PROJECTIONS IN CERTAIN CONTINUOUS
FUNCTION SPACES C(H) AND SUBSPACES OF
C(H) ISOMORPHIC WITH C(H)

DAVID W. DEAN

Notation. If 4 and B are sets then 4 — B = {x|x € A4, x ¢ B}. This
notation is also used if 4 and B are linear spaces. If X and Y are Banach
spaces an embedding of X into Y is a continuous linear mapping # of X onto
a closed subspace of ¥ which is 1 — 1. In this case X is said to be embedded
in Y. If |ux| = |x| for every x € X (] ... | stands for norm), then u embeds X
isometrically into Y. If u is onto then X and Y are isomorphic and if, in addition,
|ux| = |x| for every x € X, then X and Y are tsometric. Then an embedding
u has a continuous inverse »~! (4, p. 36) defined on #X and this fact is used
below without further reference. The conjugate space of X is denoted by X'.
Unless otherwise noted, all topological spaces considered are Hausdorff spaces.

1. Introduction. We consider Banach spaces over the real numbers R only.

Let B be a Banach space with the following property: If X is a subspace
of a Banach space Y and if « is a bounded linear map from X to B, then « has
a bounded extension #; from Y to B. Such a B is said to have property P, or
the extension property, and we write (B,P). If #; can always be taken so that
|u1] < tlu|, then B is said to have property P, and we write (B,P,) (4, pp.
94-95). If B has the above property subject to the restriction that YV be
separable, B is said to have the separable extension property and we write
(B,S) and (B,S,) in place of (B,P) and (B,P,) respectively. Clearly (B,P)
implies (B,S) and (B,P,) implies (B,S,).

With the above terminology the Hahn-Banach theorem asserts (R,P;).
Phillips (13, p. 538) noted that for any set H one has (m(H),P;) where m(H)
is the set of bounded real-valued functions on H with supremum norm.
Goodner (6) and Nachbin (12) characterized (B,P;) spaces as spaces iso-
metric to a C(H) space with H compact and extremally disconnected,
provided the unit ball of B has an extreme point.* Kelley (10) removed the
extreme point assumption. Implicit in the proofs of these characterizations
was the theorem:

If YO Band Y/B = R implies there is a projection with norm one from YV
to B, then (B,P;). In § 3 a different proof of this is given. In § 4 another repre-
sentation of a P; space is given provided it is well situated in a C(H) space
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*C(H) is the space of bounded continuous functions on H with |f| = sup {|f(k)||k€ H}.
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where H is compact and extremally disconnected. The condition is that there
exists a projection p such that if u = 2p — I, then |u| = 1.

The following (4, p. 94) are equivalent for a Banach space B:
(a) (B,P),
(b) If X D B there is a continuous projection p of X onto B.
(c) If ¥ D B; and B; is isomorphic to B there is a continuous projection p
of Y onto B;.
(d) If B;is an embedding of B in some m (H), there is a continuous projection
of m(H) onto Bi.

The proofs are similar to calculations in Theorem 7 below. From these
conditions it is seen that if (B,P), then (B,P,) for some ¢ since, letting # be an
isometric embedding of B in some m (H) and p a projection of m (H) onto u(B),
then if X D Y and v is a map of ¥ to B, the map uv of ¥ to m(H) has an
extension vy, |v;] = |uw|. The map u~'pv; is an extension of v from ¥ to B,
and |u='pvy| < |u7Y|p||v1] so that |p| provides a t.

Akilov observed that if B is a complete Banach lattice whose unit ball has a
least upper bound y, then (B,P,)). If ¥ D X, and « is a map from X to B,
substituting the function p, p(x) = |u||x|y, for the subadditive linear func-
tional in the proof of the Hahn—-Banach theorem, one shows there exists an
extension u; of # and |u. < |u| |y| (6, p. 94). If H is compact and extremally
disconnected, then C(H) is a complete Banach lattice whose unit sphere has
a least upper bound y, y(k) = 1 for all &, and |y| = 1 (6, p. 103). Hence
Kelley's result and Akilov’s result with |y| = 1 provide complete characteriza-
tions of spaces (B,P;).

Goodner (6, p. 102) proved that if B is a sublattice of C(H) and p is a pro-
Jjection of C(H) onto B with |p| = 1, then U(B) has a least upper bound y and
|y] = 1. Hence (4, p. 101) there is C(K) for which B is isometric to C(K).
The important step is to show that p is a positive map, that is, if f > 0,
then pf > 0.

THEOREM 1. If B C C(H) and p is a positive projection of C(H) onto B,
then B is a Banach lattice whose unit sphere has an upper bound. Hence (4, p. 101)
B is isomorphic to C(K) for some K. If H is compact and extremally disconnected
then B 1s a complete lattice and B is isomorphic to a space with property P.

Proof. Define an order in B by saying & is non-negative in B if and only if
there is an f > 0 in C(H) for which pf = b. Let F be the set of such 4. Then
F is a closed cone (4, p. 97) and so orders B. If b; and 4, — b are in F, then
by and b; — b are non-negative in C(H). Hence b; > b V 0, where b V 0
stands for sup (4,0) in the lattice (and & A 0 = inf (5,0)), so pb; = b; >
(b Vv 0). Hence p(b V 0) provides a supremum in B for b and 0. Also p (b A 0)
then provides an infimum so that B is a lattice. If p(6 V 0) — p(b A 0) —
(p(b1 vV 0) — p(b1 A 0)) is non-negative in B, it is non-negative in C(H),
and since p(b; V 0) — p(b: A 0) > O,
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[p(dV 0) —pd A0) > |p(d1 VO) = p(bs AO)]

so that B is a Banach lattice. Also U(B) has an upper bound p(7)
where ¢(h) = 1 for all . If H is compact and extremally disconnected then
C(H) is a complete lattice. Let A have an upper bound in B, say &. Then & is
an upper bound for 4 in C(H) and if x is the supremum of 4 in C(H), b > «,
and pb = b > px so px is a supremum for 4 in B.

To prove the last part we have that B is a complete Banach lattice whose
unit ball has a least upper bound ¢ = (7). Hence (B,P|,).

Define a new norm on B by letting ||b]| be the greatest lower bound of all ¢
for which —te < & < te. If |8] < 1, then —7 < b < i s0 |[b]| < 1. Hence B is
isomorphic to B with its new norm (4, p. 37). lf 6 VO 4+ (=8) VO >c VO
+ (—¢)VOandifte >bdV 0+ (—b) VO,thente >cV 0+ (—c¢) VO0so
that [[6 VO + (=) VO|| > |lc V O+ (—¢) VO||. Hence with the new
norm B is a complete Banach lattice whose unit sphere has a least upper
bound ¢, and |[¢]| = 1, and so B with its new norm is a P; space.

Substituting a Banach lattice Y for C(H), then the above proof shows that
B can be given an order in which it is a Banach lattice having a unit if ¥ has
and complete if Y is.

The Banach spaces m, ¢, ¢co are the spaces of bounded sequences, convergent
sequences, and sequences convergent to 0 respectively. In each case

| x| =sup ||,
n

for n € N. N stands for the positive integers. Clearly ¢y C ¢ C m. Phillips
(13, p. 539; 8) showed there is no continuous projection of m onto ¢,. His
main step was (4, p. 32) to show that if «# is a map of m to co, then u® is a
compact map. Grothendieck (7, p. 169) proved that if B is a separable sub-
space of C(H) with H compact and extremally disconnected then there is no
continuous projection of C(H) to B unless B is finite dimensional.

Goodner (6, p. 98; 1) showed that no L space whose dimension is greater
than two has property Pi. In (3) it is shown that a map p from a C(H) space
to a weakly complete subspace is weakly compact and that p? is then compact.
Hence an infinite dimensional weakly complete space cannot have property P.
In particular, no infinite dimensional reflexive space or L space can have
property P.

Sobczyk (15) proved that if X D ¢o and if X is separable, then there is a
projection p of X to ¢oand |p| < 2 (see § 3 below). Hence (co, S2).

These results answer affirmatively Banach’s conjecture (2, pp. 192-193)
that dim; (X) = dim; (V) is not sufficient to prove X is isomorphic to Y.
Form X = m @ co, where if f = f1 + f2, f1 € m, f2 € co, then [f| = max (|f4],
|fe]). Then dim; (X) = dim; (m); but if « is an isomorphism of m onto X, then
u~'pu is a projection of m onto uco, where p is the projection pf = fo. Hence
no such u exists and X and m are not isomorphic. Similarly, dim; (C([0, 1]))
dim;C([0, 1]) @ 15), but C([0, 1]) is not isomorphic to C([0, 1]) @ 1. In
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§ 2 it is shown that if (X, P,) and if dim; (X) = dim; (m), then X is iso-
morphic to m. In this section we examine a class of subspaces of certain C(H)
spaces and show they are isomorphic to the given C(H) space.

In § 3 we consider separable spaces with property S and give new proofs of
Sobczyk's result and a recent result of McWilliams (11).

2. A class of subspaces of C(H) isomorphic to C(H). A class of spaces
was examined in Theorem 1 which includes, up to isomorphism, finite dimen-
sional spaces and finite direct sums of P; spaces. An element of the class was
found to be isomorphic to a P; space. In this section the remaining known P,
spaces are shown to be isomorphic to P; spaces.

DEeFINITION. A Banach space of sequences X is a Banach space whose elements
are sequences x = {x,} of real numbers and if d, is defined on X by d, (x) = x,,
then {d,} is a uniformly bounded sequence in X'.

Notation. If u is a continuous linear mapping from the Banach space X to
the Banach space ¥, denote by #’ the conjugate mapping

u Y - X' (u'y (x) = y' (ux) foreveryx € X,y" € V).

THEOREM 2. Let X be a Banach space of sequences and let u be an isomorphism
of X into the Banach space B. Suppose p is a continuous projection from B onto
uX. Define d; € X' as above, and let ¢; = (u™'p)'d;. Let {n;} be a subsequence
of N. If Xu={x€ X|x,;, =0,0=1,2,...,} is isomorphic to X, then
By =1{b€ B|le,(b) =0,i=1,2,...,} is isomorphic to B.

Proof. Let v(X;) = X be the promised isomorphism of X; onto X and let
qg=1—p 4 uv-u=p.

¢:B — B1: We have u='pq = u=puv~—u='p = v=lu~'p since u='p(l — p) =0
and pu = u. Hence e,,;(gd) = d,;(v"'u='pd) = 0 and so ¢b € B, for everyb ¢ B.

gB = Bi:Letb; € By. Then u='pb; = x1 € X;sinced,,;(x1) = (u='p) d,; (b1)
= e,,;(b;) = 0 for each <. Let & = uvu—'pb;. Then

q((1 = p)br +8) =1 = p)bs + wu'p(1 — p)by + (1 — )b + ww~'u""pb
= (1 = p)b1 4+ 0 + 0 + wo'u="puvu="pb; = (1 — p)bs + pby = b1

gis 1 —1:1f ¢gb =0, then (1 — p)b =0 = uv—'u~1pb, since (1 — p)b €
(1 — p)B and uv—'u='pb € pB. Thus pb = b so that 0 = wo~'u~pb = uy~!
u~h. Since uv~'u~tis 1 — 1,5 =0. Q.E.D.

If H is compact and if there is a sequence {4,} C H of distinct elements and if

b S22 hOQ {hn}

one constructs an image of ¢o in C(H) as follows. About each %, choose an
open neighbourhood U, such that U; M U, # ¢ implies j = n. Select b, €
C(H) such that |, = 1 = b,(k,) and b, (k) = 0if B ¢ U,. If x € ¢, the func-
tions D% x,b, = fi form a Cauchy sequence in C(H) so that

koo

& — &
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for some g € C(H) and g(k,) = x, for each n € N. Hence ¢; can be embedded
in C(H) by letting ux = g.

CorOLLARY 2.1, If {h,} is a sequence of distinct elements in a compact space
H such that by, — ho ¢ {h,}, and if {h,,} 1s a subsequence of {h,} such that {h,} —
{ha;} 1s infinite, then By = {b € C(H)|b(h,;) = 0} is isomorphic to C(H).

Proof. With the above notation define w from C(H) to ¢y by (wb), =
b(hy) — b(ho). Then p = uw is a projection from C(H) onto u(co). It is easily
seen that if X; = {x € colx,; = 0}, then ¢, is isomorphic to X;. Using the
notation of Theorem 2 one has that &; € B; if and only if e,;(d) = 0 since
b1 € B, implies

eni (b1) = dn; (u™1pby) = dn;(why) = by(fn;) = 0

and if e,,(6;) = 0, then &,(%,;) = 0 so that b; € B,.
By Theorem 2 C(H) is isomorphic to Bj.

Remarks. With the hypothesis of Corollary 2.1 one can project from C(H)
onto B;. If g on ¢y is defined by

(), = {o if j € {ng}

x; otherwise,

define p; by (p18) (h) = (ugw — ww + 1)b(h) — b(h,) for every b € B, h € H.
If 5, € B;, then wd; € X; so that qwd; = wb; and b(hy) = 0 so pib =

uqwby, — uwby + by = uwb, — uwb, + by = b,. If b € C(H), then

= b(hm) - (u‘wz’)hn»
b (ho)
0

Il

o (p1b)hn;
and thus p;b € Bi.

Notation. If W C H denote by Cy (H) the set of & € C(H) such that 6(k) =
0 if 2 € W. Thus with the conditions of Corollary 2.1 we have Cy, ) (H) is
isomorphic to C(H).

THEOREM 3. In any infinite topological H, if C(H) = B ® Y, where Band ¥
are closed and Y 1is finite dimensional, there are points hy, . . . , b, such that B 1s
isomorphic to Cip, ) (H).

Proof. We use induction on #, the dimension of Y. If ¥ = (y)*, define
pf = f — f(h)x where h; is such that y(h;) # 0 and x = (1/y(h1))y. Then
pf(hy) = f(hy) — f(h)x(hy) = 0 and pf = f if f(h)) = 0. Hence p is a pro-
jection of C(H) onto Cuyy(H). (py)h = x(h) — x(k)x(h) = x(h) — x(h) so

.....

*(y1, ..., yx) denotes the subspace of Y generated by y1,..., ¥».
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px = 0. Hence pB = Cy(H). If pb = 0, then d(h) — b(hi)x (k) = 0 for all
h so b = b(hy)x. Since b and x are in complementary subspaces, b = 0 and
p is an isomorphism of B with Cy,(H).

Assume the theorem true if dim (Y) =% —1 and let C(H) =B ® Y
where dim (Y) =%, say Y= (y1,...,%). Then CH) =B ® (y1) ®
(y2, ..., ¥.) and, by the induction hypothesis, there are points ks, ..., k,
such that B @ (yi) is isomorphic to Cy, , .. ., my (H). Let v be the isomor-
phism. Let vy; = x and %, a point at which x (k) # 0.

Let f; = (1/x(h1))x. Let p be the projection of

Cons\ ..., mi(H) onto Cpy , .. ., ny ()
defined by pf = f — f(h1)f1. Consider the map pv of B onto
Com\... my (H), (pvy = px = x — x(h1)f1 = 0).
If pvb = 0, then vb = (vb) (hy)f: or
w_ O @)

x(h1) x(h1)

Since v is an isomorphism (vb) (k1) = 0 so vb = 0 and b = 0.

For some proofs of the next assertions see the remarks following the proof
of Theorem 6 below. If H is infinite, compact, and extremally disconnected,
and if Ay, ...,k are distinct points of H one can choose open and closed
neighbourhoods V; of k; such that V; N\ V,; = ¢ if 7 # j and such that
H — (U V) is infinite. If &y is not in U, V; then an open and closed
neighbourhood Vi;1 of % can be chosen so that Vi1 M (Vi Vi) = ¢ and
H — (Ui V,) is infinite. Thus one can choose a sequence V; of open,
closed, and mutually disjoint sets so that H — (\J; V) is infinite for each &.
James (8) shows that m can be embedded as a subspace m; of C(H) (and so
(B,P;) implies B is finite dimensional or not separable) of functions constant
on each V; and vanishing off \U,V,. If f € m; corresponds to x € m, then
fh) =x;if b € V..

THEOREM. 4 If H 1is compact and infinite and if H contains a convergent
sequence of distinct elements or if H s extremally disconnected then a complement
of a finite dimensional subspace in C(H) is isomorphic to C(H).

Proof. Let hy — ho, where k) is a convergent sequence of distinct points.
If C(H) =X ® B where X is finite dimensional and B is closed, then by
Theorem 3, B is isomorphic to

CUH ..... hic} (H>y
for some h, . .., h; and, clearly, these k; may be chosen so that &y # 4, j =
1,...,k By dropping to a subsequence if necessary we can further assume
that hg, ..., ke ¢ {k;}. Let &'' be the sequence
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o {hj ifj < k.
’ Wi if 7> k.
The subspace of ¢, of those x such that x; = 0 if j < % is isomorphic to ¢,
and so by Corollary 2.1

is isomorphic to C(H).

If H is compact and extremally disconnected construct the sets V; such that
h: € Vi, 1 < k. Since those elements of m vanishing on the first £ co-ordinates
form an isomorphic subspace of m, again

Ciny o .. ¢y (H)
is isomorphic to C(H), by Theorem 2.

Remarks. The following properties of a compact, extremally disconnected
H are needed below.

If U is open, then U is open. Equivalently: if U and V are disjoint open sets,
then U NV = ¢. This property defines an extremally disconnected space.

If U is an infinite open and closed set in H and if h € U, then U— {h} con-
tains an infinite open and closed set.

Proof. Ii, for each neighbourhood Vof Asuch that VC U, U - V isjgite,
then each sequence {%,} C U — {k} of distinct elements is open and {k,} =
{h.} U {h}. Thus two such sequences which are disjoint are open and do not
have disjoint closures. Hence there is a neighbourhood V of % such that
U — Vis infinite. If f € C(H) takes the value 1 on U — V, 0 at %, and 0 off
U, then

W) >3
is infinite, open, and closed.

THEOREM 5. If H is compact and extremally disconnected and if m is embedded
in C(H) as a space of functions i constant on each V; where { V,} is a sequence
of mutually disjoint open and closed sets, let hy € V. Suppose f(h;) = x; of f
corresponds to x in the embedding. Then a subspace B of C(H) complementary
to T is isomorphic to C(H) or 1is finite dimensional.

To prove this theorem we use the following:

LEmMMA. If X = X1 ® X2 ® X; where X is a Banach Space and X1, Xq, X3
are closed subspaces, and if X ® X3 is isomorphic to X, then X1 ® X, is
isomorphic to X.

Proof. Let u be an isomorphism of X, onto X, @ X;. Identifying an element
x; of X; with the element xs @ 0 or 0 @ x; in X5 ® X; one has #~! defined
on X, to X, Let p, be the projection of X to X, given by the decomposition
X=X,®X:® X; and let w be defined on X; ® X: by w = p1 + up..
Then w is linear and continuous.

https://doi.org/10.4153/CJM-1962-031-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1962-031-2

392 DAVID W. DEAN

Suppose wf = 0 = pif + upsf. Since p1f and upsf are in complementary
subspaces of X, p1f = 0 = upsf and so pof = 0 since u is an isomorphism.
Since f € X1 @ X, prf +pof =f=0so0 that wis 1 — 1.

It remains to show w is onto. Let x = T + x3; where £ € X; ® X.and x; €
X3. For some Xo € Xz, UXo = X3 and let f = pl.'i + ’I/t—lpzj + Xo. Then w_f =
= p1%% + puTIPeT 4+ pixe + upopri¥ + upouTlpek + upsx,s. Since pi’T = pif,
puTps = 0, pixs = 0, pop1 = 0, then upsp1& = 0, pa™! = u™!, upu=1poxT =
po&. Finally poxs = x5 s0 that upsxs = uxs = x3. Thus the equation reduces to
wf = p1& + poF + x3 = T + x3 = x. Hence w is onto.

Proof of Theorem 5. Let w be the embedding of m to m. If p is defined by
pf = wx, where x; = f(h;), then p is a projection of C(H) onto 7. Clearly
pf = 0if and only if f € Cp;y(H) so that C;y (H) is complementary to m.
Let # be defined on B by ub = f, where b = f 4+ x and f € Cy;,,(H), x € 7.
Then # is linear, continuous, and 1 — 1 (if 8 = x, then & = 0 = x since B
and 7 are complementary). If f € Cy,,;(H) and if f = b + x, where b € B and
x € m,then b = f + (—x) so that u is onto. Hence B is isomorphic to Cy;;, (H)
and it is enough to show Cy;)(H) is isomorphic to C(H).

If we can write C(H) = 4 ® m; ® m where A, m; are closed subspaces of

Con(H), Cinopy() = 4 @ my

and m; is isomorphic to m, then it is easily seen that m; @ m is isomorphic
to m, so the lemma will conclude the proof. Since f € Cy,)(H) if and only if

f € Cayy (H)

and since Cy;;y (H) is infinite dimensional, it follows that H — {A,} is infinite.

Suppose now that if 7 is an open set such that {#;} C V, then H — V is

finite. Then H — {h,} is a discrete set and let {%,’} be a sequence of distinct
points in H — V. Embed ¢oin C(H) by letting ux(k) = 0if o ¢ {k,'} and x, if

h=h,.
To show ux € C(H), clearly ux is continuous at & if # € H — {h;}. If
h € {h;} choose k such that » > k implies x, < e. Then H — {h{, ..., h)}

is a neighbourhood of any point in {k;} and ux(h) < eif h € H — {h{, ...,
hy'}. Thus ux is continuous at every point so that ux € C(H).

Clearly u is an isomorphism of ¢ into C(H) and we can project from C{,,}
(H) onto ucy, say by ¢. Then ¢(1 — p) is a projection of C(H) onto uc,, con-
tradicting Grothendieck’s Theorem (see the Introduction).

Hence there is an open set V containing {k;} such that H — V7 is infinite.
If f€ C(H) is such that f(h) =0 if h € {h;} and f(h) =1 if h€ H-V,
then W = {h|f(h) > 3} is an infinite open and closed set in H — {£;}.

Now W in the relative topology is compact and extremally disconnected
so that we can embed m in C(W). C(W) can then be embedded in

wn (H) C C(H)
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by letting

_ffmyith ew
uf(h) ‘{0 ith g W

Thus m can be embedded isomorphically in

Ciney (H).
Remarks. If H is compact and extremally disconnected, then Ci,, . . ., Bin}
and Cy,;(H) are complete lattices. They do not have units however, and
hence they are not in the class considered in Theorem 1, unless {4y ,. .., k,},

{h} are open and closed.
We conclude this section with a sufficient condition that a subspace of m be
isomorphic to m.

THEOREM 6. Let m = A ® B where A and B are closed subspaces of m. Then
there are subspaces M and A, of m isomorphic to m and A respectively and such
that m = 4, @ m.

Cororrary. If (X,P;) and if dim; (X) = dim; (m), then X and m are
isomorphic.

Proof. Since dim;(X) = dim;(m), X is isomorphic to a subspace 4 of m
and m is isomorphic to a subspace m; of X. Both 4 and m; are P, spaces for
some ¢ so we can write m = 4 @ B and X = m; ® Y for closed subspaces
B of m and Y of X.

Theorem 6 promises that m = 4; @ m where 4; and 7 are isomorphic to
A and m respectively. Then X and 4, are isomorphic, say under u, uX = 4.
Then A; = um, ® uY = m: @ B, where m. is isomorphic to m.

Thus we can write m = B; @ ms @ M. Since m. is isomorphic to me: ® m,
Theorem 4 asserts that B; @ m. is isomorphic to m.

Proof of Theorem 6. Loosely, the proof proceeds thus.
m=A®B=m1®M2®= (A1@B1)® (A2@Bz)®=
=A1@ (Bl@A2)® (Bz@A:;)@-.-=A1@m1@m2@---=
= A, ® m. The 4, B;, m,, M , M are isomorphic to 4, B, m, m, m respectively.

Choose subsequences a; = {n:, ns%, ...} of N (the positive integers) such
that a;Na; = gif 14, ¢ =1,2,...; and such that U,a; = N. Define
gos:on m tom by ¢f(j) =0if jda,and f(7)if j € as; sif(nf) =01if 0 # &
and f(j) if ¢ = k. Then ¢;5; = s; and s; is an isomorphism of m; = g;(m)
with m.

Let 4; = 5s;(4) and B; = s;(B)(m = 4 ® B). Then m; = 4, ® B,. If p
is the projection pm = 4, (1 — p)m = B, then r; = sips;'¢; and v; =
s:(1 — p)s;~lq; are projections of m onto 4; and B, respectively.

Let m = {f|r:(f) = 0}.

Since m = A; @ m and since 4, is isomorphic to 4 the proof is finished if 7
is shown to be isomorphic to m.
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Define v, u on m to m by vf(j) = vf(j) if j € a;and uf(n,?) = f(n;+). Then
w = (1 — v)u + v is the isomorphism desired, as follows. One easily shows
that ¢;v = v; and then that 92 = v so that » and 1 — v are projections. The
following identities are also easily proved. 7, f(j) = (1 — v)f(j) if j € as;
usi1 = 855 qu(l —9) = uryy1; quv = wv,. Hence (1 —ov)u(l — o) =
u(l — v); uvu = uv. For example,
vurf(nj) = vounf(ng) = s:(1 — p)si'qeunf(nj) = si(1 — p)si uvsy1f(n))
(since quv = uv41)
= 5:(1 = p)sius (1 — p)sitagerrf(n))
=s:(1 — p)sl_»lsi(l - P)S;-:IQi-Hf(n;)
(since usi1 = s;)
= s:(1 = p)siiiginif(n)) = usur(l — p)siigurf(n))
= w1 f(n)) = veaf(nt) = of (057) = urf ().
Clearly w is linear and continuous.
wis 1 —1: Let wf =0 =9 + (1 — v)uf. Then vf and (1 — v)uf are in
complementary subspaces of m so vf = 0 = (1 — v)uf. Then (1 — v)f = fand
so (I —vuf=0—v)u(l —o)f =u(l —v)f =uf. Thus uf = 0. Since

uf(n;) = 0 = f(n;t") it follows that f € mi. (uf = 0 if and only if f € m,).
Since (1 — v)f = f, then

(1 = 9)f(n)) = (1 = 2)f(n)) = f(n))

In fi>1  J(1—o)f(nl)ifi>1 )
SV — oD ifi=1 " N1 — o)y ifs =1~ &~ @),
andso (1 —o)f = (1 — v1)f = forv,f = 0. Then
(ri+o0)f = s1pstgyf + 511 = pIst'qsf = s:((p+ 1 — pIsi'qyf) = ¢f = f
since f € m;. Thus r1f = f and since f € m, r1f = 0. Thus wis 1 — 1.
w 1s onto: Let f € m and define & by h(n,;}) = (1 — v)f(r,=1) if7>1and 0
if 2 =1. Then uh = (1 — v)f and let g = & — vh + of. Then rig = r1h — rwh

+ rwf = 0 as follows: 71k = s1psi—'gih = 0 since ¢1# = 0 (k vanishes on a,).
rwfi(j) = (1 — )9f1(j) = 0 for every fi and j, so rwh = rwwf = 0. Finally

wg = wh — woh + wof = vh — vk +of + (1 — o)uk — (1 — 9)uvh + (1 — v)
uh =of + 1 —o)f = f

once it is known that (1 — 2)uv = 0 which was shown above. Q.E.D.

3. Separable Banach spaces and property S.

THEOREM 7. The following are equivalent if B is separable.

(@) (B,)S)
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(b) If X D B and if X is separable, then there is a continuous projection from
X onto B.

(c) (B,S)) for some t.

(d) For every embedding u(B) of B into C([0,1]) there is a continuous projection
from C([0,1]) onto u(B).

Proof. If (a), X D B, and X is separable, then the identity map I from B
to B has a continuous extension # from x to B which is then a continuous
projection of X onto B. If (b) and if « is an isometry from B onto By, let X,
be separable and X; D B;. Then there is an X D B and an isometry #; of
X with X which agrees with « on B (6, pp. 90, 91). If p is a projection of X
onto B, then u;pu,~! is a projection of X; onto B;. Hence (b) is preserved up
to isometry. Since B is separable, it can be embedded isometrically in m (2,
p. 187), say under u. Suppose there is no ¢ for which (B,S;). Then, for every
positive integer #, there is a space X, a separable space ¥V, D X, and a map
u, from X, to B, such that |u,| = 1 and if w, is a map from Y, to B, which
extends u,, then |w,| > n. The maps uu, from X, to uB are also maps from
X, to m and hence have extensions w, from Y, to m with |w,| = |uu,| = 1.
Each 0,7, is separable. Hence the sets #B and \U,w, Y, generate a separable
subspace Y of m and, from the above calculation, there is a projection p of ¥
onto uB. The map u—'pw, is an extension to V, of u, and |u='pw,| < |p|.
This contradicts the assumption that |#—!'pw,| must be greater than #, for
every n. Hence (b) implies (c). Clearly ¢ implies a.

If «B is an embedding of B into C([0,1]), then #~! has an extension w.
Then uw is a continuous projection of C([0,1]) on #B. Now assume (d). If
Y D B and Y is separable we can embed Y in C([0,1]) (2, p. 185), and let u be
such an embedding. By (d) there is a continuous projection $ from C([0,1])
onto #B, u~'pu is a continuous projection of ¥ onto B. Q.E.D.

The next theorem shows that no infinite dimensional separable Banach
space has property Si.

TuEOREM 8. Let B have the following property. If Y D X and if Y/X 1is one
dimensional, then a continuous linear map u from X to B has an extension u,
such that |ui| = |u|. Then (B,P1).

Proof. Suppose 4 D X and #:X — B is continuous and linear. Let F denote
the set of pairs (¥,w) such that ¥ D X and w is an extension of #, w:¥V — X,
such that |w| = |u|. Order Fby saying (Y,w) > (YV,w)if VD YViandw, = w
on Yi. One easily shows a simply ordered subset of F has an upper bound; so
by Zorn’s Lemma choose a maximal element (Y,w). If ¥ &= 4 and if a €
A — Y, then there is an extension of w, w;, from Vi to B, with |w,| = ||
where Y is the subspace of A generated by ¥ and a (Y;/ Y is one dimensional).
This contradicts maximality of (Y,w) so ¥ = A. Since |w| = |#| and since
A4, X, and u are arbitrary, we have (B,P;).
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CorOLLARY 8.1. If B s separable and (B,S,), then B is finite dimensional.

Proof. Let u be an isometric embedding of B in m, and suppose that ¥/X
is one dimensional and v:X — B. We can write ¥V = (y) @ X for some y € Y,
where () is the subspace of ¥ generated by y. Since (m,P;) uv has an extension
v1:Y — m such that |vi] = |vu|. v;7 is contained in the subspace Z of m
generated by #B and v;y. This subspace is separable. If (B,S;), then (#B,S1)
and there is a projection p from Z to #B such that |p| = 1. Then «~'pv, is an
extension of v such that [#~'pv;| = |v]. Thus B has the property of Theorem 8.
The only separable such B are finite dimensional. Q.E.D.

The space ¢ of convergent sequences has a variant of property Si;if ¢ C X
and if X is separable, then there is a subspace ¢; of ¢, isometric to ¢, and a
projection p of X onto ¢, with [p| = 1.

Sobczyk (15) proved that if c¢ C X C m where X is separable then there is a
projection p from X onto ¢o such that |p| < 2. McWilliams (11) proved an
analogous result for ¢, the space of convergent sequences with supremum
norm, with |p| < 3. In both cases the authors showed ¢ = 2 and ¢ = 3 were
the best possible {. From Theorem 7 it follows easily that (c,S2) and (c,S3).

These results are proved below, with the help of Theorem 7, as corollaries to:

THEOREM 9. Let H = [0,1] and let K be a closed subset of H. Then there are
projections p and v of C(H) onto Cx(H) and X respectively, where X is the sub-
space of C(H) of functions constant on K. Moreover p and v can be chosen so
that |p| < 2, |7] < 3.

Proof. H — K is open and so is a countable union of sets (k:k;) where k;
and k;arein K;and hisin H — Kif h; < h < k; for some 7. Let

J(h) ifh € K
(afh = IQ,-;')_—'_'—%—EM (h—h) +f(h)if b € (hiky).

Then |gf] < sup {|f(h)| |k € K} < |f|] and ¢*f = ¢f. Hence ¢ is a projection
of norm 1. If ¢f = 0, then f(2) = 0if Aisin K and if f = 0 on K, then ¢f = 0.
Hence I — ¢ = p is a projection of C(H) onto Cx(H) of norm at most two.

Let e be the identically one function on H. Then ge = e so pe = 0. Define
a projection p; of C(H) onto (e) by pi1f(h) = f(k)e, where k is fixed in K.
Then |p1] = 1 and pif = 0 for every f € Cx(H). Since pf = 0 for every f € (e)
we have that pp; = pip =0 and so p + p1 =r is a projection with
[r| < |p| + |p1] < 3, of C(H) onto X.

COROLLARY 9.1. (co,S2), (c,Ss3).

Proof. Let ¢, be either ¢y or ¢ and let w embed ¢, isometrically into C(H).
Then w' is an isomorphism of (wc;)’ with ¢i" and |w'x'| = |«'| for every &' €
(weyr)'. If d; € ¢/ is defined by d(x) = x, for every x € ¢;, let e; € (wc,)’ such
that w'e; = d;. Then |e;] = |d;] = 1 and each e; is an extreme point of the
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unit ball of (we;)’. Hence (14, p. 104) ¢; can be extended to an extreme point
fi of the unit ball of (C(H))’. Then f/ is of the form =+ e, for some %;, where
en;(f) = f(h;) for every f € C(H) (4, p. 85). For x € ¢,

wx(h); = en;(wx) = £f/ (wx) = *e;(wx) = £di(x) = + x,;.

Let K = {h;} — {h;}. Then K = @ since a convergent subsequence of %; con-
verges to a point in H — {k;} Gf x; = 1/4, then wx(h;) = +£1/7 while wx (k)
=0if h € K).

If ¢; = co let p be a projection of C(H) onto Cx(H) such that |p| < 2. If
f € Cx(H) one easily shows that f/(f) —» 0 as 1 — « and we define v:Cx (H)
— ¢y by (¥f): = f/(f). Then wvp is the desired projection of C(H) onto wco
and |wop| < |w] |o] [p] = |p| < 2.

If ¢, = ¢, let  be a projection of C(H) onto X, the subspace of C(H) of
functions constant on K, such that |r| < 3. Again one shows f;/(f) converges
(¢ = =) and that if v is defined by (vf); = f/(f), then wor is a projection with
norm at most three from C(H) onto wc.

From Theorem 7 (d) the corollary follows.

COROLLARY 9.2. Let YV be separable and let X C V. If {x,/} C X' is such
that x;' (x) — x’'(x) for every x € X, then the sequence {x;'} can be extended to a
sequence {v'} such that y;'(y) — ¥’ (v) for every y € Y (and soy' is an extension
of ). Moreover the extensions y; can be chosen so that |y/| < 3 |x/|.

Proof. The mapping « from X to ¢ defined by (ux); = x,/(x) for every
x € X has an extension #; to Y such that |us < 3 |u|. Let ¥,/ = u,'d;. One
easily shows the v, have the desired properties and converge pointwise on ¥
(weak-star) to a y’ € Y’ which extends x'.

Remarks. One can reverse the steps of Corollary 9.2 to show (¢,S;). McWil-
liams’ result that 3 is the best ¢ possible so that (c,S;) then shows that the
3 in the corollary is the best possible. Since ¢ is P, for no ¢ one cannot in
general extend sequences of pointwise convergent linear functionals so that
the extensions are pointwise convergent.

If YV is separable, X C 7V, and x,” € X’ is a pointwise convergent sequence;
choose extensions ¥,” and a subsequence f;/ = ¥,,” such that »,T, f/ is a point-
wise convergent sequence and |y;/| = |x/| for every 4. Using such sequences
we can prove

TurEOREM 10. If V D ¢ and if Y is separable, then there is a subspace ¢, of ¢
such that ¢, is isometric to ¢ and a projection p of YV onto ci, such that |p| = 1.

Proof. Each d; (as in the proof of the above corollary) can be extended to a
linear functional y;/ in ¥’ such that |y,/| = |d; = 1. Since Y is separable
choose a subsequence {v,;'} of {y,'} which is pointwise convergent and so that
i1 > ny for each 4. Define u: Y — ¢ by (uy)y = w.'(¥) if n; < n < ny41.
Let ¢, be the subspace of ¢ of sequences f for which f,; = frir1 = ... = fuin—1
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for every . Clearly Y Ccy. If f € ¢y, then (uf)n = v,/ (f), ns < 1 < nyyyy
= d,;(f) = fu; = fu so that uf = f and u is a projection of ¥ onto ¢; with
lu] = 1.

It remains to show ¢; is isometric to ¢. Define v from ¢ to ¢; by (vf), = fi if
n; < n < nyr Then of € ¢y and |of| = [f]. If f € ¢1 let g be that element of ¢
defined by g(7) = f(n,). Then (vg), = gi = fu; = fu if #; < 7 < nyp1. Thus
vg = f and v is onto.

4. Involutions of norm one in C(K) where K is compact and
extremally disconnected. Kelley constructs a compact, extremally dis-
connected H from the extreme points of the unit ball of B’ if (B,P;) and shows
that B is isometric to C(H). In this section it is shown that if B is ‘‘conveniently
situated in a C(K) space, with K compact and extremally disconnected, then
the representation space H can be taken to be an open and closed subset of K.

The following theorem is due to Stone (4, p. 86). Eilenberg (5) established
the theorem for arbitrary topological H.

TuEOREM (Stone). If u is an isometry from C(L) onto C(K), where L and K
are compact, then there is a homeomorphism = of K with L, and an element a of
C(K) such that (uf) (k) = a(k)f(rk) and a takes only the values % 1.

If K = L, then = is a homeomorphism of K with K. This is the case con-
sidered below.

If #2 = 1 (the identity mapping), then = induces a linear mapping u of
C(K) onto C(K) such that |u| = 1and #* = 1 (such a u is called an involution).
The map p = (1 — u)/2 is a projection and |p| = [l — p| = 1. Moreover p
(C(K)) = B, where B is the subspace of C(K) for which & € B if and only
if ub =25, (1 —p)C(H) = X is the subspace x € X if and only if ux = —x.

LEMMA. With the notation above there are disjoint subsets H and W of K such
that H \JU W = K and B,X are isometric to Cw(K) and Cy(K) respectively.

Before proceeding with the proof an example will show why K is chosen to
be extremally disconnected. Let K be the set of rationals of the form 1/#, n a
positive integer, and 0 using the relative topology of the reals. Let 7 be defined

by
1 1 1 1
m(0) =0, ”<§ﬁ> Tom—1 ’r(:m - 1) - (%)

for n > 1. Then 7 is a homeomorphism of K and n? = I. Let u be the induced
involution. Then (uf)k = f(wh) and |u| = 1. Both B and X are infinite
dimensional, and so W and H must both be infinite. The space K does not
permit such a decomposition though it is a totally disconnected space.

Proof of the Lemma. Let § be the set of U C K such that U is open and there
isanx € X such thatx(k) > 0if £ € U. Order § by inclusion. If Fis a simply
ordered subset of F let V = Uy U.
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For each U € F choose xy such that xy(k) > 0if k € U, |xy| < 1, and xy
€ X. The collection xy, U € F is bounded above in C(K), and since C(K) is
a complete lattice, let y be the least upper bound of this collection. Clearly
y(k) > 0if B € Vsothat y(k) > 0if 2 € V which is an open set.

Now #V N\ V = @as follows: If € sV NV, then 7k € VN xV. Let
k €U, U, € F. Then wk € U, where U, € F for some Us. So either U, D U,
or U; D U, since F is simply ordered. Suppose U: D U;. Then wk, £ € U,
and xy,(k) = —xy,(7k) (since uxy, = —xy,) which is a contradiction to
Xy, (R') > 01if k' € U..

Since 7V and V are open and disjoint, 7V NV = ¢. One easily checks that
7V = xV. Define f by

y(k)ifkET
f(B) =< —y(xk) if k€ =V

0 otherwise,

Then it is easily seen that f € X and f(k) > 0 if £ € V. Thus F has an upper
bound and by Zorn’s lemma let W be a maximal element of %

As above WN 7W = ¢ and W and #W are open. Hence W N\ 7W = ¢
and 7W = =W. Define f by

lif 2 € W_

f)y =< —1ilkeExW Then f € C(K)
0 otherwise,

and f € X. Moreover f(b) > 0if ¢ ¢ W and since W is open and W is maximal,

w=T.

The next step is to show x(k) =0 if k¢ W\ J aW (K — (W\U xW) is the
set of fixed points of 7). Assume, by way of contradiction, that & €¢ W \U =W
exists such that x(k) > 0. Now K — (W \U=zW) is open and closed and we
choose an open and closed subset L of K — (W \U #W) such that x(k) > 0 on
L. Letting
_ fx(R)ifk e L\U~L
- 10 otherwise,

one checks that x; € X and (x; +f)(B) > 0 if 2 € W U L, where f is the
function

xl(k)

([ lifke W
f(B) =3 —1if k€ oV
i 0 otherwise.
Since x; + fis in X, this contradicts the choice of W as maximal. If x(k) < 0
repeat the above using —x. Thus x(k) = 0il k¢ WU xW.
Let H = K — W so that H is open and closed. Define v on X by

(x®ifke W
() (k) ‘{0 k¢ W
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and let v on B be defined by

_(bR)ifk € H
vb (k) ‘{0 if k¢ H.

If f € Cu(K), then let

fr)ifke W
x(k) ={ —f(xk) il k € =W

0 otherwise.

Then x € X and vx = fso vis onto. If f € Cw(K) let

(fyifkc H
b(k) _{f(qu) ifkew

Then & € B and vb = f. One easily checks that |vx| = ||, |vb] = |b] if x € X,
b€ B.

Eilenberg (5, p. 577) showed that for any topological H if C(H) = B ®@ X
and if |f| is the maximum of |8 and |x|, where bisin B, xisin X, and f = b + «x,
then there are sets K and M such that K M M is empty, K\JU M = H, and
b € Cx(H), x € Cy(X). In this case the map u defined by u(b + x) = b — x,
for x in X and b in B, is an involution and |u| = 1. Not every « with |u| = 1
yields a decomposition of this type. As an example let H be the set of integers.
Define # on m(H) by (uf)h = f(—h). There is a C(K) isometric to m(H)
with K compact and extremally disconnected. The decomposition of C(K)
induced by the involution of C(K) which corresponds to u is not the above
type. From the lemma we can prove the following:

THEOREM 11. Let K be compact and extremally disconnected and u an involution
of C(K) with |u| = 1. Let p be the projection (I + u)/2, pC(K) = B and
(I — p) C(K) = X. Then there is an H and V with H N\ V empty, H\U V
= K, and B is isometric to Cy(K) while X is isometric to Cx(K).

Proof. Let uf(k) = a(k)f(wk) where a(k) = 4= 1 for every k (see Stone's
theorem above). Let U = {kla(k) = 1}, W = {kla(k) = —1}. Then U, W
are open and closed, disjoint, and U\U W = K. Also if # € U and 7k € W,
then u*f (k) = a(k)uf(rk) = a(k)a(nk)f(k) (since w2k = k) = —f(k) which is
a contradiction to #? = I if we choose f such that f(k) 3= 0. Hence #U = U,
W = W. Define w; on B by

b(k)ifk e U
wib (k) :{O(if)kl ¢ V€V

Then wib € B (using that #U = U, #W = W) and we denote w,B by Bj.
Similarly, define w; on X and denote the image w,X by Xi. Every f € Cy(K)
is clearly of the form &; + x; for some b; € B; and x; € X; and u restricted
to Cw(K) is such that #? = I and |u| = 1. Identify Cy(K) with C(U) by
letting f(k) = f(h) if h € U, f(h) = 0 if k¢ U, where f € C(U); there are
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subsets Vy,H;, of U which are open, closed, disjoint and V;\U H; = U, and
such that B; and X, are isometric to Cy,yw(K) and Cy,yw(K) respectively.
Defining w, on B by

b(R)ifkEW
wsb (k) ={0(if)kl € lef

and similarly on X, and denoting w.B by B; and w.X by X, then u restricted
to Cy(K) is such that »2 = I. Here the set of fixed points of « is X, and
B, = {f € Cy(K)|uf = —f}. Reversing the roles of B and X in the lemma
there are subsets Vs, and H, of W which are open, closed, disjoint, and V. \U H,
= W and such that B, is isometric to Cy,yy(K) and X, is isometric to
CHzUU(K)-

Let v; and v, be isometric mappings of B; and B, onto Cy,yw(K) and
Cyuu(K) respectively. Now B = B, ® B, and if b = b; 4+ b, with b, € B,
and b € B,, then [b] = max (|di, |8s]). Define v on B by vb = 151 + v2b».
Then v is onto Cyyw(K) ® Cruu(K) = Cywr,(K) and  |v1d;1 + 2bs]
= max (|[vby|, |vbe]) = [b]. Similarly, X 1is isometric to Cg,yg,(K). Put
V= V1U V2, H =H1UH2.
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