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Abstract
This paper presents a robust train localisation system by fusing a Global Navigation Satellite System (GNSS) with
an Inertial Navigation System (INS) in a tightly-coupled (TC) strategy. To improve navigation performance in
GNSS partly blocked areas, an advanced map-matching (MM) measurement-augmented TC GNSS/INS method is
proposed via an error-state unscented Kalman filter (UKF). The advanced MM generates a matched position using
a one-step predicted position from a UKF time update step with binary search algorithm and a point–line projection
algorithm. The matched position inputs as an additional measurement to fuse with the INS position to augment the
degraded GNSS pseudorange measurement to optimise the state estimation in the UKF measurement update step.
Both the real train test on the Qinghai–Tibet railway and the simulation were carried out and the results confirm
that the proposed advanced MM measurement-augmented TC GNSS/INS with error-state UKF provides the best
horizontal positioning accuracy of 0 · 67 m, which performs an improvement of about 71% and 90% with respect to
TC GNSS/INS with only error-state UKF and only error-state Extended Kalman filter in GNSS partly blocked areas.

1. Introduction

Train localisation aims to generate accurate and reliable position and velocity solutions for trains,
and plays an important role in train control systems (Jon et al., 2017). Existing train localisation
systems mainly use trackside equipment, such as track circuit, odometer and balises (or balise group),
to provide effective position solutions. To ensure the position accuracy, the balises must be installed
along the railway line within a limited distance. The trackside track circuit /odometer/ balises combined
positioning method is easy to implement with a simple structure (Marais et al., 2017). However, this
method is limited due to high operation and maintenance costs for most railway lines, especially for some
unattended railway lines. In recent years, the train localisation mode has gradually shifted from a ground
trackside method to a train-onboard method by introducing new positioning sensors or technologies to
reduce trackside equipment and maintenance costs (Heirich and Benjamin, 2017; Yuan et al., 2021).

In recent years, the Global Navigation Satellite System (GNSS) has gradually been applied in railway
applications, to not only provide real-time and accurate positioning results but also reduce trackside
equipment to further reduce construction and maintenance costs. At the same time, the concept is clearly
pointed out in the Next-Generation Train Control (NGTC) project (Gurnik, 2016). However, due to
limitations in its weakness regarding signal availability in many railway stations, mountainous areas and
urban canyons, standalone GNSS cannot provide effective positioning information in all environments.
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To overcome these shortcomings, the Inertial Navigation System (INS) with short-term accuracy is
normally applied to integrate with the GNSS to ensure short-term positioning accuracy when GNSS
signal is unavailable (Qĳin et al., 2021).

To ensure great positioning accuracy, it is necessary to choose a good GNSS/INS integration strategy.
The commonly used GNSS/INS integration strategy is loosely coupled integration by fusing GNSS-
derived and INS-derived positions and velocities (Falco et al., 2012). However, this approach requires
at least four available GNSS satellites to compute the navigation results, which limits the positioning
accuracy in GNSS partly blocked environments (Falco et al., 2017). However, tightly coupled (TC)
integration is an alternative integration mode based on the raw GNSS pseudorange and pseudorange
rate measurements (Qifan et al., 2015; Xingxing et al., 2021). With GNSS raw measurements, the TC
integration is able to generate navigation results even in areas where available GNSS satellite number
fewer than four. Thus, the TC integration strategy is adopted in this research.

In addition to a good integration strategy, an optimal state estimation algorithm is also required.
Due to the nonlinear GNSS pseudorange measurement model, it is necessary to determine a nonlinear
estimation algorithm. The general nonlinear estimation algorithm is an extended Kalman filter (EKF), in
which the nonlinear models are linearised by expanding the first-order Taylor Series at the approximate
point using the Jacobian matrix (Gustafsson and Hendeby, 2012). However, a linearised truncation may
lead to poor or even divergent filtering results, especially in the case of high nonlinearity. Moreover,
the derivation of the Jacobian matrix results in high computational overhead and affects the solution
efficiency. Given these weaknesses, the estimation performance of EKF is not very ideal in actual
nonlinear systems.

To overcome the limitation of EKF, the unscented Kalman filter (UKF) was first proposed by Julier
et al. (1995). The UKF uses the unscented transformation (UT) to generate a set of sigma points based
on the prior mean and covariance, and associate weights. Due to its merits, such as good estimation
accuracy, robustness and easy implementation, the UKF is considered in this research. The standard
UKF uses total state and focuses on systems where both the system dynamic model and the measurement
model are nonlinear, which results in high computational effort and complicated structure (Lubin et al.,
2013; Cheng et al., 2017; Knudsen and Leth, 2019). Based on these factors, an error state is used as the
estimation state to simplify the system structure. In contrast to the total state, an error state represents
just the navigation solution change and afterwards this error is added to the total state. Nevertheless,
even the error-state UKF-based TC GNSS/INS integration method is still not able to maintain train
navigation accuracy with poor GNSS measurements and an INS for more than a few minutes in GNSS
partly blocked areas.

To optimise the positioning performance and robustness of the UKF-based TC GNSS/INS integration
method in GNSS partly blocked scenarios, the map-matching (MM) method could be applied (Hensel
et al., 2011; Hoi-fung et al., 2020; Maaref and Kassas, 2020). The traditional MM method uses a shortest-
path algorithm to identify the nearest match interval to the GNSS/INS estimated position from the digital
track map (DTM) (Quddus and Washington, 2015). Then the train point is perpendicularly projected
on the nearest interval to obtain a corrected position to output as the final navigation solution (Wei
et al., 2018). However, the shortest-path search algorithm suffers from low efficiency and may affect the
real-time performance of train localisation. In addition, with the standalone perpendicular projection, it
is difficult to ensure along-track positioning accuracy due to the poor GNSS/INS integration solutions
resulting from reduced satellites and divergent accuracy of INS (Clement and Philippe, 2012; David
et al., 2015).

To address this problem, an advanced MM measurement-augmented TC GNSS/INS integration
method is proposed as an aid to the ground trackside method. Firstly, the binary search algorithm is
applied to quickly search for the nearest match interval with high search efficiency (Dan et al., 2019).
Then, an additional position update is conducted by perpendicularly projecting the one-step predicted
position on the nearest match interval to obtain a new correct MM position. This differs from the
traditional method of direct output, and the MM position is regarded as a new position measurement
with high precision to aid the poor GNSS measurements. Then, the new position difference calculated
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by MM position and INS-derived position, together with pseudorange and pseudorange rate differences,
is input as a system measurement for UKF to continue to generate robust navigation results in GNSS
partly blocked areas.

To ensure that the train can achieve robust positioning in both GNSS open-sky and partly blocked
areas, a robust train localisation system is designed using a navigation mode decision-voter to combine
two different navigation methods. The voter is based on the current number of visible satellites. The
system operates in a tightly coupled GNSS/INS method using error-state UKF when the number of
visible satellites is greater than four. The system switches to the proposed method when the number of
visible satellites is fewer than or equal to four but greater than zero.

A robust train localisation method based on tightly coupled GNSS/INS integration with error-state
UKF and advanced map-matching is proposed in this paper. The three main contribution of this research
could be generalised as follows.

• An advanced MM measurement-augmented TC GNSS/INS integration method with error-state UKF
is proposed to ensure positioning accuracy and improve system navigation performance in GNSS
partly blocked areas.

• A robust train localisation system is designed to generate accurate and robust navigation solutions in
environments where GNSS are open-sky and partly blocked.

• The actual train test was conducted and the results verify that the UKF achieves better robustness
than does the EKF. Moreover, different GNSS partly blocked scenarios were simulated and the
results indicate that the proposed advanced MM measurement-augmented TC GNSS/INS with
error-state UKF can provide good navigation solutions in GNSS partly blocked areas and is easy to
implement in practical applications.

This paper is organised as follows. Section 2 summaries common TC GNSS/INS integration, includ-
ing the GNSS measurement models, INS Mechanisation, and TC GNSS/INS integration with error-state
EKF. Section 3 describes the proposed advanced MM measurement-augmented TC GNSS/INS with
error-state. The designed robust train localisation system is introduced in Section 4. In Section 5, both the
test and simulation results are qualitatively and quantitatively analysed in detail. Finally, the conclusion
is summarised in Section 6.

2. TC GNSS/INS integration with error-state EKF

2.1. GNSS measurement model

A GNSS receiver measures the distance between the satellite and the receiver’s antenna by multiplying
the speed of light by the propagation time. Any clock-related errors and propagation errors caused by
the ionosphere and troposphere are included in the measured distance, and the measured range differs
from the true range. Thus, the basic pseudorange measurement is written as (Groves, 2008):

𝜌𝑖 =
√
(𝑥𝑠𝑖 − 𝑥

𝑟 )2 + (𝑦𝑠𝑖 − −𝑦𝑟 )2 + (𝑧𝑠𝑖 − 𝑧
𝑟 )2 + 𝐼trop + 𝐼iono + 𝑐 · 𝑑𝑡𝑟 − 𝑐 · 𝑑𝑡𝑠 + 𝜕 (1)

where 𝜌𝑖 denotes the measured pseudorange; (𝑥𝑠𝑖 , 𝑦
𝑠
𝑖 , 𝑧

𝑠
𝑖 ) and (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ) denote the position of the 𝑖𝑡ℎ

satellite and the receiver’s antenna in the Earth-centred and Earth-fixed (ECEF) frame, respectively;
𝐼iono and 𝐼trop are the ionospheric delay and tropospheric delay, respectively; 𝑑𝑡𝑟and 𝑑𝑡𝑠 denote the
clock bias of the receiver and satellite, respectively; c represents the speed of light; and 𝜕 represents the
remaining error, including the noise.

The pseudorange rate refers to the velocity obtained by differentiating the pseudo-distance in the
measurement time interval and could transform from the measured Doppler shift. The basic pseudorange
rate measurement could be expressed as (Groves, 2008):

�𝜌𝑖 = D · [v𝑠
𝑖 − v𝑟 ] + �𝐼trop + �𝐼iono + 𝑐 · �𝑑𝑡𝑟 − 𝑐 · �𝑑𝑡𝑠 + �𝜕 (2)
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where �𝜌𝑖 denotes the measured pseudorange rate; D denotes the line-of-sight vector from the 𝑖𝑡ℎsatellite
to the GNSS receiver’s antenna; v𝑠

𝑖 and v𝑟denote the velocity vector of the 𝑖𝑡ℎ satellite and the receiver,
respectively; �𝐼trop and �𝐼iono are tropospheric rate correction and ionospheric rate correction, respectively;
�𝑑𝑡𝑟 and �𝑑𝑡𝑠 denote the clock drift of the receiver and satellite, respectively; and �𝜕 represents the

remaining errors, including noise.

2.2. INS Mechanisation

An INS includes a navigation computer and inertial measurement unit (IMU), which is a self-contained
navigation system. The accelerometers and gyroscopes from the IMU are used to measure the user
acceleration and angular velocity in body frame (Right-Front-Up, RFU). The INS mechanisation is
implemented in the navigation frame (East-North-Up, ENU) to update position, velocity and attitude.
The navigation solution updating equations are given as (Groves, 2008):

�rINS𝑛
= v𝑛 − 𝝎𝑛

𝑒𝑛rINS𝑛
(3)

�vINS𝑛
= f𝑛 + g𝑛 − (𝝎𝑛

𝑒𝑛 + 2𝝎𝑛
𝑖𝑒) × vINS𝑛

(4)

�q𝑛
𝑏 =

1
2

q𝑛
𝑏𝝎

𝑏
𝑛𝑏𝑞 (5)

where the subscripts/superscripts ‘e’, ‘n’ and ‘i’ represent the ECEF frame, navigation frame and earth-
centred inertial frame, respectively; rINS𝑛

and �rINS𝑛
represent the position vector and corresponding

position rate vector, respectively;vINS𝑛 and �vINS𝑛
represent the velocity vector and corresponding velocity

rate vector respectively; g𝑛 refers to the acceleration vector; f𝑛 represents the specific force vector; 𝝎𝑛
𝑖𝑒

and 𝝎𝑛
𝑒𝑛 denote the angular velocity vector with respect to the inertial frame and the earth fixed frame

respectively; q𝑛
𝑏 and �q𝑛

𝑏 are the attitude quaternions and its attitude quaternion rate; and 𝝎𝑏
𝑛𝑏𝑞 represents

the skew-symmetric matrix of the angular velocity.
In practical applications, the lever arm between the GNSS receiver’s antenna to the IMU must be

considered due to the different install position of the INS device and the GNSS receiver’s antenna.
In this paper, we chose to correct the centre position of the INS via the INS-derived position and
attitude solution to the GNSS antenna position. The INS-derived position at the GNSS antenna centre
is calculated as:

rINS_GNSS𝑛
= rINS𝑛

+ C𝑛
𝑏L𝑏 (6)

where rINS𝑛
is the INS-derived position at the IMU centre; rINS_GNSS𝑛

is the corrected INS position at
the GNSS receiver’s antenna; L𝑏 is the lever arm vector; and C𝑛

𝑏 represents the attitude transformation
matrix.

2.3. Error-state based TC GNSS/INS integration

In the TC GNSS/INS integration, the raw GNSS pseudorange rate and pseudorange are fused with INS-
derived pseudorange rate and pseudorange. The system filter uses input measurements (pseudorange rate
difference and pseudorange difference) to estimate error states to correct the corresponding INS-derived
absolute states to obtain corrected absolute states.

The system state vector x(𝑡)of the TC integration method contains seventeen states and is given as:

x(𝑡) = [𝛿𝑟𝐸 , 𝛿𝑟𝑁 , 𝛿𝑟𝑈 , 𝛿𝑣𝐸 , 𝛿𝑣𝑁 , 𝛿𝑣𝑈 , 𝜑𝐸 , 𝜑𝑁 , 𝜑𝑈 , 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧 , 𝜂𝑥 , 𝜂𝑦 , 𝜂𝑧 , 𝛿𝑑𝑡
𝑟 , 𝛿 �𝑑𝑡𝑟 ]𝑇 (7)

where (𝛿𝑟𝐸 , 𝛿𝑟𝑁 , 𝛿𝑟𝑈 ) and (𝛿𝑣𝐸 , 𝛿𝑣𝑁 , 𝛿𝑣𝑈 ) represent position errors and velocity errors in the navi-
gation frame; (𝜑𝐸 , 𝜑𝑁 , 𝜑𝑈 ) represents attitude error in the body frame; (𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧) and (𝜂𝑥 , 𝜂𝑦 , 𝜂𝑧)
represent accelerometer bias error and gyroscope drift error; 𝛿𝑑𝑡𝑟 and 𝛿 �𝑑𝑡𝑟 represent clock bias error
and clock drift error of the receiver.
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The system measurement consists of pseudorange and pseudorange rate difference, and the
measurement vector can be written as:

y(𝑡) = [𝝆GNSS − 𝝆INS �𝝆GNSS − �𝝆INS]
𝑇 (8)

where 𝝆GNSS and 𝝆INS are the GNSS raw pseudorange and INS computed pseudorange vectors, respec-
tively; and �𝝆GNSS and �𝝆INS are the GNSS raw pseudorange rate and INS computed pseudorange rate
vectors, respectively.

The widely used tightly coupled GNSS/INS is based on the EKF. The discrete time system dynamic
model and measurement model are:

x𝑘 = 𝚽𝑘x𝑘−1 + 𝝇𝑘 (9)
y𝑘 = H𝑘x𝑘 + o𝑘 (10)

where x𝑘 and x𝑘−1 represent the system state vector at k and 𝑘 − 1 epoch; 𝚽𝑘 and 𝝇𝑘 represent the
state transition matrix and system processing noise; y𝑘 and H𝑘 represent the measurement vector and
measurement matrix; and o𝑘 represents the measurement noise. Details of these vectors and matrixes
are included in our previous research (Wei et al., 2019).

Then the standard Kalman filter is then applied to update time and measurement.

3. Advanced MM measurement-augmented TC GNSS/INS integration with error-state UKF

3.1. TC GNSS/INS with error-state UKF

The conventional EKF can estimate the system state in a tightly coupled GNSS/INS integration method,
but it brings out truncation, resulting in reduced estimation accuracy and high computational efforts by
expanding at an approximate point with first-order Taylor.

Differing from the EKF, the UKF adopts propagated sigma points to generate transformed sigma
points, and then the transformed sigma points are weighted and further summed to estimate the expecta-
tion. This can overcome the problem of linearised truncation to provide third-order estimation accuracy,
while the EKF can only result in first-order accuracy. Hence, the UKF is preferred in the research and
the TC GNSS/INS integration with error-state UKF is designed to provide navigation solutions in GNSS
open-sky areas. The error-state UKF-based tightly coupled GNSS/INS method consists of three steps:
time update, unscented transformation and measurement update.

Due to the linearity of the dynamic model for GNSS/INS integration system in this research (Goshen-
Meskin and Bar-Itzhack, 1992), the time update of UKF can be simplified and conducted as that of
standard Kalman filter:

x̂−𝑘 = 𝚽𝑘−1x̂𝑘−1 (11)
P−
𝑘 = 𝚽𝑘−1P𝑘−1𝚽𝑘−1

𝑇 + Q𝑘−1 (12)

The key of UKF is using UT to generate the sigma points of an n-dimensional random variable, and
associated weights. In this research, the one-step predicted error state x̂−𝑘 is regarded as the n-dimensional
random variable, the corresponding mean and covariance are x̂−𝑘 and P−

𝑘 . Then, the 2n+ 1 sigma vector
�̂� is calculated in detail as:

�̂�−
𝑘 0 = x̂−𝑘 (13)

�̂�−
𝑘 𝑗

= x̂−𝑘 +
(√

(𝑛 + 𝜁)P−
𝑘

)
𝑗
, 𝑗 = 1, · · · , 𝑛 (14)

�̂�−
𝑘 𝑗+𝑛

= x̂−𝑘 -
(√

(𝑛 + 𝜁)P−
𝑘

)
𝑗
, 𝑗 = 1, · · · , 𝑛
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where
(√

(𝑛 + 𝜁)P−
𝑘

)
𝑗

represents the jth column of the matrix square root; n denotes the dimension of

the error state vector x(𝑡) (it is 17 in this paper); 𝜁 = 𝛼2(𝑛 +𝜆) − 𝑛 is a scaling parameter determined by
the dimension of the error state vector n and two tuning parameters 𝛼 and 𝜆; 𝛼 determines the spread of
the sigma points around x̂−𝑘 (set to 1𝑒 − 3 in this paper); and 𝜆 is usually set as 0 (Julier et al., 1995).

The associate weights G is given as:

Gmean
0 =

𝜁

𝑛 + 𝜁
(15)

Gcov
0 = Gmean

0 + (1 − 𝛼2 + 𝑏) (16)

G𝑚𝑒𝑎𝑛
𝑗 = Gcov

𝑗 =
1

2(𝑛 + 𝜁)
, 𝑗 = 1, . . . , 2𝑛

where Gmean
𝑗 and Gcov

𝑗 are the mean weight and covariance weight associated with the jth point, respec-
tively; and b is used to incorporate any a priori knowledge about the distribution of x̂−𝑘and the optimal
value is 2 (Julier et al., 1995).

The nonlinear measurement model of error-state UKF is expressed as:

y(𝑡) = h(x(𝑡), o(𝑡)) (17)

specifically,

h(x(𝑡)) = [h𝜌 (x(𝑡)) h �𝜌 (x(𝑡))] (18)

where h𝜌 (x(𝑡)) and h �𝜌 (x(𝑡)) are the pseudorange and pseudorange rate measurement functions in
Equations (1) and (2).

Note that the pseudorange rate measurement model in Equation (2) is linear in theory. To maintain
the simplicity and consistency of the system measurement, the original pseudorange rate measure-
ment model performs 2n+ 1 linear computations using 2n+ 1 sigma points and is used as a nonlinear
measurement model in this research.

Substituting the sigma points and associate weights of the one-step predicted error state into Equation
(17), the prediction measurement points are created as:

y−𝑘 𝑗
= h[ �̂�−

𝑘 𝑗
], 𝑗 = 0, . . . , 2𝑛 (19)

The mean of the predicted measurement is computed as:

ŷ−𝑘 =
2𝑛∑
𝑗=0

Gmean
𝑗 y−𝑘 𝑗

(20)

Then the measurement innovation covariance and the cross-covariance are calculated as:

P−
𝑧𝑧 𝑘 =

2𝑛∑
0

Gcov
𝑗 [ y−𝑘 𝑗

− ŷ−𝑘 ] · [ y−𝑘 𝑗
− ŷ−𝑘 ]

𝑇 + R𝑘 (21)

P−
𝑥𝑧 𝑘 =

2𝑛∑
0

Gcov
𝑗 [ �̂�−

𝑘 𝑗
− x̂−𝑘 ] · [ y−𝑘 𝑗

− ŷ−𝑘 ] (22)
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Figure 1. Typical map-matching steps.

The gain, state and corresponding state error covariance are updated as:

K𝑘 = P−
𝑥𝑧 𝑘

P−
𝑧𝑧 𝑘 (23)

x̂+𝑘 = x̂−𝑘 + K𝑘 [y𝑘 − ŷ−𝑘 ] (24)
P+
𝑘 = P−

𝑘 K𝑘 P−
𝑧𝑧 𝑘 K𝑇

𝑘

3.2. Advanced MM-augmented TC GNSS/INS with error-state UKF

In practice, the train usually operates in GNSS partly blocked areas, such as mountains, valleys, railway
stations and so on. In such environments, the visible satellites are reduced and the GNSS geometry
becomes worse, which results in poor GNSS measurement accuracy. As a result, the positioning
performance of the TC GNSS/INS integration method also decreases. To maintain the accuracy and
robustness of the integration system, an advanced MM-augmented TC GNSS/INS integration method
with error-state UKF is proposed.

A typical MM application consists of two steps: search and projection, as shown in Figure 1. The
first step is to search for the two consecutive key points closest to the original train location from all key
points of the map. Due to the close distance between these two consecutive key points, the line segment
between the two of them can be approximated as a straight line, called the nearest match interval. Then
the original train location is projected perpendicularly on the nearest match interval to obtain a new
point. The new point is called the map-matching corrected train location and output as the final train
location.

Different from the traditional MM method with the shortest path search algorithm (Wei et al.,
2018), the proposed advanced MM-augmented TC GNSS/INS integration method uses a binary search
algorithm to quickly search for the nearest interval with less comparison times to improve the operation
efficiency. In addition, the original train location is derived from the one-step predicted location not the
final estimated location after the measurement update. This altered original train location can avoid poor
positioning results due to poor measurement quality caused by GNSS signal blockage. Most important
of all, the MM-corrected location further fuses with INS as new measurement to improve estimation
accuracy instead of output directly. This proposed method is able to improve positioning accuracy and
generate smoother positioning solutions in GNSS partly blocked areas.

3.2.1. Binary search algorithm
In the binary search algorithm, the first step is to determine the upper and lower search index u and l for
the original point. As the binary search algorithm begins at both the ends of the DTM, the initial value
of the upper search index is set to 1 and the total number of track points. Then, the corresponding points
are assumed as 𝐿𝑢 (𝑀𝑢 , 𝑁𝑢) and 𝐿𝑙 (𝑀𝑙 , 𝑁𝑙).
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Define the original point as 𝐾 (𝑀, 𝑁) and the distances from point 𝐾 (𝑀, 𝑁) to the two current search
points as 𝑑𝑢 and 𝑑𝑙 . The corresponding distance calculation function is:

⎧⎪⎪⎨
⎪⎪⎩
𝑑𝑢 =

√
(𝑀 − 𝑀𝑢)

2 + (𝑁 − 𝑁𝑢)
2

𝑑𝑙 =
√
(𝑀 − 𝑀𝑙)

2 + (𝑁 − 𝑁𝑙)
2

(25)

At the same time, the middle search index is updated by averaging the upper and lower search indexes
as:

mid = fix[(𝑢 + 𝑙)/2] (26)

The upper and lower search indexes are constantly updated by comparing the values of 𝑑𝑢 and
𝑑𝑙 . Assign the value of middle search index to the lower search index if 𝑑𝑢 is great than 𝑑𝑙 . Other-
wise, the value of middle search index is assigned to the upper search index. Then the nearest point
𝐿mid (𝑀mid, 𝑁mid) will be determined if the lower index u is equal or greater than the upper index l. The
other nearest point (𝐿mid−1 or 𝐿mid + 1) is then located, which is the closest point to 𝐾 (𝑀, 𝑁) between
the left and right points of the nearest point 𝐿mid. Based on the two nearest points, the nearest match
interval is determined.

3.2.2. Advanced MM measurement-augmented method
The accuracy of the MM depends on the accuracy of the DTM and the original point. The DTM is
usually generated by a series of highly precise and consecutive track points. To ensure the MM accuracy,
the distance between two adjacent points of the DTM is about 3 meters in this paper. For the traditional
MM-aided TC GNSS/INS method, the original point is the TC integration position (final estimated
position from UKF measurement step). However, the accuracy of the integration position is heavily
degraded in GNSS partly blocked areas, and the traditional MM-aided method is unable to ensure the
matching accuracy.

To solve the problem, this research considers MM before the degraded GNSS fusion step, and moves
MM forward from the measurement update step to the time update step of the UKF. In the time update
step, the one-predicted position can be calculated by one-step predicted position error and the INS-
derived position in a short time. Note that the one-step predicted position error position is usually set to
zero due to the closed-loop correction in the TC GNSS/INS integration method. Thus, the accuracy of
the one-step predicted position mainly depends on the INS-derived position, which performs short-time
accuracy. In this paper, the one-step predicted position outputs as an original point for MM and the
corresponding matched position is generated via point-line MM. Due to the short-time accuracy of the
matched position, it can be taken as a new measurement to fuse with INS to augment TC GNSS/INS
instead of direct output in GNSS partly blocked areas. This matched position is defined as an advanced
MM measurement.

The one-step predicted point is perpendicularly projected on the nearest match straight to obtain
the MM point rMM. An additional position is updated by fusing n advanced MM position with the
INS-derived position in the position domain. Hence, the addition measurement vector is calculated by
advanced MM position and INS position difference and is written as:

yMM(𝑡) = [rMM − rINS] (27)

The additional measurement model can be described as:

yMM (𝑡) = HMM(𝑡)x(𝑡) + oMM (𝑡) (28)

https://doi.org/10.1017/S0373463323000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463323000097


324 Dan Liu et al.

where oMM (𝑡) denotes measurement noise of the MM point and the corresponding covariance matrix is
RMM; and HMM (𝑡) denotes the measurement matrix and is calculated as:

HMM =
[
I3×3 03×3 03×3 03×3 03×3 02×2

]
(29)

With the poor GNSS pseudorange rate and pseudorange in GNSS partly blocked areas, the accuracy
of integration navigation solutions is decreased. The purpose of this research is to take advantage of
available high-precision geographic information on DTM without adding additional sensors. Hence, the
new MM position from additional position updates is applied to aid GNSS measurements and enhance
the measurement model to maintain system positioning accuracy.

Compared to the standalone UKF-based tightly coupled GNSS/INS integration method, only the
measurement vector and measurement model of the advanced MM-enhanced tightly coupled GNSS/INS
integration method have changed.

Hence, the system measurement vector of the augmented integration method can be written as:

ytriple (𝑡) = [y(𝑡)𝑇 yMM (𝑡)]𝑇 (30)

The new nonlinear measurement model is:

ytriple (𝑡) = htriple (x(𝑡), otriple (𝑡)) (31)

specifically,

htriple (x(𝑡)) = [h𝜌 (x(𝑡)) h �𝜌 (x(𝑡)) hMM (x(𝑡))] (32)

Although the MM position model is linear, it is also conducted using 2n+ 1 linear computation as
with the pseudorange rate measurement model to simplify the system structure.

The corresponding covariance Rtriple of the measurement noise otriple (𝑡) is up to the GNSS
measurement accuracy and DTM accuracy at the same time:

Rtriple =

[
R

RMM

]
(33)

Compared to traditional MM with TC GNSS/INS integration position, the proposed advanced MM
measurement-augmented TC GNSS/INS with error-state UKF could, in theory, improve position accu-
racy in GNSS partly blocked areas. On the one hand, the MM step is carried out in the time update step
of the EKF to avoid the poor effect of the degraded GNSS at the current epoch. On the other hand, the
matched position as a new measurement to fuse with INS to augment degraded GNSS to generate an
accurate position in GNSS partly blocked areas.

Figure 2 displays the architecture of advanced MM measurement-augmented TC GNSS/INS with
error-state UKF. The one-step predicted error state output not only for generating sigma points but also
for calculating one-step predicted position. Then the DTM is added to help the binary search algorithm to
locate the nearest match interval. Based on the nearest match interval, the matched position is generated
via a point-line map-matching method. Together, the augmented position measurement and original
measurement serve as the input of UKF with different weight.

4. System design of robust train localisation method

Figure 3 displays the architecture of the robust TC GNSS/INS-based train localisation method with UKF
and advanced MM. Note that the robust train localisation method consists of three parts: measurement
sensing, navigation mode decision and system filter.
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Figure 2. The architecture of the proposed advanced MM measurement augmented TC GNSS/INS
integration with error-state UKF.

Figure 3. The architecture of the designed robust train localisation method.

4.1. Measurement sensing

The GNSS measures the raw pseudorange and pseudorange rate. The IMU measures acceleration and
angular velocity to generate the train’s position and velocity and is further used to calculate the equivalent
pseudorange and pseudorange rate.

4.2. Navigation mode decision-voter

The integration navigation system determines navigation mode using the number of visible satellites.
When the train runs in areas where the number of visible satellites is greater than four (defined as GNSS
open-sky areas), the system operates in TC GNSS/INS mode with error-state UKF. When the number
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Figure 4. Testing trajectory.

of visible satellites is fewer than or equal to four and greater than zero (defined as GNSS partly blocked
areas), the system switches to advanced MM-augmented TC GNSS/INS mode with error-state UKF.
The standalone INS mode is used to provide navigation solutions in GNSS fully blocked areas for a
short time. For long tunnels, the MM-augmented INS (INS/MM) mode is used to continue to provide
navigation information.

4.3. System filter

Based on this previous decision, the system must estimate the system error state using different system
filters.

In TC GNSS/INS mode with error-state UKF, the pseudorange and pseudorange rate difference are
input as a measurement. The time updating achieves system error state prediction and corresponding
error covariance updating using Equations (11) and (12). Then the UT is used to generate sigma points
and associated weights using Equations (13) to (16). The final measurement update is conducted using
Equations (19) to (24).

In advanced MM measurement-augmented TC GNSS/INS mode with error-state UKF, the system
measurement input includes pseudorange difference, pseudorange rate difference as well as MM position
difference. The error-state UKF is still used for the nonlinear estimation.

Based on the different system filters, the proposed robust train localisation method can generate
accurate and robust navigation solutions in all environment.

5. Experiment and result analysis

To evaluate the performance of the proposed robust train localisation method, an experiment was carried
out on the Qinghai–Tibet railway in China in June 2019. The test time was about 43 minutes and the
test trajectory was approximately 43 km. Figure 4 displays the test trajectory.

The experimental device was a commercial NovAtel SPAN-FSAS inertial navigation system including
an iMAR-FSAS IMU and a NovAtel OEM6 GNSS receiver. The IMU and GNSS receiver was placed
inside the cab to collect IMU and GNSS measurements. The GNSS antenna was mounted on the roof of
the testing train. The testing train called the rail flaw detection car is shown in the top plot in Figure 5.
The lower-left and lower-right plots are NovAtel SPAN-FSAS and GNSS antenna, respectively.

The output rate of IMU raw measurements and GNSS raw measurements were 200 Hz and 10 Hz,
respectively. Note that the raw data were collected and post-processed in the presented methods. At
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Figure 5. Testing train and experimental device.

the same time, the system reference was the real-time and high-precision tightly coupled integration
solution from the SPAN inertial navigation system.

Figure 6 shows both the GNSS visibility and signal geometry during the entire testing period. The
GNSS signal geometry change is usually evaluated using the dilution of precision (DOP), which contains
position dilution of precision (PDOP), the horizontal dilution of precision (HDOP) and the vertical
dilution of precision (VDOP). As shown in Figure 6, more than four satellites were visible during most
of the testing periods. In addition, the visible satellites were obviously fewer than four during several
short periods, due to momentary GNSS signal occlusion.

5.1. Navigation performance evaluation of TC GNSS/INS with error-state UKF

To evaluate the navigation performance of the proposed methods, a brief summary of the three methods
mentioned in this paper is conducted as follows.

• Method 1: TC GNSS/INS integration with error-state EKF is abbreviated as EKF GNSS/INS method.
• Method 2: TC GNSS/INS integration with error-state UKF is abbreviated as UKF GNSS/INS method.
• Method 3: Proposed advanced MM measurement-augmented GNSS/INS integration with error-state

UKF is abbreviated as UKF GNSS/INS/ Advanced MM method.
• Method 4: Original MM-aided GNSS/INS integration with error-state UKF is abbreviated as UKF

GNSS/INS/ Original MM method. Note that the original MM algorithm is detailed in author’s
previous work (Wei et al., 2018).

Figure 7 gives the position difference for method 1 and method 2. The overall position difference of
method 2 just has a very slight offset to that of method 1 in all directions. Note that the north position
difference for method 2 performs especially smaller compared with method 1. That means the method
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Figure 6. GNSS visibility and signal geometry.

Figure 7. Position difference of method 1 and method 2.

2 can generate comparably better accuracy than method 1. In addition to the positioning accuracy, it is
obvious that the position solution of method 2 is smoother than that of method 1 in all three directions,
especially in areas where visible satellites number fewer than four (1537 · 3 s to1543 · 1 s) and satellites
frequently change (2069 · 1 s to 2497 · 5 s). This is because the posterior mean and covariance of the
estimated state with higher accuracy are approximated using a set of weighted sigma points in UKF,
which results in a better performance than EKF.

https://doi.org/10.1017/S0373463323000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463323000097


The Journal of Navigation 329

Figure 8. Velocity difference of method 1 and method 2.

Table 1. Position and velocity comparison of EKF and UKF method.

Navigation Method DRMS RMS

/ East North Up

Position (m) Method 1 1 · 65 1 · 48 0 · 73 3 · 19
Method 2 1 · 62 1 · 54 0 · 51 3 · 32

Velocity (m/s) Method 1 0 · 07 0 · 06 0 · 04 0 · 11
Method 2 0 · 06 0 · 04 0 · 04 0 · 08

Figure 8 plots the velocity difference of method 1and method 2. Similar to the position result, the
velocity result of the two methods are also almost coincide to each other except for two jump points.

To evaluate the navigation performance of method 2 more accurately, Table 1 lists the commonly
used statistical results, including position and velocity difference distance root mean Square (DRMS)
and root mean square (RMS) of method 1 and method 2. As detailed in Table 1, the position and velocity
DRMS and RMS results are almost consistent with the previous analysis, which verifies that UKF can
generate equivalent, perhaps even higher-precision, navigation solutions than EKF.

5.2. Robustness performance evaluation of proposed method

The majority of the test environment in this research is GNSS open-sky area, and contains one short
GNSS partly blocked area and four short GNSS fully blocked areas. In fact, the practical operation
environments are really complex with more and longer GNSS partly blocked scenarios than in the test
environment. Since in the areas with severe signal blockage, multipath problems of satellite signals also
occur frequently, both the GNSS partly blocked scenario and pseudorange error should be included in
the simulation. To further demonstrate the good robustness of the method in GNSS degraded areas, four
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Table 2. Simulated scenarios description.

Type Time Time of duration Scenarios type description

1 133 s–283 s 2253 s–2353 s 150 s 100 s Only four satellites are used during the two
periods

2 383 s–483 s 1800 s–1900 s 100 s 100 s Only three satellites are used during the
two periods

3 13 s–63 s 633 s–683 s 50 s 50 s Only two satellites are used during the two
periods

4 313 s–333 s 20 s Only one satellite is used during the period
5 900 s–1000 s 100 s Constant error of 100 m is added to raw

GNSS pseudorange in PRN 1 and 9 with
more than four satellites during the period
simultaneously.

Figure 9. Position difference of method 1 and method 2 with five types of simulations.

types of GNSS partly blocked scenarios and one pseudorange error scenario during eight periods were
simulated in the test experiments and are listed in Table 2.

Figure 9 shows the position difference comparison between method 1 and method 2 with five types
of simulations. For the GNSS partly blocked areas, it is obvious that the position difference of method
1 is larger than that of the method 2 during the seven simulation periods, especially during the only
one visible satellite periods (313 s to 333 s), only three visible satellites periods (383 s–483 s and 1800 s
to 1900 s) and only four visible satellites periods (2253 s to 2353 s). In the remaining three simulation
scenarios, the position difference of the two system performs a light offset to each other. During the
pseudorange error periods, the position difference of method 2 is still significantly better that of method
1. This is because the weighting factor in UKF can reduce the impact of pseudorange error on the
navigation results.
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Figure 10. Velocity difference of method 1 and method 2 with five types of simulations.

Figure 11. Position difference of method 2 with and without one visible satellite.

The velocity difference for method 1 and method 2 with five types of simulations are also calculated
and shown in Figure 10. A similar conclusion can be drawn that the velocity difference of method 2 is
smaller and smoother than that of method 1 during the simulation periods.
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Figure 12. Velocity difference of method 2 with and without one visible satellite.

This position and velocity comparison analysis further confirms that the UKF has better robustness
and accuracy than EKF in both GNSS partly blocked areas and pseudorange error areas.

To further observe the robustness of method 2 in GNSS partly blocked areas clearly and concretely,
the navigation solutions of method 2 with and without GNSS partly blocked simulations during the
seven simulated periods are drawn separately. Due to similar offset tread of method 2 with and without
simulations in four simulated scenarios, only one of the typical results in one simulated satellite are
analysed in detail, and other results are shown in Appendix A.

Figures 11 and 12 show the position and velocity difference comparison of method 2 with and without
one simulated satellite. Note that there is a sight deviation between method 2 with and without one
simulated satellite. It is further verified that method 2 can provide robust navigation solutions in GNSS
partly blocked environments.

However, the navigation solution accuracy still has a divergence in different GNSS partly blocked
environments and in different navigation directions compared to that in GNSS open-sky environments.
Therefore, an advanced map-matching using a binary search algorithm and an additional position update
with the DTM is proposed to enhance and optimise navigation performance.

To evaluate the robustness of method 3, the navigation solution comparison of method 2 and method
4 are made. To focus on analysing the robustness only in GNSS partly blocked areas, all the simulated
areas are extracted separately and spliced together according to simulation types, as shown in Figure 13.
Different simulation scenarios are separated by green dotted lines. The entire simulation time is 570 s.

As shown in Figure 13, the position difference of method 3 in orange, is obviously smaller and
smoother than that of method 2 in all three directions in each simulation scenario. It indicates that
method 3 can generate better position solutions compared with method 2 in GNSS partly blocked
environments. It is because the new MM position measurement generated by advanced map-matching is
added to locate with the original GNSS measurements. At the same time, the MM position measurement
performs high accuracy and takes up more weight than poor GNSS pseudorange measurement, which
is reflected by the corresponding measurement noise covariance matrix.

In addition, the position difference of method 4 is significantly larger than that of method 3 in area
2 with three satellites, but the position difference of both methods is very close to each other in other
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Figure 13. Comparison of position difference of method 2, method 3 and method 4 in all GNSS partly
blocked simulation areas.

GNSS partly blocked areas. The north and up position difference of method 4 is larger than that of
method 3 in all GNSS partly blocked areas. These results indicate that method 3 can generate better
position solutions compared with method 2 in GNSS partly blocked environments. It is because the
MM results of advanced MM is not directly output like original MM, but is further integrated with INS
as augmented measurement input to weaken the divergence of INS errors.

Hence, the proposed method 3 has superior accuracy and robustness compared with method 2 and
method 4 in GNSS partly blocked environments.

Figure 14 shows the comparison of velocity difference of method 2, method 3 and method 4 in all
GNSS partly blocked simulation areas. It can be seen that velocity accuracy of method 3 is improved
to a certain extent compared with method 2 and method 4. However, compared to the improvement in
position accuracy, the improvement in velocity accuracy is not obvious. The MM position measurement
is the main reason for the obvious improvement in positioning accuracy. With the aid of the MM position
measurement, the GNSS receiver’s antenna position changes, which leads to the line-of-sight vector to
change, thereby affecting the final velocity estimation.

To accurately evaluate positioning accuracy of proposed method 3 in GNSS partly blocked areas, the
position and velocity difference DRMS, RMS, mean and standard deviation (STD) of method 2, method
3 and method 4 are summarised in Table 3. The position DRMS and of method 3 is 0 · 67 m and shows
a great improvement of about 71% and 46% compared to that of method 2 in 2 · 31 m and method 4 in
1 · 25 m. The up-position RMS also exhibits an improvement of about 29% from 7 · 69 m in method 2
and about 39% from 8 · 91 m in method 4 to 5 · 43 m in method 3.
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Table 3. Difference statistics of four different navigation method with simulations.

Navigation method Mean STD RMS DRMS

/ East North Up East North Up East North Up /

Position (m) Method 1 −0 · 06 1 · 49 −14 · 16 6 · 18 2 · 25 16 · 31 6 · 18 2 · 70 21 · 59 6 · 75
Method 2 −1 · 94 0 · 60 −7 · 00 0 · 99 0 · 48 3 · 20 2 · 18 0 · 77 7 · 69 2 · 31
Method 3 −0 · 38 0 · 16 −4 · 90 0 · 34 0 · 41 2 · 36 0 · 51 0 · 44 5 · 43 0 · 67
Method 4 −0 · 56 −0 · 57 −7 · 84 0 · 70 0 · 64 4 · 21 0 · 90 0 · 86 8 · 91 1 · 25

Velocity (m/s) Method 1 0 · 04 0 · 03 −0 · 04 0 · 38 0 · 15 0 · 54 0 · 39 0 · 15 0 · 54 0 · 41
Method 2 −0 · 01 0 · 02 −0 · 06 0 · 06 0 · 03 0 · 08 0 · 06 0 · 06 0 · 10 0 · 07
Method 3 0 · 00 0 · 02 −0 · 05 0 · 04 0 · 03 0 · 07 0 · 04 0 · 04 0 · 08 0 · 06
Method 4 −0 · 02 0 · 03 −0 · 07 0 · 06 0 · 04 0 · 07 0 · 06 0 · 05 0 · 10 0 · 07
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Figure 14. Comparison of velocity difference of method 2, method 3 and method 4 in all GNSS partly
blocked simulation areas.

By comparing the position mean, STD and RMS of the two methods, a similar conclusion is obtained.
However, the velocity statistical values of the two methods are almost equal.

Furthermore, the statistical results of method 1 (EKF) in GNSS partly blocked areas are also listed
in Table 3. The position and velocity DRMS of method 2 have an obvious improvement of about 66%
(from 6 · 75 m to 2 · 31 m) and 83% (from 0 · 41 m/s to 0 · 07 m/s) compared with those of method 1.

The up position and velocity RMS of method 2 also perform an obvious improvement of about 64%
(from 21 · 59 m to 7 · 69 m) and 81% (from 0 · 54 m/s to 0 · 10 m/s). The results further demonstrate that
UKF can provide more accurate and robust navigation solutions than EKF when a train runs in GNSS
partly blocked areas.

6. Conclusion and future work

To maintain the positioning accuracy and robustness for TC GNSS/INS integration in GNSS partly
blocked areas, an advanced MM measurement-augmented TC GNSS/INS integration method with
error-state UKF is proposed. In the proposed method, a binary search algorithm is applied to quickly
find the nearest match interval from the DTM to improve search efficiency. Based on the nearest match
interval, the matched position of one-step predicted position generated via point-line projection inputs
as an augmented measurement to further fuse with INS. The augmented measurement can provide
a compensation for degraded GNSS pseudorange in position domain. In GNSS open-sky areas, the
TC GNSS/INS integration method with error-state UKF is operated to provide accurate and robust
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navigation solutions. By combining the two methods, a robust train localisation system is designed to
achieve continuous and reliable position information in all environments.

Both the real train test and simulations experiment were conducted. On the one hand, the results
confirm that UKF can provide better navigation solutions, especially in GNSS partly blocked areas.
On the other hand, the horizontal position of proposed advanced MM measurement-augmented TC
GNSS/INS method with UKF can achieve 0 · 67 m with an improvement of 71% compared with stan-
dalone UKF method. The result indicates that the advanced map-matching method could optimise
positioning accuracy and system robustness.

In addition, the proposed method in this research aims to aid trackside equipment but not to totally
replace them. Due to the slow transition from a ground trackside method to a train-onboard method,
some existing railway lines still adopt the ground trackside method to provide position information.
When the traditional method fails, the proposed method can be used as an aid or supplement to continue
to provide navigation solutions. To ensure the safety requirements of trains, the proposed method can
be considered as an aid to the traditional ground trackside method.

In summary, the proposed robust train localisation method based on TC GNSS/INS integration with
error-state UKF and advanced MM-augmented measurement can provide superior navigation solutions
in all environments in terms of both accuracy and robustness. In addition, the proposed method improves
system positioning performance in GNSS degraded areas simply by changing the MM order to generate
a new measurement without adding external sensors, which is also low-cost and easy to implement in
practical train localisation applications.

The next-step challenges to address include:

• The optimised digital track map not only includes position information, but also related attitude
information. The MM-augmented measurements can extend from single position to position/
attitude to further improve system navigation performance, while at the same time balancing
navigation performance and cost/efficiency by choosing different-precision maps for different train
localisation applications.

• The simple point-line projection method applied in this research is limited for parallel tracks or
turnouts due to the positioning accuracy of the original point. The weighted distance from point-line
projection and heading can combinate to achieve more accurate matching.

• The Beidou Navigation Satellite System (BDS) built by China (Jun et al., 2020) could be introduced
to achieve BDS/GPS multi-constellation-based TC integration. Using only a multi-system GNSS
receiver, this method could reduce the risk of single-constellation positioning decrease and failure
due to the increased number of visible satellites.

Future research would be focused on robust train integration positioning without adding other sensors
via taking full advantage of the existing sensors.

Acknowledgments. The first author would like to thank the China Scholarship Council (CSC) for supporting her visit at the
Institute of Communications and Navigation, German Aerospace Center (DLR- Deutsches Zentrum für Luft- und Raumfahrt) in
Oberpfaffenhofen, Germany.

Funding statement. This work was supported in part by the Joint Funds of the National Nature Science Foundation of China
(Grant number U1934222), National Natural Science Foundation of China (62027809) and National Natural Science Foundation
of China (U2268206).

References
Cheng, Y., Wenzhong, S. and Wu, C. (2017). Comparison of unscented and extended Kalman filters with application in vehicle

navigation. The Journal of Navigation, 70, 411–431.
Clement, F. and Philippe, B. (2012). Matching raw GPS measurements on a navigable map without computing a global position.

IEEE Transactions on Intelligent Transportation Systems, 13(2), 887–898.
Dan, L., Wei, J., Jian, W. and Wei, S. G. (2019) A Tightly-Coupled GNSS/INS/MM Integrated System Based on Binary

Search Algorithm for Train Localisation Applications. Proceedings of the 32th International Technical Meeting of the Satellite
Division of The Institute of Navigation (ION GNSS+ 2019), Miami, Florida, USA.

https://doi.org/10.1017/S0373463323000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463323000097


The Journal of Navigation 337

David, B., François, P. Maxime, V. and IFSTTAR (2015). Applying standard digital map data in map-aided, lane-level GNSS
location. The Journal of Navigation, 68, 827–847.

Falco, G., Einicke, G., Malos, J. and Dovis, F. (2012). Performance analysis of constrained loosely coupled GPS/INS integration
solutions. Sensors, 12(11), 15983–16007.

Falco, G., Pini, M. and Marucco, G. (2017). Loose and tight GNSS/INS integrations: comparison of performance assessed in
real urban scenarios. Sensors, 17(255), 1–27.

Goshen-Meskin, D. and Bar-Itzhack, I. Y. (1992). Unified approach to inertial navigation system error modelling. Journal of
Guidance, Control and Dynamics, 15(3), 648–53.

Groves, P. D. (2008). Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. Boston/London: Artech
House.

Gurnik, P. (2016). Next generation train control (NGTC): more effective railways through the convergence of main-line and
urban train control systems. Transportation Research Procedia, 14, 1855–1864.

Gustafsson, F. and Hendeby, G. (2012). Some relations between extended and unscented Kalman filters. IEEE Transactions on
Signal Processing, 60(2), 545–555.

Heirich, O. and Benjamin, S. (2017). Onboard Train Localisation with Track Signatures: Towards GNSS Redundancy. Proceed-
ings of the 30th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2017),
Portland, USA.

Hensel, S., Hasberg, C. and Stiller, C. (2011). Probabilistic rail vehicle localisation with Eddy current sensors in topological
maps. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1525–1536.

Hoi-Fung, N., Guohao, Z. and Li-Ta, H. (2020). A computation effective range-based 3D mapping aided GNSS with NLOS
correction method. The Journal of Navigation, 73, 1202–1222.

Jon, O., Alfonso, B., Iban, L. and Luis, E. D. (2017). A survey of train positioning solutions. IEEE Sensors Journal, 17(20),
6788–6797.

Julier, S. J., Uhlmann, J. K. and Durrant-Whyte, H. F. (1995) A New Approach for Filtering Nonlinear Systems. Proceedings
of 1995 American Control Conference, Washington, USA.

Jun, L., Xia, G. and Chengeng, S. (2020). Global capabilities of BeiDou navigation satellite system. Satellite Navigation, 1, 27.
Knudsen, T. and Leth, J. (2019). A new continuous discrete unscented Kalman filter. IEEE Transactions on Automatic Control,

64(5), 2198–2205.
Lubin, C., Baiqing, H., An, L. and Fangjun, Q. (2013). Transformed unscented Kalman filter. IEEE Transactions on Automatic

Control, 58, 252–257.
Maaref, M. and Kassas, Z. (2020). Ground vehicle navigation in GNSS-challenged environments using signals of opportunity

and a closed-loop map-matching approach. IEEE Transactions on Intelligent Transportation Systems, 21(7), 10425–10437.
Marais, J., Beugin, J. and Berbineau, M. (2017). A survey of GNSS-based research and developments for the European railway

signaling. IEEE Transactions on Intelligent Transportation Systems, 18(10), 2602–2618.
Qifan, Z., Hai, Z., You, L. and Zheng, L. (2015). An adaptive low-cost GNSS MEMS-IMU tightly-coupled integration system

with aiding measurement in a GNSS signal-challenged environment. Sensors, 15, 23953–23982.
Qĳin, C., Quan, Z., Xiaoji, N. and Jingnan, L. (2021). Semi-analytical assessment of the relative accuracy of the GNSS/INS

in railway track irregularity measurements. Satellite Navigation, 2, 25.
Quddus, M. and Washington, S. (2015). Shortest path and vehicle trajectory aided map-matching for low frequency GPS data.

Transportation Research Part C, 55, 328–339.
Wei, J., Sirui, C., Baigen, C., Jian, W. and Wei, S. G. (2018). A multi-sensor positioning method-based train localisation system

for low density line. IEEE Transactions on Vehicular Technology, 11(67), 10425–10437.
Wei, J., Dan, L., Baigen, C., Chris, R., J., Jian, W., and Wei, S.G. (2019). A fault-tolerant tightly-coupled GNSS/INS/OVS

integration vehicle navigation system based on an FDP algorithm. IEEE Transactions on Vehicular Technology, 68(7), 6365-
6378.

Xingxing, L., Huidan, W., Shengyu, L., Shaoquan, F., Xuanbin, W. and Jianchi, L. (2021). GIL: a tightly coupled GNSS
PPP/INS/LiDAR method for precise vehicle navigation. Satellite Navigation, 2, 26.

Yuan, X., Jing, C., Yuriy, S. S. and Yuan, Z. (2021). Distributed Kalman filter for UWB/INS integrated pedestrian localisation
under colored measurement noise. Satellite Navigation, 2, 22.

https://doi.org/10.1017/S0373463323000097 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463323000097


338 Dan Liu et al.

Appendix A

The position and velocity for method 2 with and without simulations in different scenarios are shown
as follows.

Figure A1. Position and velocity difference for method with and without four visible satellites.

Figure A2. Position and velocity difference for method 2 with and without three visible satellites.
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Figure A3. Position difference for method 2 with and without two visible satellites.
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