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m-BOUNDED EXTENSIONS OF
TOPOLOGICAL SPACES

BY
J. H. WestoN (V)

Introduction. An m-bounded extension of a topological space is an m-bounded
space which contains the original as a dense subspace. m-bounded spaces have been
studied by Gulden, Fleischman, and Weston [4], Saks and Stephenson [6], and
Woods [8]. In [8], Woods showed the existence of a maximal m-bounded extension
of a completely regular Hausdorff space X and characterized it as a subspace of fX.

We begin by examining m-bounded extensions in general and, as an example,
construct the maximal m-bounded extension of a countably compact, linearly
ordered topological space. Wallman m-bounded extensions, which parallel Wall-
man compactifications in the sense of Steiner [7], are considered in section two.
In the final section we construct a one point m-bounded extension and, as an
application, use it to strengthen a theorem of Glicksberg [3, p. 379] on products
of m-compact spaces.

All hypothesized cardinals will be assumed infinite, and the cardinality of the
set A will be designated |4].

1. m-Bounded extensions. A topological space X is said to be m-bounded if for
each A < X with |[4|<m there is a compact subset K of X with 4 < K.

An m-bounded extension of a space X is a pair (7, mX) where mX is an m-
bounded space and A:X—>mX is a homeomorphism onto a dense subset of mX.
An m-bounded extension (, mX) of a Tychonoff space is said to be a maximal
m-bounded extension of X if for each m-bounded Tychonoff space Y and continuous
function f: X— Y there is a continuous function F:mX—Y such that f=Fo A.

If (A, mX) is an m-bounded extension of X we shall identify X with its homeo-
morphic image £[Z] in mX.

TaEOREM 1.1. If X is a Tychonoff space and m is an infinite cardinal then there is a
unique Tychonoff space pmX which is a maximal m-bounded extension of X. pmX
can be identified with the set of all points in X that belong to the 8 X-closure of some
subset of X of cardinality at most m.

Proof. Woods [8,1.3]. Wood’s proof that pmX is m-bounded actually shows the
following.
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Lemma 1.1. If Y is a compact space, X = Y and mX=J {4~ I A< X, |A|I<m}
where the closure is taken in Y, then mX is m-bounded. mX will be called the m-
bounded completion of X in Y.

CoROLLARY 1.1. If Y is a compact Hausdorff space, X < Y, and mX the m-
bounded completion of X in Y, thenmX={Z | X < Z < Y, and Z is m-bounded}.

Proof. Let p emX then p is in the Y-closure of some subset 4 = X satisfying
|4|<m. If X < Z <Y and Z is m-bounded then, since Z is Hausdorff, the Z-
closure of 4 is compact and hence closed in Y. Thus the Y-closure of 4 is a subset of
Z and hence mX < N {Z | X< Z < Y and Z is m-bounded}. Since mX is m-
bounded the equality is clear.

A point x in a space X is said to be a complete accumulation point of a set A(#
&)< X if for each open neighbourhood U of x, |U N 4|=|4|. We designate
{x € X|x is a complete accumulation point of 4 in X} by Ca,4 and 4 U Ca A
by Ca,A.

LeEMMA 1.2. Let Y be a compact space, X = Y and mX the m-bounded completion
of Xin Y. If Z= {CaypA| AS X, 05%|4| <m} then Z=mX.

Proof. Suppose y € mX then y is in the Y-closure of some M = X with [M|<m.
Let n=min{|U N M| | Uopenin Y, y € U}. Then 0<n<m and y € Cap(U N M)
for some U such that |U N M|=n. Thus mX < Z. Since Cay A4 is a subset of the
Y-closure of 4, Z = mX.

DErFINITION. A space X is said to be m-compact if each open cover, of cardinality
no more than m, has a finite subcover.

THEOREM 1.2. Let X be a Tychonoff space and Y a Hausdorff compactification of X.
(@) X is m-bounded if and only if for each A = X with |A|<m, Cay A< X.
(b) X is m-compact if and only if for each A < X with |A|<m, X N Caz A#JF.

Proof. (a) X is m-bounded if and only if X=mX
(b) X is m-compact if and only if each subset of X of cardinality at most m has a
complete accumulation point (essentially outlined in Kelley [5, Problem 51]).

EXAMPLE. Let X be a linearly ordered set and X+ its order completion. For each
gap u of X (i.e. u € X*\X) let u;=u if u is the right end-gap, and u,=u if u is the
left end-gap, otherwise let u;=ux1 and u,=ux2. Let H={u, | i=1, 2u € X*\X}
and call the elements of H half gaps of X Let X*+=X U H and extend the order
of X to X*+ in the obvious fashion with u; <u, for each interior gap u of X' It is
easily seen that the topology induced on X by the interval topology on X*+ is the
interval topology on X.
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For each regular initial ordinal w, let w; denote w, with the reverse order. A
half gap u,(u,) of X is called an w,-limit of X if the set of elements of X which
precede u; (follow u,) is cofinal (coinitial) with w,(w}). The unique ordinal for
which u; is an w,-limit will be designated w, ).

LemMA 1.3. Let X be a linearly ordered topological space and u,(u,) a half gap of
X With @,y )>0o(@Wauy>®0o)- If f:X—R is a continuous function then there is a
z€ X so that f | [z, u)(f l (us, z]) is a constant. (R the real numbers).

Proof. Essentially in Gillman and Jerison [2, §5.12].

THEOREM 1.3. If X is an R,-compact linearly ordered topological space then
X=X+

Proof. Since X*+ is linearly ordered and has no gaps it is compact and Haus-
dorff. Since X is N,-compact Wy(y,) > o for each halfgap u; [4, Theorem 3]. Let f:
X—R be a bounded continuous function then, for each u,(u,) € H, there is a
zeX and an reR so that f| [z, u)=r(f| (4, z]=r). Define pf:X++—R by
Bf| X=Fand ff u)=r.

COROLLARY. If X is an Ry-compact linearly ordered topological space then pmX =
XU {u € H| Ry, ) <m} € X+,

THEOREM 1.4. Let X be a linearly ordered topological space. X is orderable if
and only if X is Ry-compact.

Proof. If X is X,-compact then X=X+*. Suppose X is not X,-compact then it
has a countable, closed, discrete subspace C. Since X is normal C is C*-embedded in
X and hence the closure D of Cin X is homeomorphic to SN (N positive integers).
The order induced on D by the order on fX gives D an interval topology which is a
subset of the relative topology on D as a subspace of X. Since the interval topology
is Hausdorff and the subspace topology is compact they are identical. Thus SN is
orderable. But clearly SN is not orderable for if it were then for each p € SN\N
BN|p would be an R-compact orderable space which is not Rs-bounded. (See [4,
Theorem 3].)

2. Wallman m-bounded extensions. The notation and terminology in this section
are taken from Steiner [7].

Let # bearing of subsets of X, &/ an & -ultrafilter on X, and ¥={4 = X | A4c
F e # implies F € o/}. Define ®(&/)=min{|4|\ 4 € &¥}.
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THEOREM 2.1. Let X be a T, space and & a separating ring of closed subsets
of X. If mX is them-bounded completion of X inw(X, F) thenmX={% e w(X, F) |
O(Z)<mj}.

Proof. &/ € mX if and only if there is an A < X such that |[4|<m and &/ € Cl 4
(closure in w(X, &)). But

ClA=N{F*|Fe% and A < F*}
=N{F*|FeZ and 4 c F}.

Thus &/ € Cl 4 if and only if 4 = F e &/ implies F € &/. Hence &/ e mX if and
only if @(&)<m.

CoROLLARY 1. If X is a T, space and  is the collection of all closed subsets of X
then mX={ e w(X, F) | A~ € A for some A = X with |4|<m}.

COROLLARY 2. If X is an infinite set with the discrete topology and mX is the m-
bounded completion of X in fX then

mX = pm X = {&/ € BX | there is an A € Z with |A] < m}.
In this case mX is an open subset of fX and hence locally compact.

Proof. If o/ e mX then |4|<m for some 4 € &. Thus & € A* < mX and 4*
is open.

THEOREM 2.2. A regular space X is m-bounded if and only if each ultrafilter &
on X with ®(F)<m converges.

Proof. Recall that for a regular space to be compact it is sufficient that each
filter on a dense subset of X have a nonvoid adherence in X.

Suppose 4 = X, |A|<m and & is a filter on 4. There is an ultrafilter ¥ on X
with # < ¢, hence ®(%)<m, and thus & converges to some point in 4~. Thus
& has a nonvoid adherence in 4~ and therefore A~ is compact.

Suppose X is m-bounded and % is an ultrafilter on X with ®(%)<m. Then
there is an 4 € & with |4|<m and hence 4 < K for some compact subset K of X.
Thus K€ & and & is convergent.

3. One point m-bounded extensions. Let X be a non m-bounded Hausdorff space,
J its topology and #={4~ | A < X, |A|<m and A~ is not compact}. Let p ¢ X,
X*=XU{p}, and T*=F U{U< X*|peU, UNXeZ, and S\U is com-
pact for each S € &}.

It is easily seen that J * is an m-bounded topology for X* and that X is dense in
X*. X* will be called the one point m-bounded extension of X.
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As in the case of the one point compactification of a space X it is important to
know conditions for X* to be Hausdorff.

THEOREM 3.1. Let X be a non m-bounded Hausdorff space and X* its one point
m-bounded extension. The following are then equivalent.

(a) X* is Hausdor[f

(b) For each x € X there is an open neighborhood U of x such that for each
A = X with |A|<m, U~ N A~ is compact.

Proof. (a)—(b): If X* is Hausdorff then for each x € X there are disjoint open
sets U, Vin X* with xe U and pe V. Let 4 < X with |4|<m then, since X'* is
m-bounded and Hausdorff, A-\V'=4-*\V is compact. Since 4~ N U~ < 47\V,
A~ N U~ is compact.

(b)—(a): Let x € X then there is an open neighborhood U of x satisfying (b).
Let V=X*\U". If 4 < X with |4]<m then A~\V=4— N U~ and thus 4~\V is
compact. Hence V' is open in X*,

DEFINITION. A space X is said to be Jocally m-bounded if for each x € X there is
an open neighborhood U of x such that U~ is m-bounded.

THEOREM 3.2. Let X be a non m-bounded regular space and X* its one point m-
bounded extension. X* is Hausdorff if and only if X is locally m-bounded.

Proof. We shall show that a regular locally m-bounded space satisfies (b) of
Theorem 3.1. Let x € X and U be an open neighborhood of x so that U~ is m-
bounded. Let ¥ be an open neighborhood of x such that V=~ < U. If 4 < X with
|[A|[<mthen V- N A~ < U~ N (UNA)y. U~ N (UN A) is compact and hence
sois V- N A~

Theorem 3.2 is not true for Hausdorff spaces as is seen by the following example
of a locally Xj-bounded Hausdorff space which does not satisfy (b) of Theorem
3.1

ExAMPLE. Let T=W(w;+1)X W(wy+1) have the product topology where
W(y)={a<y}. There is a compactification yN of the positive integers N so that
yN\N is homeomorphic to W(w;+1) [1, Example 1.1]. Let Y be the quotient
space of T'U yN obtained by identifying each « € yN\N with («, w,) € T. The
space X is the set Y with the smallest topology containing the quotient topology
and {U(x, n) | 0<a<w;, 0<n<w} where U(x, )={(B, k) e T|a<pf<Lo,,
n<k<wo} U {(w1, o)}

Each point of X except (w;, w,) has a compact neighborhood and {U(«, n) | 0<
a<w;, 0<n<wy} is an open neighborhood base of (w;, wy). U(x, n)~=(ot, w;] X
(n, ] is Ry-bounded for if C < U(a, n)~ is countable then there is a f < w, so that
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C < [W(PB+1)x W(wy+1)] U [{w,} X W(w,+1)] which is compact. X does not
satisfy (b) of Theorem 3.2 since N~ N U(x, n)~=(x, w;] X {w,} which is not
compact.

APPLICATION. In [3, pp. 379-380, Remark (2)] Glicksberg proves the following.

THEOREM 3.3. The product of at most m Hausdorff spaces, each m-compact and
all but at most one locally compact, is m-compact.

Using the concept of the one point m-bounded extension we are able to modify
Glicksberg’s proof to prove the following theorem.

THEOREM 3.4. The product of at most m regular spaces, each m-compact and all
but at most one locally m-bounded, is m-compact.

Proof. Let {X, | 1<«<w,} be the hypothesized spaces, X;'=X; the exceptional
case and X, <m. For each «>1 let X be the one point m-bounded extension of X
so that 7{X, | 1 <a<w,} is m-compact. Without further modification carry out the
proof of [3, pp. 379-380, Remark (2)].
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