 1μ̂d)

nhi

(23)

Furthermore, θ̂ d could be obtained by maximising the following equation after substituting Equations
(22) and (23) in Equation (21)

−nhi

2
ln
(
σ̂ 2

d

)− 1

2
ln|� lo(Xlo, Xlo)| (24)

With the above derivation, it is possible to use cokriging to make effective predictions. For more details
about derivation and implementation, resources could be found in Refs [41, 42].

2.4 Infill strategy
To improve the prediction accuracy of the surrogate models, the low- and high-fidelity samples must be
updated after each iteration until the termination condition is achieved. Infilling low- and high-fidelity
samples were generated from the current Pareto front to refine the surrogate models. Specifically, to
update the high-fidelity samples, the current XParete was first clustered using the K-means clustering
method. The Pareto fitness function (MG) was then calculated for each point in XParete [27, 43]:

Gi = 1 − max
j �=i

[
min

(
f i
s1 − f j

s1, . . . , f i
sk − f j

sk

)]
, i = 1, 2, · · · , m (25)
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where Gi denotes the Pareto fitness at the i-th sampling point, and f i
sk is the normalised k-th objective

function at the i-th sampling point, given by

f i
sk = fk,i − fk,min

fk,max − fk,min

(26)

where fk,i is the k-th objective function at the i-th sampling point, and fk,max and fk,min denote the maximum
and minimum values of the k-th objective function among all sampling points, respectively. When the
Pareto fitness Gi is greater than one, the sampling point is a Pareto-optimal solution. A modified Pareto
fitness function was calculated to construct a function that generates local minima around a set of Pareto-
optimal solutions.

MGi =
{
(1 − Gi)+ 2 × Gmax Gi < 1

Gi Gi ≥ 1
i = 1, 2, · · · , m (27)

A lower MG value indicates that the sample is closer to the Pareto front, and the sample point with
the minimum MG value in each cluster was selected as the high-fidelity infill sample point, as follows:

x(k)infill = arg min MG(x)with x ∈ Xk, k = 1, 2, · · · , kc (28)

where Xk is the sample set of the k-th cluster and χ(k)infill are the selected high-fidelity infill samples.
Specifically, all Pareto fronts were selected to update the low-fidelity samples.

With the high-fidelity and low-fidelity infill strategies described above, both exploration and exploita-
tion could be performed.

2.5 Genetic algorithm
The NSGA-II, originally proposed by Deb, was adopted in this study because of its proven capabilities
for global optimisation in flow aerodynamic applications. NSGA-II generates offspring using specific
types of crossover and mutation and then selects the next generation according to a non-dominated
sorting and crowding distance comparison. The initial seed was set at 36, with 36 individuals in the
following generation and a total of 5,000 generations. The mutation probability was set at 0.1 and the
crossover rate was set at 0.9. The selection operator was set as a tournament, the mutation operator was
set as a polynomial mutation, and the crossover operator was set as the simulated binary crossover.

2.6 Validation and verification
Two test functions were used to validate the effectiveness of the MO-ACK framework. To demonstrate
the role of multi-fidelity, a multi-objective optimisation framework based on kriging (MO-AK) was also
tested. Comprehensive evaluation indicators were introduced to evaluate the performance of the multi-
objective optimisation process, such as the hypervolume (HV) indicator [44] and inverted generational
distance (IGD) indicator [45]. In this study, the HV indicator was calculated through optimisation iter-
ations to measure the convergence and diversity of the Pareto front solutions. A higher value of HV
indicates better capability for exploring the Pareto front. As shown in Fig. 11, the two main factors in
the HV indicator are the reference point and the non-dominated solution. When non-dominated solu-
tions are obtained, a reference point must be validated. A schematic of a 2D HV indicator is shown in
Fig. 11. The HV indicator used in higher dimensional problems follows this analogy.

2.6.1 FON test function optimisation
The definition of the FON two-objective test function, composed of high-fidelity and low-fidelity
functions, is as follows [46]:

https://doi.org/10.1017/aer.2023.66 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.66


532 Tao et al.
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Figure 11. Schematic of a 2D HV indicator.

Minimise: f1(x1, x2, · · · , x5)= 1 − exp

(
−

5∑
i=1

(
xi − 1√

5

)2
)

Minimise: f2(x1, x2, · · · , x5)= 1 − exp

(
−

5∑
i=1

(
xi + 1√

5

)2
)

Minimise: f11(x1, x2, · · · , x5)= 1 − exp

(
−

5∑
i=1

(
0.5xi − 0.1 − 1√

5

)2
)

Minimise: f12(x1, x2, · · · , x5)= 1 − exp

(
−

5∑
i=1

(
0.6xi + 0.1 + 1√

5

)2
)

(29)

where f1 and f2 denote the high-fidelity functions, and f11 and f12 denote the low-fidelity functions. The
design space of the test function is x1, x2, · · · , x5 ∈[−4, 4].

The optimisation routine was initialised with LHS to create 20 initial high-fidelity samples and 40
initial low-fidelity samples. During each iteration, the high-fidelity samples were updated by adding
five samples using the high-fidelity infill strategy. Meanwhile, the low-fidelity samples were updated
by adding 10 samples, including the samples added to the high-fidelity samples using the low-fidelity
infill strategy. The optimisation routine ended when the prescribed 24 iterations were met. This was
consecutively tested in eight trials. The results of the eight trials are shown in Fig. 12. Moreover, 500,000
samples were generated by LHS, and the HV was calculated as the reference, as shown in Fig. 12.

As observed from Fig. 12, the MO-ACK model outperformed the MO-AK model in terms of achiev-
ing higher diversity because its HV was larger after five iterations in all trials. Eight trials were initialised
with random LHS; therefore, the initial HV values were different. Both MO-ACK and MO-AK per-
formed better than the reference. It can also be observed from the boxplots of the HV values from the
eight trials that the MO-ACK has a larger mean HV value than the MO-AK. The NSGA-II was also
included for comparison. The population size was set to 28 and the maximum generation was set to 20.
As shown in Fig. 13, the NSGA-II exhibited the worst performance.

In comparison to the MO-AK model, we can conclude that the MO-ACK model can effectively
explore the Pareto front of a relatively low-dimension optimisation problem.

2.6.2 DTLZ2 test function optimisation
The definition of the DTLZ2 three-objective test functions, composed of high-fidelity and low-fidelity
functions, is as follows [46]:
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Figure 12. HV results of the FON test function.
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Figure 13. Boxplots of the HV values of the FON test function from the eight trials.

Minimise: f1(x1, x2, · · · , x18)= (1 + g) cos(0.5x1π) cos(0.5x2π)

Minimise: f2(x1, x2, · · · , x18)= (1 + g) cos(0.5x1π) sin(0.5x2π)

Minimise: f3(x1, x2, · · · , x18)= (1 + g) sin(0.5x1π)

g =
18∑

i=3

(xi − 0.5)2

f11(x1, x2, · · · , x18)= (0.5 + 1.5g) cos(0.6x1π) cos(0.4x2π) ,

f12(x1, x2, · · · , x18)= (0.3 + 1.2g) cos(0.4x1π) sin(0.6x2π) ,

f13(x1, x2, · · · , x18)= (0.4 + 1.3g) sin(0.5x1π)

gc =
18∑

i=3

(0.8xi − 0.3)2

(30)

where f1, f2, and f3 denote the high-fidelity functions, and f11, f12, and f13 denote the low-fidelity functions.
Furthermore, the design space of the test function is x1, x2, · · · , x18 ∈[0, 1].

The optimisation routine was initialised with LHS to create 120 initial high-fidelity samples and 240
initial low-fidelity samples. During each iteration, the high-fidelity samples were updated by adding
18 samples using the high-fidelity infill strategy. Meanwhile, the low-fidelity samples were updated
by adding 36 samples, including the samples added to the high-fidelity samples using the low-fidelity
infill strategy. The optimisation routine ended when the four prescribed iterations were met. This was
consecutively tested in eight trials. The results of the eight trials are shown in Fig. 14. Moreover,
500,000 samples were generated by LHS, and the HV was calculated as the reference, as shown in
Fig. 14.

As observed from Fig. 14, the MO-ACK model outperformed the MO-AK model in terms of achiev-
ing higher diversity because its HV was larger after five iterations in all trials. Eight trials were initialised
with random LHS; therefore, the initial HV values were different. All eight trials of the MO-ACK
obtained higher HV values than the reference, whereas all eight trials of the MO-AK obtained lower
HV values. It can also be observed from the boxplots of the HV values from the eight trials that the
MO-ACK has a larger mean HV value than the MO-AK. The NSGA-II was also included for compari-
son. The population size was set to 32, and the maximum generation was set to 6. As shown in Fig. 15,
the NSGA-II exhibited the worst performance.

We may infer that the MO-ACK model can more effectively explore the Pareto front of a high-
dimensional optimisation problem than the MO-AK model.
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Figure 14. HV results of the DTLZ2 test function.

https://doi.org/10.1017/aer.2023.66 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.66


536 Tao et al.

Figure 15. Boxplots of the HV values of the DTLZ2 test function from the eight trials.

3.0 Results and discussion
The proposed optimisation framework was adopted to investigate the aerodynamic shape optimisation
of an aero-engine nacelle under different operating conditions. The optimisation routine was initialised
with LHS to create 120 initial high-fidelity samples and 240 initial low-fidelity samples. Subsequently,
the iCST method was applied to construct the nacelle geometry, which was input to ANSYS ICEM to
automatically create a structured mesh using a custom script. Computations were carried out using an in-
house solver to obtain the target values. The obtained data were then processed and passed to a surrogate
model as input. The Pareto front was explored using the NSGA-II. During each iteration, the high-
fidelity samples were updated by adding four samples using the high-fidelity infill strategy. Meanwhile,
the low-fidelity samples were updated by adding eight samples, including the samples added to the
high-fidelity samples, using the low-fidelity infill strategy. The optimisation routine ended when the
prescribed maximum iterations were met. To compare the ability to explore the Pareto front of different
optimisation strategies, the MO-AK-based optimisation was also applied. To eliminate the influence of
the initial samples, same high-fidelity initial samples were used for both MO-ACK-based optimisation
and MO-AK-based optimisation.

Three aero-lines were used to construct the geometry of the non-axisymmetric nacelle. Each aero-
line was controlled using six design variables (rif , rmax, fmax, βnac, ri, and fi). The lower and upper bounds
of these six parametres were the same for each aero-line, as listed in Table 5.

Two nacelle performance metrics were employed as the objective functions for the optimistion rou-
tine. The drag coefficient (CD−cruise) was evaluated under cruise conditions, whereas the intake pressure
recovery (IPR) was evaluated under takeoff conditions. To assess the fancowl drag, the method described
by Christie et al. [47] was used, which uses surface integrals, velocity, and pressure distribution on the
AIP and the farfield state to compute the sum of the forces on the entry streamtube and fancowl, ignoring
the forces on the post-exit streamtube at data flow conditions of the nozzle.

Here, CD−cruise was defined as the ratio of the drag force at the fancowl to the force produced by the
dynamic pressure multiplied by the area at highlight, as follows:

CD−cruise = Dnac

1
2
ρ∞V2

∞Ahi

(31)

Furthermore, IPRtakeoff was defined as the ratio of the mean total pressure at the fanface to the total
pressure of the freestream, as follows:

IPRtakeoff = P̄0, fanface

P0

(32)

After the optimisation routine, the Pareto front in terms of CD−cruise) and IPRtakeoff is graphically shown
in Fig. 16. To exhibit the Pareto front in the lower left, the Y-axis data are represented using 1 − IPRtakeoff
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Table 5. Design variable bounds

Aero-line location Parametre Upper bound Lower bound

= 0◦, 90◦, 180◦ rif 0.08 0.04

rmax 2.05 1.87
fmax 0.42 0.3
βnac 15 9
ri 1.52 1.37
fi 0.42 0.28

Figure 16. Pareto fronts for MO-AK and MO-ACK.

Figure 17. Comparisons of HV between the results of MO-AK and MO-ACK.
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Table 6. Comparison of the optimisation results from the MO-ACK and MO-AK optimisation
frameworks

No. of high-fidelity No. of low-fidelity Initial Increment
Model samples samples HV HV (%)
MO-ACK 120 + 72 240 + 144 0.9189 0.8872 3.57
MO-AK 0 0.9143 3.05

instead of IPRtakeoff. This Pareto front consisted of all the samples evaluated during the optimisation
routine, where the added and initial samples are marked with “o” and “+”, respectively. Specifically,
the samples added by the MO-ACK-based method are colored orange, whereas the samples added by
the MO-AK-based method are colored blue. The non-dominated solutions are highlighted with a larger
marker “o”. As shown in Fig. 16, the added samples are mainly clustered in the lower left, where the
solutions are much closer to the Pareto front than the initial samples. The Pareto front from the MO-
ACK shows a significant improvement in the convergence and diversity of solutions over the Pareto
front from the MO-AK. It is also quantitatively described using the HV metrics, as shown in Fig. 17. It
can be seen that the first increase in HV from the MO-ACK-based optimisation framework is 0.0180,
whereas it is only 0.0047 from the MO-AK-based optimisation framework. Moreover, the HV from the
MO-ACK-based optimisation framework ends with a value of 0.9189 after the 4th iteration, whereas the
MO-AK-based optimisation framework ends with a value of 0.9143. It is clear that the MO-ACK-based
optimisation framework can achieve a higher HV value, which means finding better solutions in terms
of convergence and diversity, compared to the MO-AK-based optimisation framework. It can be found
that with the help of the low-fidelity samples, the MO-ACK-based optimisation framework can more
efficiently explore the design space. These results are summarised in Table 6.

The results of the optimisation routine under different conditions are discussed below. Because the
Pareto solutions are mutually non-dominated, they are all feasible and acceptable in engineering prac-
tices. To better illustrate the effectiveness of the optimisation framework, a more detailed investigation
of the nacelle designs with the highest IPRtakeoff identified using the MO-ACK and MO-AK models,
referred to as A1 and B1, respectively, was carried out. The base sample was axisymmetric; therefore,
the scarf angle was zero.

The comparison of the baseline and the optimal nacelle geometry designs of A1 and B1 is shown in
Fig. 18. In comparison to the azimuthal section ψ = 0◦, ψ = 90◦ and ψ = 180◦ of the baseline, the three
lines of both optimal nacelle geometry designs of A1 and B1 are thinner. For the azimuthal section ψ =
0◦, design B1 has highest rates of change in curvature, corresponding to the highest peaks in isentropic
Mach number. For the azimuthal section ψ = 90◦, design A1 has highest rates of change in curvature.
For the azimuthal section ψ = 180◦, the rates of change in curvature of design B1 is slightly larger than
that of design A1. In all azimuthal sections, design A1 and design B1 have smaller boat-tail angles than
base sample. For the intake geometry, design A1 and design B1 are similar in all azimuthal sections and
have a smaller thickness compared to the base sample. The following is a further flow field analysis.

3.1 Results under cruise condition
Designs A1 and B1 exhibited significant reductions in terms of CD−cruise compared to the configuration of
the base sample. While design A1 exhibited a reduction of 23.6% while design B1 exhibited a reduction
of 22.2%. As shown in Fig. 19, the large variation in the nacelle drag characteristics was caused by a
fundamental change in the associated nacelle transonic flow aerodynamics. The pressure distributions
of all designs are shown in Fig. 20. As shown in Fig. 21, the isentropic Mach number distributions of the
base sample configuration on all four aero-lines were almost the same because of their axisymmetric
characteristics. The location of the peak isentropic Mach number at the top aero-line (ψ = 0◦) was
significantly different for the three selected designs and varied by 2.474. Design A1, which had the
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(a)

(b)

(c)

Figure 18. Comparisons of the nacelle geometry for the selected designs at different azimuthal sections.

highest IPRtakeoff found throughout the optimisation process, had an initial acceleration to terminate with
a strong shockwave at X = 0.14. Design A1 had a well-defined shockwave at X = 0.14, whereas the
configuration of the base sample had a similar shockwave at X = 1.697. Compared to the other two
configurations, design B1 had a shockwave in the shortest position at X = −0.777. Unlike the other two,
which experienced accelerations at the start, design B1 experienced a stable process at the beginning.
For the azimuthal section ψ = 45◦, design A1 had a similar benign transonic flow structure compared to
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Figure 19. Comparison of the isentropic Mach number contours for the selected designs.

Figure 20. Comparison of the pressure contours for the selected designs.

design B1. For the azimuthal section ψ = 90◦, design A1 had a well-defined shock wave at X = −0.325.
Design B1 and the configuration of the base sample had similar flow structures except for the intensity
of the associated transonic flow aerodynamics. For instance, the configuration of the base sample had an
isentropic Mach number of 1.207, whereas design B1 had a Mach number of 1.177. For the azimuthal
section ψ = 180◦, design B1 still had flow structures similar to those of the base sample. Design B1 had
a double shockwave structure with the first shockwave located at X = −0.370 and the second shockwave
at X = 1.510. The base sample had a double shockwave structure with the first shockwave located at X =
−0.322 and the second shockwave at X = 1.870. Design A1 had an initial acceleration and terminated
with a shockwave at X = 0.245.

The design with the largest radius of curvature at the azimuthal section ψ = 0◦ and ψ = 90◦ has the
highest peaks in isentropic Mach number, which is consistent in Figs 18 and 21. For the azimuthal section
ψ = 180◦, design A1 and design B1 have similar geometric configurations, but there is a significant
difference at isentropic Mach number distributions, which indicates the sensitivity of the flow field to
geometry and the strong nonlinearity of the transonic flow aerodynamics.

3.2 Results under takeoff condition
Designs A1 and B1 had significant improvements in terms of IPRtakeoff compared to the configuration of
the base sample. While design A1 had a reduction of 1.63%, design B1 had 1.59%. In Fig. 22, the total
pressure distribution on the fanface under the takeoff condition is clearly illustrated. For the base sample,
there was a distinct low-pressure area at the lower part of the fanface. This may occur because of the
flow separation induced by the shockwave or adverse pressure gradient. This is an undesirable situation
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(c) (d)

Figure 21. Comparisons of the isentropic Mach number for the selected designs at different azimuthal
sections.

Figure 22. Contours of the total pressure at the fanface for the selected designs.

during takeoff. If internal separation occurs, the resulting fan entrance distortion could be critical to
causing excessively high fan-blade stresses and may even cause core-compressor stalls. Designs A1 and
B1 had significant improvements in IPRtakeoff compared to the base sample. As shown in Fig. 22, the
low-pressure area at the lower part of the fanface of designs A1 and B1 became significantly smaller.
This also indicates that the IPRtakeoff was higher. As shown in Fig. 18, design A1 and design B1 are
similar in all azimuthal sections and have a smaller thickness compared to the base sample. Combined
with the flow field analysis in Fig. 22, these designs allow for a lower total pressure loss when the airflow
reaches the fan surface. Compared to design B1, the low-pressure area of design A1 was smaller and
more concentrated in the lower part.
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(a)

(b)

(c)

Figure 23. Parallel coordinates plot of optimised designs coloured by CD−cruise.

3.3 Influence of the design variables on the nacelle performance
Parallel coordinate plots represent the regions of the design space where the non-dominated solutions
are concentrated [15]. Here the ten samples of MO-ACK closest to the origin are selected as in Fig. 1,
and the distance criterion formula is defined as follows:

distance =
√
(CD−cruise − 0.03)2 + (1 − IPRtakeoff)

2 (33)
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Figure 24. Parallel coordinates plot of optimised designs coloured by IPRtakeoff.

Parallel coordinates plot of optimised designs coloured by CD−cruise is shown in Fig. 23. Parallel coor-
dinates plot of optimised designs coloured by IPRtakeoff is shown in Fig. 24. The figures show that the
range of variation of design variables rif and ri is small in all azimuthal sections and converges to the
design space boundary. This provides some guidelines for design space considerations for subsequent
preliminary designs. The overall trend of the design parametres is consistent in the azimuthal section
ψ = 0◦ and azimuthal section ψ = 180◦, and differs significantly from azimuthal section ψ = 90◦. In
the azimuthal section ψ = 0◦, design variable fmax has the largest range of variation, which is consistent
in the azimuthal section ψ = 180◦, but in the azimuthal section ψ = 90◦, design variable rmax has the
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largest range of variation. Overall, the range of design variables changed the least in the azimuthal section
ψ = 90◦ and the most in the azimuthal section ψ = 180◦. This is likely because throughout the multi-
objective optimisation process, the takeoff condition was taken into account but the crosswind condition
was not. This also demonstrates the complexity of multi-objective optimisation of non-axisymmetric
nacelles.

4.0 Conclusion
In this study, a novel multi-fidelity surrogate-based multi-objective optimisation framework was pro-
posed. The framework was compared to a conventional single-fidelity surrogate-based multi-objective
optimisation framework to verify the effect of multi-fidelity. The two-objective and three-objective test
functions were adopted, and the results show that with the help of a low-fidelity dataset, the optimisation
method can find the Pareto solutions with better convergence and higher diversity.

The proposed MO-ACK framework was also applied to the aerodynamic shape optimisation of a
non-axisymmetric nacelle. It encompassed several fundamental modules, including LHS, geometry
parameterisation based on iCST, automatic mesh generation using ANSYS ICEM, CFD numerical
analysis using an in-house solver, cokriging-based model, NSGA-II, and an infilling method for both
high-fidelity and low-fidelity data. The two-objective and three-objective test functions were used to
validate the effectiveness of the proposed framework. The results show that the MO-ACK outperformed
the MO-AK and NSGA-II in terms of Pareto-front exploration. The optimised nacelles on the Pareto
front from both optimisation strategies showed better aerodynamic performance than the base sample,
which means a higher pressure-recovery ratio in the fanface under takeoff conditions and lower drag
under cruise conditions. Compared to the results of the MO-AK framework optimisation, the Pareto
front obtained from the MO-ACK framework optimisation had a higher HV value, which increased by
4.1% and 3.5% compared to the initial HV value. The nacelle designs with the highest IPRtakeoff of the
Pareto front identified with the configuration of the MO-ACK and MO-AK frameworks were selected
as the optimised designs and referred to as A1 and B1, respectively. In terms of CD−cruise), designs A1
and B1 had significant reductions compared to the configuration of the base sample. While design A1
had a reduction of 23.6%, design B1 had a reduction of 22.2%. In terms of IPRtakeoff, designs A1 and B1
had significant improvements compared to the configuration of the base sample. While design A1 had
a reduction of 1.63%, design B1 had a reduction of 1.59%. Therefore, it can be concluded that the pro-
posed optimisation framework can be applied to the aerodynamic shape optimisation of engine nacelles
under cruise and takeoff conditions.
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